APPENDIX C

Groupoids

This appendix is written for two purposes. It can serve as a reference for facts about categories in which all morphisms are isomorphisms. More importantly, it can be regarded as a short text on groupoids and stacks of discrete spaces. In this way it can provide an introduction to many of the ideas and constructions that are made in the main text, without any algebro-geometric complications.

In this appendix, all categories are assumed to be small. This is not so much for set-theoretic reasons (cf. B $\S 5$, but rather to think and write about their objects and morphisms as discrete spaces of points.

If X is a category, we write X_{0} for the set of its objects, X_{1} for the set of its morphisms and $s, t: X_{1} \rightarrow X_{0}$ for the source and target map. The notation $a: x \rightarrow y$ or $x \xrightarrow{a} y$ means that a is in X_{1} and $s(a)=x, t(a)=y$. The set of morphisms from x to y is denoted $\operatorname{Hom}(x, y)$. The composition, or multiplication, is defined on the collection $X_{2}=X_{1} \times_{X_{0} s} X_{1}$ of pairs (a, b) such that $t(a)=s(b)$. We write $b \circ a$ or $a \cdot b$ for the composition of a and b. We denote by $m: X_{2} \rightarrow X_{1}$ the map that sends (a, b) to $a \cdot b$. There is also a map $e: X_{0} \rightarrow X_{1}$ that takes every object x to the identity morphism id_{x} or 1_{x} on that object. In this appendix we generally denote the category by $X_{.}$.

Exercise C.1. Show that the axioms for a category are equivalent to the following identities among s, t, m, and $e:$ (i) $s \circ e=\operatorname{id}_{X_{0}}=t \circ e$; (ii) $s \circ m=s \circ p_{1}$ and $t \circ m=t \circ p_{2}$, where p_{1} and p_{2} are the projections from $X_{1}{ }_{t} \times_{s} X_{1}$ to X_{1}; (iii) $m \circ(m, 1)=m \circ(1, m)$ as maps from $X_{1}{ }_{t} \times X_{1} \times_{s} X_{1}$ to X_{1}; (iv) $m \circ(s \circ e, 1)=\mathrm{id}_{X_{1}}=m \circ(1, t \circ e)$.

We pick a canonical one-element set and denote it pt.

1. Groupoids

Definition C.1. A category X_{0} is called a groupoid if every morphism $a \in X_{1}$ has an inverse. There exists therefore a map $i: X_{1} \rightarrow X_{1}$ that takes a morphism to its inverse. The element $i(a)$ is often denoted a^{-1}.

Exercise C.2. A groupoid is a pair of sets X_{0} and X_{1}, together with five maps s, t, m, e and i, satisfying the four identities of the preceding exercise, together with: (v) $s \circ i=t$ and $t \circ i=s$; (vi) $m \circ(1, i)=e \circ s$ and $m \circ(i, 1)=e \circ t$. Deduce from these identities the properties: (vii) $i \circ i=\operatorname{id}_{X_{1}}$; (viii) $i \circ e=e ; m \circ(e, e)=e$; (ix) $i \circ m=m \circ\left(i \circ p_{2}, i \circ p_{1}\right)$. Show that e and i are uniquely determined by X_{0}, X_{1}, s, t, and m.

We will generally think of a groupoid X_{0} as a pair of sets (or discrete spaces) X_{0} and X_{1}, with morphisms s, t, m, e, and i, satisfying these identities. Occasionally, however,
we will use the categorical language, referring to elements of X_{0} as objects and elements of X_{1} as arrows or morphisms. The notation $X_{1} \rightrightarrows X_{0}$ may be used in place of X_{\bullet}.

Definition C.2. For any $x \in X_{0}$, the composition m defines a group structure on the set $\operatorname{Hom}(x, x)=\left\{a \in X_{1} \mid s(a)=x, t(a)=x\right\}$. This group is denoted $\operatorname{Aut}(x)$, and it is called the automorphism or isotropy group of x.

A groupoid may be thought of as an approximation of a group, but where composition is not always defined.

Our first example is the prototype groupoid:
Example C.3. Let X be a topological space. Define the fundamental groupoid $\pi(X)$. by taking $\pi(X)_{0}=X$ as the set of objects and

$$
\pi(X)_{1}=\{\gamma:[0,1] \rightarrow X \text { continuous }\} / \sim
$$

as the set of arrows. Here we write $\gamma \sim \gamma^{\prime}$ for two paths in X if there exists a homotopy between γ and γ^{\prime} fixing the endpoints. Then we define

$$
s: \pi(X)_{1} \longrightarrow \pi(X)_{0}, \quad[\gamma] \longmapsto \gamma(0)
$$

and

$$
t: \pi(X)_{1} \longrightarrow \pi(X)_{0} \quad[\gamma] \longmapsto \gamma(1)
$$

Thus the paths γ and γ^{\prime} are composable precisely if $\gamma(1)=\gamma^{\prime}(0)$ and we have

$$
\pi(X)_{2}=\left\{\left([\gamma],\left[\gamma^{\prime}\right]\right) \in \pi(X)_{1} \times \pi(X)_{1} \mid \gamma(1)=\gamma^{\prime}(0)\right\} .
$$

The composition of $[\gamma]$ and $\left[\gamma^{\prime}\right]$ is defined to be the homotopy class of the path

$$
\begin{gathered}
\left(\gamma \cdot \gamma^{\prime}\right)(t)=\left\{\begin{array}{lll}
\gamma(2 t) & \text { if } \quad 0 \leq t \leq \frac{1}{2} \\
\gamma^{\prime}(2 t-1) & \text { if } \quad \frac{1}{2} \leq t \leq 1
\end{array},\right. \\
\bullet \xrightarrow{\gamma} \bullet \xrightarrow{\gamma^{\prime}} \bullet
\end{gathered}
$$

[There should be a nicely drawn picture of paths here.] Thus we have

$$
m: \pi(X)_{2} \longrightarrow \pi(X)_{1}, \quad\left([\gamma],\left[\gamma^{\prime}\right]\right) \longmapsto\left[\gamma \cdot \gamma^{\prime}\right] .
$$

Exercise C.3. Prove that $\pi(X)$. is a groupoid. In particular, determine the maps $e: \pi(X)_{0} \rightarrow \pi(X)_{1}$ and $i: \pi(X)_{1} \rightarrow \pi(X)_{1}$. More generally, for any subset A of X, construct a groupoid $\pi(X, A)$., with $\pi(X, A)_{0}=A$ and $\pi(X, A)_{1}$ the set of homotopy classes of paths with both endpoints in A.

It is useful to imagine any groupoid geometrically in terms of paths as suggested by this example. (It is in examples like this that the notation $a \cdot b$ is preferrable to the $b \circ a$ convention.)

The fundamental mathematical notions of set and group occur as extreme cases of groupoids:

Example C.4. Every set X is a groupoid by taking the set of objects X_{0} to be X and allowing only identity arrows, which amounts to taking $X_{1}=X$, too. We consider every set as a groupoid in this way, if not mentioned otherwise.

Example C.5. Every group G is a groupoid by taking $X_{0}=p t$ and declaring the automorphism group of the unique object of X. to be G. Then $\operatorname{Aut}(x)=G=X_{1}$, if x denotes the unique element of $p t$. In this appendix we write $X_{\bullet}=B G_{\bullet}$ and call it the classifying groupoid of the group G.

The next example contains the previous two. It describes a much more typical groupoid:

Example C.6. If X is a right G-set, we define a groupoid $X \rtimes G$ by taking X as the set of objects of $X \rtimes G$ and declaring, for any two $x, y \in X$,

$$
\operatorname{Hom}(x, y)=\{g \in G \mid x g=y\}
$$

Composition in $X \rtimes G$ is induced from multiplication in G.
More precisely, we have $(X \rtimes G)_{0}=X$ and $(X \rtimes G)_{1}=X \times G$. The source map $s: X \times G \rightarrow X$ is the first projection, the target map $t: X \times G \rightarrow X$ is the action map: $t(x, g)=x g$. The morphisms (x, g) and (y, h) are composable if and only if $y=x g$ and the multiplication is given by $(x, g) \cdot(y, h)=(x, g h)$:

Thus we may identify X_{2} with $X \times G \times G$, with $(x, g) \times(x g, h)$ corresponding to (x, g, h), and write

$$
m: X \times G \times G \longrightarrow X \times G, \quad(x, g, h) \longmapsto(x, g h)
$$

The groupoid $X \rtimes G$ is called the transformation groupoid given by the G-set X.
Example C.7. If X is a left G-set, we get an associated groupoid by declaring

$$
\operatorname{Hom}(x, y)=\{g \in G \mid g x=y\} .
$$

Thus the pair (g, x) is considered as an arrow from x to $g x$. The source map is again the projection and the target map is the group action. We denote this groupoid by $G \ltimes X$. Note that the multiplication is given by $(g, x) \cdot(h, g x)=(h g, x)$, which reverses the order of the group elements. ${ }^{1}$

Exercise C.4. Suppose a set X has a left action of a group G and a right action of a group H, and these actions commute, i.e., $(g x) h=g(x h)$ for all $g \in G, x \in$ $X, h \in H$; in this case we write $g x h$ for this common element. Construct a double transformation groupoid $G \ltimes X \rtimes H$, of the form $G \times X \times H \rightrightarrows X$, with $s(g, x, h)=x$, $t(g, x, h)=g x h$, and $m\left((g, x, h),\left(g^{\prime}, g x h, h^{\prime}\right)\right)=\left(g^{\prime} g, x, h h^{\prime}\right)$.

The next two examples go beyond group actions on sets:

[^0]Example C.8. If $R \subset X \times X$ is an equivalence relation on the set X, then we define an associated groupoid $R \rightrightarrows X$ by taking the two projections as source and target map: $s=p_{1}, t=p_{2}$. Composition is given by $(x, y) \cdot(y, z)=(x, z)$:

For $x, y \in X$ there is at most one morphism from x to y and x and y are isomorphic in the groupoid $R \rightrightarrows X$ (meaning that there is an a in $X_{1}=R$ with $s(a)=x$ and $t(a)=y)$ if and only if $(x, y) \in R$, i.e., x and y are equivalent under the relation R.

Example C.9. Let $\left(G_{i}\right)_{i \in I}$ be a family of groups. Define an associated groupoid by taking as objects the set $X_{0}=I$. We declare all objects to be pairwise non-isomorphic and define, for each $i \in I, \operatorname{Aut}(i)=G_{i}$. Then X_{1} is the disjoint union $\coprod_{i \in I} G_{i}$ and $s=t$ maps $g \in G_{i}$ to i.

Example C.10. More generally, if $\left(X_{\bullet}(i)\right)_{i \in I}$ is any family of groupoids, there is a disjoint union groupoid $X_{\bullet}=\coprod_{i} X .(i)$, with $X_{0}=\coprod_{i} X_{0}(i)$ and $X_{1}=\coprod_{i} X_{1}(i)$.

Example C.11. Let $X_{0} \rightarrow Y$ be any map of sets. Define an associated groupoid X. by defining X_{1} to be the fibered product: $X_{1}=X_{0} \times_{Y} X_{0}$. The source is the first projection and the target is the second projection. Call this groupoid the cross product groupoid associated to $X_{0} \rightarrow Y$. Note that this construction is a special case of an equivalence relation (Example C.8).

Example C.12. For any set X, there is a groupoid with $X_{0}=X$, and $X_{1}=$ $X \times X$, with s and t the two projections, and $(x, y) \cdot(y, z)=(x, z)$. This is also an equivalence relation, with any two points being equivalent. This is sometimes called a banal groupoid. It is a special case of the preceding example, with $Y=p t$.

Definition C.13. Given a groupoid X_{\bullet}, a subgroupoid is given by subsets $Y_{0} \subset$ X_{0} and $Y_{1} \subset X_{1}$ such that: $s\left(Y_{1}\right) \subset Y_{0} ; t\left(Y_{1}\right) \subset Y_{0} ; e\left(Y_{0}\right) \subset Y_{1}, i\left(Y_{1}\right) \subset Y_{1}$, and $a, b \in Y_{1}$ with $t(a)=s(b)$ implies $a \cdot b \in Y_{1}$.

Exercise C.5. Let Z be any set. Construct a groupoid with X_{0} the set of nonempty subsets of Z, and with $X_{1}=\left\{(A, B, \phi) \mid A, B \in X_{0}\right.$ and $\phi: A \rightarrow B$ is a bijection $\}$, and multiplication given by $(A, B, \phi) \cdot(B, C, \psi)=(A, C, \psi \circ \phi)$.

Exercise C.6. Let Γ be a directed graph, which consists of a set V (of vertices) and a set E of edges, together with mappings $s, t: E \rightarrow V$. For any $a \in E$, define a symbol \widetilde{a}, called the opposite edge of a, and set $s(\widetilde{a})=t(a)$ and $t(\widetilde{a})=s(a)$. For each $v \in V$ define a symbol 1_{v}, with $s\left(1_{v}\right)=t\left(1_{v}\right)=v$. Construct a groupoid $F(\Gamma)$., called the free groupoid on Γ, by setting $F(\Gamma)_{0}=V$, and $F(\Gamma)_{1}$ is the (disjoint) union of $\left\{1_{v} \mid v \in V\right\}$ and the set of all sequences $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$, with each α_{i} either an edge or an opposite edge, with $t\left(\alpha_{i}\right)=s\left(\alpha_{i+1}\right)$, such that no successive pair $\left(\alpha_{i}, \alpha_{i+1}\right)$ has the form (a, \widetilde{a}) or (\widetilde{a}, a) for any edge $a, 1 \leq i<n$. Composition is defined by juxtaposition
and canceling to eliminate successive pairs equal to an edge and its inverse. Verify that $F(\Gamma)$. is a groupoid.

Exercise C.7. Let X. be a groupoid in which the multiplication map $m: X_{2} \rightarrow X_{1}$ is finite-to-one. For any commutative ring K with unity, let $A=K\left[X_{\bullet}\right]$ be the set of K-valued functions on X_{1}. Define a convolution product on A by the formula

$$
(f * g)(c)=\sum_{a \cdot b=c} f(a) \cdot f(b),
$$

the sum over all pairs $a, b \in X_{1}$ with $a \cdot b=c$. Show that, with the usual pointwise sum for addition, this makes A into an associative K-algebra with unity. If $X_{\bullet}=B G_{\bullet}$, this is the group algebra of G. (Extending this to infinite groupoids, with appropriate measures to replace the sums by integrals, is an active area (cf. [18]), as it leads to interesting \mathbb{C}^{*}-algebras.)

Remark C.14. There is an obvious notion of isomorphism between groupoids $X_{\text {- }}$ and Y_{\bullet}. It is given by a bijection between X_{0} and Y_{0} and a bijection between X_{1} and Y_{1}, compatible with the structure maps s, t, m (and therefore e and i). This notion will be referred to as strict isomorphism, since it is too strong for most purposes. We will define a more supple notion of isomorphism in the next section.

Exercise C.8. Any left action of a groups G on a set X determines a right action of G on X by setting $x \cdot g=g^{-1} x$. Show that the map which is the identity on X, and maps $G \times X$ to $X \times G$ by $(g, x) \mapsto\left(x, g^{-1}\right)$, determines a strict isomorphism of $G \ltimes X$ with $X \rtimes G$.

Exercise C.9. Let X. be a groupoid. Define the groupoid \widetilde{X}. by reversing the direction of arrows. In other words, $\widetilde{X}_{0}=X_{0}, \widetilde{X}_{1}=X_{1}, \tilde{s}=t, \tilde{t}=s, \widetilde{X}_{2}=\{(x, y) \in$ $\left.X_{1} \times X_{1} \mid(y, x) \in X_{2}\right\}$ and $\widetilde{m}(x, y)=m(y, x)$. This is a groupoid (with $\tilde{e}=e$ and $\tilde{i}=i$). Show that \widetilde{X}_{\bullet} is strictly isomorphic to X_{\bullet} by sending an element of X_{1} to its inverse, and the identity on X_{0}. This is called the opposite groupoid of X_{\bullet}, and is often denoted $X_{\bullet}^{\text {opp }}$.

Exercise C.10. For a left action of a group G on a set X, define a groupoid with $X_{0}=X, X_{1}=G \times X$, with $s(g, x)=g \cdot x, t(g, x)=x$, and $m((g, h \cdot x),(h, x))=(h \cdot g, x)$. Show that this is a groupoid, strictly isomorphic to the opposite groupoid of $G \ltimes X$. Similarly for a right action of G on X, there is a groupoid with $X_{0}=X, X_{1}=X \times G$, with $s(x, g)=x \cdot g, t(s, g)=x$, and $(x \cdot h, g) \cdot(x, h)=(x, h \cdot g)$; this is strictly isomorphic to the opposite groupoid of $X \rtimes G$.

The preceding exercises show that, although there are several possible conventions for constructing transformation groupoids of actions of a group on a set, they all give strictly (and canonically) isomorphic groupoids.

Exercise C.11. By a right action of a group G on a groupoid X_{\bullet} is meant a right action of G on X_{1} and on X_{0}, so that s, t are equivariant ${ }^{2}$, and satisfying $a g \cdot b g=(a \cdot b) g$

[^1]for $a, b \in X_{1}$ with $t(a)=s(b)$, and $g \in G$; that is, m is equivariant with repect to the diagonal action on X_{2}. It follows that e and i are also equivariant. Construct a groupoid $X_{1} \times G \rightrightarrows X_{0}$, denoted $X_{\bullet} \rtimes G$, by defining $s(a, g)=s(a), t(a, g)=t(a g)=t(a) g$, and $(a, g) \cdot\left(b, g^{\prime}\right)=\left(a \cdot b g^{-1}, g g^{\prime}\right)$. Verify that $X . \rtimes G$ is a groupoid. Construct a groupoid $G \ltimes X$. for a left action.

Exercise C.12. Suppose a groupoid X_{\bullet} has a left action of a group G, and a right action of a group H, and the actions commute, i.e., $(g x) h=g(x h)$ for $g \in G, h \in H$, and $x \in X_{0}$ or X_{1}. There is a natural right action of H on $G \ltimes X_{\bullet}$, and a left action of G on $X \rtimes H$. Construct a strict isomorphism between the groupoids $\left(G \ltimes X_{\bullet}\right) \rtimes H$ and $G \ltimes(X . \rtimes H)$.

Exercise C.13. $\left({ }^{*}\right)^{3}$ For every groupoid X_{\bullet}, construct a topological space X and a subset A so that X. is strictly isomorphic to the fundamental groupoid $\pi(X, A)$..

Let us consider two basic properties of groupoids:
Definition C.15. A groupoid X_{\bullet} is called rigid if for all $x \in X_{0}$ we have $\operatorname{Aut}(x)=$ $\left\{\mathrm{id}_{x}\right\}$.

A groupoid X_{0} is called transitive if for all $x, y \in X_{0}$ there is an $a \in X_{1}$ with $s(a)=x$ and $t(a)=y$.

Exercise C.14. For a topological space $X, \pi(X)$. is rigid if and only if every closed path in X is homotopic to a trivial path, and $\pi(X)$. is transitive if and only if X is path-connected.

Exercise C.15. For group actions, the transformation groupoid is rigid exactly when the action is free, and the groupoid is transitive when the action is transitive.

Exercise C.16. Show that every equivalence relation is rigid. Conversely, every rigid groupoid is strictly isomorphic to an equivalence relation.

Definition C.16. A groupoid is canonically and strictly isomorphic to a disjoint union of transitive groupoids, called its components. Call two points x and y of X_{0} equivalent if there is some $a \in X_{1}$ with $s(a)=x$ and $t(z)=y$, and write $x \cong y$ if this is the case. This is an equivalence relation, defined by the image of X_{1} in $X_{0} \times X_{0}$ by the map (s, t). There is a component for each equivalence class; write X_{0} / \cong for the set of equivalence classes.

Exercise C.17. If $s(a)=x$ and $t(a)=y$, the map $g \mapsto a^{-1} \cdot g \cdot a$ determines an isomorphism from $\operatorname{Aut}(x)$ to $\operatorname{Aut}(y)$. Replacing a by another a^{\prime} with $s\left(a^{\prime}\right)=x$ and $t\left(a^{\prime}\right)=y$ gives another isomorphism from $\operatorname{Aut}(x)$ to $\operatorname{Aut}(y)$ that differs from the first by an inner automorphism. Hence there is a group, well-defined up to inner automorphism, associated to each equivalence class of a groupoid: the automorphism group $\operatorname{Aut}(x)$ of any of its points.

Exercise C.18. The free groupoid of a graph is rigid if and only if the graph has no loops. It is transitive when the graph is connected.

[^2]Next we show how to count in groupoids.
Definition C.17. A groupoid X_{\bullet} is called finite if:
(1) the set of equivalence classes X_{0} / \cong is finite;
(2) for every object $x \in X_{0}$ the automorphism group $\operatorname{Aut}(x)$ is finite.

If $X_{\mathbf{\bullet}}$ is a finite groupoid, we define its mass to be

$$
\# X_{\bullet}=\sum_{x \in X_{0} \cong} \frac{1}{\# \operatorname{Aut}(x)},
$$

where the sum is taken over a set of representatives of the objects modulo isomorphism. More generally, if each $\operatorname{Aut}(x)$ is finite, and the sums $\sum \frac{1}{\# \operatorname{Aut}(x)}$ have a least upper bound, as x varies over representatives of finite subsets of X_{0} / \cong, define the mass $\# X$. to be this least upper bound, and call X. tame.

Exercise C.19. Show that if G is a finite group and X a finite G-set, then $X \rtimes G$ is finite and

$$
\# X \rtimes G=\frac{\# X}{\# G}
$$

Exercise C.20. (*) Let F be a finite field with q elements. Consider the groupoid X. of vector bundles over \mathbb{P}_{F}^{1} which are of rank 2 and degree 0 . The objects of this groupoid are all such vector bundles, the morphisms are all isomorphisms of these vector bundles. Show that this groupoid is tame but not finite, and find its mass.

Definition C.18. A vector bundle E on a groupoid X. assigns to each $x \in X_{0}$ a vector space E_{x}, and to each $a \in X_{1}$ from x to y a linear isomorphism $a_{*}: E_{x} \rightarrow E_{y}$, satisfying the compatibility: for all $(a, b) \in X_{2},(a \cdot b)_{*}=b_{*} \circ a_{*}$, i.e., with $z=t(b)$, the diagram

commutes. For example, a vector bundle on $B G_{\bullet}$ is the same as a representation of the group G.

Exercise C.21. If E is a vector bundle on X_{\bullet}, construct a groupoid E_{\bullet} with $E_{0}=$ $\coprod_{x \in X_{0}} E_{x}$, and $E_{1}=\left\{(a, v, w) \mid a \in X_{1}, v \in E_{s a}, w \in E_{t a}, a_{*}(v)=w\right\}$.

2. Morphisms of groupoids

Definition C.19. A morphism of groupoids $\phi_{\mathbf{\bullet}}: X_{\bullet} \rightarrow Y_{\mathbf{\bullet}}$ is a pair of maps $\phi_{0}: X_{0} \rightarrow Y_{0}, \phi_{1}: X_{1} \rightarrow Y_{1}$, compatible with source, target and composition. In the language of categories, this is the same as a functor.

Example C.20. A continuous map of topological spaces $f: X \rightarrow Y$ gives rise to a morphism of fundamental groupoids

$$
\pi(f) .: \pi(X) . \longrightarrow \pi(Y)
$$

Example C.21. Let X and Y be sets. Then the set maps from X to Y are the same as the groupoid morphisms from X to Y.

Example C.22. If G and H are groups, then the groupoid morphisms $B G_{\bullet} \rightarrow B H$ • are the group homomorphisms $G \rightarrow H$.

Example C.23. Let X be a right G-set and Y a right H-set. Then a morphism $X \rtimes G \rightarrow Y \rtimes H$ is given by a pair (ϕ, ψ), where $\phi: X \rightarrow Y$ and $\psi: X \times G \rightarrow H$, such that:
(i) for all $x \in X$ and $g \in G, \phi(x) \psi(x, g)=\phi(x g)$;
(ii) for all $x \in X$ and g and g^{\prime} in $G, \psi(x, g) \psi\left(x g, g^{\prime}\right)=\psi\left(x, g g^{\prime}\right)$.

The pair (ϕ, ψ) induces a groupoid morphism $X \rtimes G \rightarrow Y \rtimes H$ by $\phi: X \rightarrow Y$ on objects and

$$
X \times G \longrightarrow Y \times H, \quad(x, g) \longmapsto(\phi(x), \psi(x, g))
$$

on arrows. Every groupoid morphism $X \rtimes G \rightarrow Y \rtimes H$ comes about in this way. In particular, if $\rho: G \rightarrow H$ is a group homomorphism, and $\phi: X \rightarrow Y$ is equivariant with respect to ρ (i.e., $\phi(x g)=\phi(x) \rho(g)$ for $x \in X$ and $g \in G)$, then (ϕ, ψ) defines a morphism of groupoids, where $\psi(x, g)=\rho(g)$ for $x \in X, g \in G$.

For example, for any right G-set X, the map from X to a point determines a morphism from $X \rtimes G$ to $B G$.

Exercise C.22. A morphism $\phi_{\bullet}: X_{\bullet} \rightarrow Y_{\bullet}$ determines a mapping $X_{0} / \cong \rightarrow Y_{0} / \cong$ of equivalence classes. It also determines a group homomorphism $\operatorname{Aut}(x) \rightarrow \operatorname{Aut}\left(\phi_{0}(x)\right)$ for every $x \in X_{0}$, taking a to $\phi_{1}(a)$.

Exercise C.23. If $\phi_{\bullet}: X_{\bullet} \rightarrow Y_{\bullet}$ is a morphism, and E is a vector bundle on Y_{\bullet}, construct a pullback vector bundle $\phi_{\bullet}^{*}(E)$ on X_{\bullet}.

Exercise C.24. If X_{\bullet} and Y_{\bullet} are equivalence relations, any map $f: X_{0} \rightarrow Y_{0}$ satisfying $x \sim y \Rightarrow f(x) \sim f(y)$ determines a morphism of groupoids $X_{\bullet} \rightarrow Y_{\bullet}$, and every morphism from $X_{\text {. }}$ to Y_{\bullet} arises from a unique such map.

Example C.24. If a group G acts (on the right) on a set X, there is a canonical morphism $\pi: X \rightarrow X \rtimes G$ from the (groupoid of the set) X to the transformation groupoid.

Exercise C.25. Let $F(\Gamma)$. be the free groupoid on a graph Γ, as in Exercise C.6. For any groupoid X_{\bullet}, show that any pair of maps $V \rightarrow X_{0}$ and $E \rightarrow X_{1}$ comuting with s and t determines a morphism of groupoids from $F(\Gamma)$. to X_{\bullet}.

Exercise C.26. If X_{\bullet} and Y_{\bullet} are groupoids, their (direct) product $X_{\bullet} \times Y_{\bullet}$ has objects $X_{0} \times Y_{0}$ and arrows $X_{1} \times Y_{1}$, with s, t, and m defined component-wise. More generally, if $X(i)$. is a family of groupoids, one has a product groupoid $\Pi X(i)$ •

Of course, morphisms of groupoids may be composed, and we get in this way a category of groupoids (with isomorphisms being the strict isomorphisms considered above). But this point of view is too narrow. In the next section we shall enlarge this category of groupoids to a 2-category.

Exercise C.27. Given morphisms $X_{\bullet} \rightarrow Z_{\bullet}$ and $Y_{\bullet} \rightarrow Z_{\bullet}$ of groupoids, construct a groupoid V_{\bullet} with $V_{0}=X_{0} \times_{Z_{0}} Y_{0}$ and $V_{1}=X_{1} \times_{Z_{1}} Y_{1}$. Show that this is a fibered product in the category of groupoids. (This will not be the fibered product in the 2-category of groupoids.)

Exercise C.28. If X is a set and Y_{\bullet} is a groupoid, a morphism from X to Y_{\bullet} is given by a mapping of sets from X to Y_{0}. A morphism from Y_{\bullet} to X is given by a mapping of sets from Y_{0} / \cong to X. In categorical language, the functor from (Set) to (Gpd) that takes a set to its groupoid has a right adjoint from (Gpd) to (Set) that takes Y_{\bullet} to Y_{0}, and it has a left adjoint from (Gpd) to (Set) that takes Y_{\bullet} to Y_{0} / \cong.

3. 2-Isomorphisms

Definition C.25. Let ϕ_{\bullet} and ψ_{\bullet} be morphisms of groupoids from X_{\bullet} to Y_{\bullet}. A 2-isomorphism from $\phi_{\text {• }}$ to ψ_{\bullet}. is a mapping $\theta: X_{0} \rightarrow Y_{1}$ satisfying the following properties:
(1) for all $x \in X_{0}: s(\theta(x))=\phi_{0}(x)$ and $t(\theta(x))=\psi_{0}(x)$;
(2) for all $a \in X_{1}: \theta(s(a)) \cdot \psi_{1}(a)=\phi_{1}(a) \cdot \theta(t(a))$.

If $x \xrightarrow{a} y$, we therefore have a commutative diagram

In the language of categories, this says exactly that θ is a natural isomorphism from the functor ϕ_{\bullet} to the functor ψ_{\bullet}. We write $\theta: \phi_{\bullet} \Rightarrow \psi_{\bullet}$ to mean that θ is a 2 -isomorphism from $\phi_{\text {• }}$ to $\psi_{\text {. }}$.

Example C.26. Consider two continuous maps $f, g: X \rightarrow Y$ of topological spaces and the groupoid morphisms $\pi(f)_{\bullet}, \pi(g)_{\bullet}: \pi(X) \bullet \pi(Y)$. they induce. Every homotopy $H: X \times[0,1] \rightarrow Y$ from f to g induces a 2-isomorphism $\pi(H): \pi(f) \bullet \Rightarrow \pi(g)_{\bullet}$, which assigns to x in X the homotopy class of the path $t \mapsto H(x, t)$ in Y.

Exercise C.29. Verify that this is a 2 -isomorphism from $\pi(f)$ • to $\pi(g)$.
Definition C.27. For a groupoid morphism $\phi_{\mathbf{\bullet}}: X_{\bullet} \rightarrow Y_{\bullet}$ define the 2-isomorphism $1_{\phi_{\bullet}}: \phi_{\bullet} \Rightarrow \phi_{\bullet}$ by $x \mapsto e\left(\phi_{0}(x)\right)$ from X_{0} to Y_{1}. For $\phi_{\bullet}, \psi_{\bullet}, \chi_{\bullet}$ from X_{\bullet} to Y_{\bullet}, and $\alpha: \phi_{\bullet} \Rightarrow \psi_{\bullet}$ and $\beta: \psi_{\bullet} \Rightarrow \chi_{\bullet}$, define $\beta \circ \alpha: \phi_{\bullet} \Rightarrow \chi_{\bullet}$ by the formula $x \rightarrow \alpha(x) \cdot \beta(x)$.

Exercise C.30. Show that these definitions define 2-morphisms. Prove that composition is associative, the identities defined behave as identities with respect to composition of 2 -isomorphisms, and that every 2 -isomorphism is invertible. Conclude that for given groupoids X_{\bullet} and Y_{\bullet} the morphisms from X_{\bullet} to Y_{\bullet} together with the 2isomorphisms between them form a groupoid, denoted

$$
\operatorname{HOM}\left(X_{\bullet}, Y_{\bullet}\right)
$$

Example C.28. The only 2-isomorphisms between set maps are identities. For sets X, Y, the groupoid $\operatorname{HOM}(X, Y)$ is the set $\operatorname{Hom}(X, Y)$ of maps from X to Y.

Exercise C.31. If Y is a set, then $\operatorname{HOM}\left(X_{\bullet}, Y\right)$ is strictly isomorphic to the set $\operatorname{Hom}\left(X_{0} / \cong, Y\right)$ of maps from X_{0} / \cong to Y. If Y_{\bullet} is rigid, then $\operatorname{HOM}\left(X_{\bullet}, Y_{\bullet}\right)$ is also rigid. If X is a set, then $\operatorname{HOM}\left(X, Y_{\bullet}\right)$ is strictly isomorphic to the groupoid U • with U_{0} the set of maps from X to Y_{0} and U_{1} the set of maps from X to Y_{1}.

In particular, for any groupoid $X_{\text {。 }}$ there is a canonical morphism

$$
\pi: X_{0} \rightarrow X
$$

from the set X_{0} to the groupoid $X_{\text {. }}$. Although this map can be regarded as an inclusion, we will see that it acts more like a projection. There is also a canonical morphism, called the canonical map,

$$
\rho: X_{\bullet} \rightarrow X_{0} / \cong
$$

from the groupoid X. to the set X_{0} / \cong.
Exercise C.32. Let X_{\bullet} and Y_{\bullet} be equivalence relations and $f_{\bullet}, g_{\bullet}: X_{\bullet} \rightarrow Y_{\bullet}$ morphisms, given by $f_{0}, g_{0}: X_{0} \rightarrow Y_{0}$. There exists a 2 -isomorphism $\theta: f_{\bullet} \Rightarrow g_{\bullet}$ if and only if $f_{0}(x) \sim g_{0}(x)$ for all $x \in X_{0}$, and such a 2 -isomorphism is unique if it exists. It follows that the groupoid $\operatorname{HOM}\left(X_{\bullet}, Y_{\bullet}\right)$ is an equivalence relation, whose set of equivalence classes has a canonical bijection with the set of maps from X_{0} / \cong to Y_{0} / \cong.

Example C.29. Let G and H be groups, $\phi, \psi: G \rightarrow H$ group homomorphisms. Denote by ϕ_{\bullet} and ψ_{\bullet} the associated morphisms of groupoids $B G_{\bullet} \rightarrow B H_{\bullet}$. The 2isomorphisms from ϕ. to ψ. are the elements $h \in H$ satisfying $\psi(g)=h^{-1} \phi(g) h$, for all $g \in G$.

The groupoid $\operatorname{HOM}\left(B G_{\bullet}, B H_{\bullet}\right)$ is strictly isomorphic to the transformation groupoid $\operatorname{Hom}(G, H) \rtimes H$, where H acts on the group homomorphisms from G to H by conjugation $(\phi \cdot h)(g)=h^{-1} \phi(g) h$.

Example C.30. Given a G-set X and an H-set Y, and two morphisms (ϕ, ψ) and $\left(\phi^{\prime}, \psi^{\prime}\right)$ from $X \rtimes G$ to $Y \rtimes H$, as in Exercise C.23, a 2-isomorphism from the former to the latter is a map $\theta: X \rightarrow H$ satisfying: (i) $\phi^{\prime}(x)=\phi(x) \theta(x)$ for all $x \in X$; (ii) $\psi^{\prime}(x, g)=\theta(x)^{-1} \psi(x, g) \theta(x g)$ for all $x \in X$ and $g \in G$. In the equivariant case, where $\psi(x, g)=\rho(g)$ and $\psi^{\prime}(x, g)=\rho^{\prime}(g)$ for group homomorphisms ρ and ρ^{\prime} from G to H, the second condition becomes $\rho^{\prime}(g)=\theta(x)^{-1} \rho(g) \theta(x)$ for all x and g. Show that (ϕ, ψ) is 2 -isomorphic to an equivariant map exactly when there is a map $\theta: X \rightarrow H$ such that for all $g \in G$, the map $x \mapsto \theta(x)^{-1} \psi(x, g) \theta(x g)$ is independent of $x \in X$. [Are there cases where every morphism $X \rtimes G \rightarrow Y \rtimes H$ is 2-isomorphic to an equivariant map?]

Exercise C.33. We have seen that a morphism $\phi_{\mathbf{\bullet}}: X_{\bullet} \rightarrow Y_{\bullet}$ determines a homomorphism from $\operatorname{Aut}(x)$ to $\operatorname{Aut}\left(\phi_{0}(x)\right.$ for every $x \in X_{0}$. A 2 -isomorphism $\theta: \phi_{\bullet} \Rightarrow \psi_{\bullet}$ determines an isomorphism $\operatorname{Aut}\left(\phi_{0}(x)\right) \rightarrow \operatorname{Aut}\left(\psi_{0}(x)\right)$, taking g to $\theta(x)^{-1} \cdot g \cdot \theta(x)$. This
gives a commutative diagram

Definition C.31. Given $\phi_{\bullet}, \phi_{\bullet}^{\prime}: X_{\bullet} \rightarrow Y_{\bullet}, \alpha: \phi_{\bullet} \Rightarrow \phi_{\bullet}^{\prime}$, and $\psi_{\bullet}, \psi_{\bullet}^{\prime}: Y_{\bullet} \rightarrow Z_{\bullet}$, $\beta: \psi_{\bullet} \Rightarrow \psi_{\bullet}^{\prime}$, there is a 2-isomorphism $\beta * \alpha$ from $\psi_{\bullet} \circ \phi_{\bullet}$ to $\psi_{\bullet}^{\prime} \circ \phi_{\bullet}^{\prime}$, that maps x in X_{0} to

$$
\psi_{1}(\alpha(x)) \cdot \beta\left(\phi_{0}^{\prime}(x)\right)=\beta\left(\phi_{0}(x)\right) \cdot \psi_{1}^{\prime}(\alpha(x))
$$

in Z_{1}.
Exercise C.34. Verify that this defines a 2 -isomorphism as claimed. Verify that groupoids, morphisms, and 2-isomorphisms form a 2-category, i.e., that the axioms of Appendix B, $\S 2$ are satisfied.

Exercise C.35. Let I. be the banal groupoid $\{0,1\} \times\{0,1\} \rightrightarrows\{0,1\}$. For any groupoids X_{\bullet} and Y_{\bullet}, construct a bijection between the morphisms

$$
X_{\bullet} \times I_{\bullet} \longrightarrow Y_{\bullet}
$$

and the triples $\left(\phi_{\bullet}, \psi_{\bullet}, \theta\right)$, where ϕ_{\bullet} and ψ_{\bullet} are morphisms from X_{\bullet} to Y_{\bullet} and θ is a 2-isomorphism from ϕ_{\bullet} to ψ_{\bullet}.

4. Isomorphisms

Definition C.32. A morphism of groupoids $\phi_{\mathbf{\bullet}}: X_{\bullet} \rightarrow Y_{\bullet}$ is an isomorphism of groupoids if there exists a morphism $\psi_{\bullet}: Y_{\bullet} \rightarrow X_{\bullet}$, such that $\psi_{\bullet} \circ \phi_{\bullet} \cong \mathrm{id}_{X_{\bullet}}$ and $\phi_{\bullet} \circ \psi_{\bullet} \cong \mathrm{id}_{Y_{\bullet}}$, where ' \cong ' means the existence of a 2 -isomorphism between the morphisms.

Example C.33. Homotopy equivalent topological spaces have isomorphic fundamental groupoids: a homotopy equivalence $f: X \rightarrow Y$ determines an isomorphism $\pi(f) .: \pi(X) \quad \rightarrow \pi(Y)$.

Exercise C.36. Let X be a path connected topological space and $x \in X$ a base point. Let $G=\pi_{1}(X, x)$ be the fundamental group of X. Then the fundamental groupoid $\pi(X)$. is isomorphic to $B G_{\bullet}$.

Exercise C.37. Prove that every transitive groupoid is isomorphic to a groupoid of the form $B G_{\bullet}$, for a group G. Every groupoid is isomorphic to a disjoint union【 $B G(i)$., for some groups $G(i)$.

Exercise C.38. Let X. be an equivalence relation, and let $Y=X_{0} \cong$ be the set of equivalence classes. (a) Show that the canonical map $X \rightarrow Y$ is an isomorphism of groupoids. In particular, if a group G acts freely on a set X, the transformation groupoid $X \rtimes G$ is isomorphic to the set of orbits. (b) Show that if Z is any set, an isomorphism $X_{\bullet} \rightarrow Z$ determines a bijection between $Y=X_{0} / \cong$ and Z.

Exercise C.39. If X_{\bullet} and Y_{\bullet} are isomorphic groupoids, show that X_{\bullet} is rigid (resp. transitive) if and only if Y_{0} is rigid (resp. transitive).

Exercise C.40. A groupoid is rigid if and only if it is isomorphic to a set.
Exercise C.41. If $\phi_{\bullet}: X_{\bullet} \rightarrow Y_{\bullet}$ and $\psi_{\bullet}: Y_{\bullet} \rightarrow Z_{\bullet}$ are isomorphisms, then the composition $\psi_{\bullet} \circ \phi_{\bullet}: X_{\bullet} \rightarrow Z_{\bullet}$ is an isomorphism.

Exercise C.42. Suppose a set X has a left action of a group G and a right action of a group H, and these actions commute. Show that, if both actions are free, then the groupoids $G \ltimes(X / H)$ and $(G \backslash X) \rtimes H$ are isomorphic. For example, if H is a subgroup of a group G, then the groupoid $B H_{\bullet}$. is isomorphic to $G \ltimes(G / H)$.

Proposition C.34. A morphism of groupoids $\phi_{\mathbf{\bullet}}: X_{\mathbf{\bullet}} \rightarrow Y_{\mathbf{\bullet}}$ is an isomorphism if and only if it satisfies the following two conditions:
(1) For every $x, x^{\prime} \in X_{0}$ and $b \in Y_{1}$ with $s(b)=\phi_{0}(x)$ and $t(b)=\phi_{0}\left(x^{\prime}\right)$, there is a unique $a \in X_{1}$ with $s(a)=x, t(a)=x^{\prime}$, and $\phi_{1}(a)=b$. That is, the diagram

is a cartesian diagram of sets;
(2) For every $y \in Y_{0}$, there is an $x \in X_{0}$ and $a b \in Y_{1}$ with $\phi_{0}(x)=s(b)$ and $t(b)=y$. That is, the map

$$
X_{0} \phi_{0} \times_{Y_{0}, s} Y_{1} \rightarrow Y_{0}
$$

taking (x, b) to $t(b)$ is surjective. Equivalently, the induced map $X_{0} / \cong \rightarrow Y_{0} / \cong$ is surjective.

In the language of categories, the first condition says exactly that the functor ϕ_{\bullet} is faithful and full, and the second condition says that it is essentially surjective. A morphism of groupoids satisfying the first condition is said to be injective, and one satisfying the second will be called surjective.

The proof is largely left as an exercise, as it is the same as the corresponding result in category theory (Apendix B, $\S 1$). We remark only that the essential step in constructing a morphism $\psi_{\bullet}: Y_{\bullet} \rightarrow X_{\bullet}$ back is to choose, for each $y \in Y_{0}$, an $x_{y} \in X_{0}$ and a $b_{y} \in Y_{1}$ with $s\left(b_{y}\right)=\phi_{0}\left(x_{y}\right)$ and $t\left(b_{y}\right)=y$. Then set $\psi_{0}(y)=x_{y}$, and, for c in Y_{1}, set $\psi_{1}(c)$ to be the arrow from $\psi_{0}(s(c))$ to $\psi_{0}(t(c))$ such that $\phi_{1}\left(\psi_{1}(c)\right)=b_{s(c)} \cdot c \cdot b_{t(c)}{ }^{-1}$.

Note that the second condition is automatic whenever ϕ_{0} is surjective. In this case one need only choose x_{y} in X_{0} with $\phi_{0}\left(x_{y}\right)=y$, and then one can take $b_{y}=e(y)$.

Remark C.35. The choices in this proof are important, not so much to point out the necessary use of an axiom of choice, but because they show that the inverse of an isomorphism may be far from canonical. This has serious consequences when the groupoids have a geometric structure on them. Set theoretic surjections have sections (by the axiom of choice). But geometric surjections, even nice ones like projections
of fiber bundles, do not generally have sections. In particular, the classification of geometric groupoids is not as simple as it is for set-theoretic groupoids:

Corollary C.36. Every groupoid is isomorphic to a family of groups as in Example C.9.

Exercise C.43. A morphism $\phi_{\mathbf{0}}: X_{\mathbf{\bullet}} \rightarrow Y_{\mathbf{0}}$ is an isomorphism if and only if the induced map $X_{0} / \cong \rightarrow Y_{0} / \cong$ is bijective and the induced maps $\operatorname{Aut}(x) \rightarrow \operatorname{Aut}\left(\phi_{0}(x)\right)$ are isomorphisms for all $x \in X_{0}$.

Exercise C.44. If X_{\bullet} and Y_{\bullet} are isomorphic groupoids, show that X_{\bullet} is finite (resp. tame) if and only if Y_{0} is finite (resp. tame), in which case they have the same mass.

Exercise C.45. A groupoid is rigid if and only if it is isomorphic to a set.
Exercise C.46. A banal groupoid is isomorphic to a point $p t \rightrightarrows p t$.
Exercise C.47. Suppose a set X has a left action of a group G and a right action of a group H, and these actions commute. Show that the canonical morphisms from the double transformation groupoid $G \ltimes X \rtimes H$ to $G \ltimes(X / H)$ (resp. $(G \backslash X) \rtimes H)$ is an isomorphism if and only if the action of H (resp. G) on X is free. Deduce the result of Exercise C. 42.

Exercise C.48. Construct a groupoid X. from a set Z as in Exercise C.5. Let G be the group of bijections of Z with itself. There is a canonical surjective morphism from $G \ltimes X_{0}$ to X_{\bullet}, taking (σ, A) to $\left(A, \sigma(A),\left.\sigma\right|_{A}\right)$. For which Z is this an isomorphism?

Exercise C.49. Any linear map $L: V \rightarrow W$ of vector spaces (or abelian groups) determines an action of V on W by translation: $v \cdot w=L(v)+w$, and so we have the transformation groupoid $V \ltimes W$. If $L^{\prime}: V^{\prime} \rightarrow W^{\prime}$ is another, a pair of linear maps $\phi_{V}: V \rightarrow V^{\prime}, \phi_{W}: W \rightarrow W^{\prime}$, such that $L^{\prime} \circ \phi_{V}=\phi_{W} \circ L$ determines a homomorphism $\phi_{\bullet}: V \ltimes W \rightarrow V^{\prime} \ltimes W^{\prime}$. (a) Show that ϕ_{\bullet} is an isomorphism if and only if the induced maps $\operatorname{Ker}(L) \rightarrow \operatorname{Ker}\left(L^{\prime}\right)$ and $\operatorname{Coker}(L) \rightarrow \operatorname{Coker}\left(L^{\prime}\right)$ are isomorphisms. (b) Show that $V \ltimes W$ is isomorphic to the groupoid $\operatorname{Ker}(L) \ltimes \operatorname{Coker}(L)$ (with the trivial action), which is isomorphic to the product of $B(\operatorname{Ker}(L))$. and the set $\operatorname{Coker}(L)$.

Exercise C.50. If a group G acts on the right on groupoids X_{\bullet} and Y_{\bullet}, a morphism $\phi_{\bullet}: X_{\mathbf{\bullet}} \rightarrow Y_{\bullet}$ is G-equivariant if ϕ_{0} and ϕ_{1} are G-equivariant. There is then an induced morphism $X_{\bullet} \rtimes G \rightarrow Y_{\bullet} \rtimes G$. Show that, if ϕ_{\bullet} is an isomorphism, then this induced morphism is also an isomorphism.

5. Fibered products

Let

be a diagram of groupoids. We shall construct
(i) a groupoid W_{\bullet};
(ii) two morphisms of groupoids $p_{\bullet}: W_{\bullet} \rightarrow X_{\bullet}$ and $q_{\bullet}: W_{\bullet} \rightarrow Y_{\bullet}$;
(iii) a 2-isomorphism θ between the compositions $W_{\bullet} \rightarrow X_{\bullet} \rightarrow Z_{\bullet}$ and $W_{\bullet} \rightarrow Y_{\bullet} \rightarrow$ Z.
The data $\left(W_{\bullet}, p_{\bullet}, q_{\bullet}, \theta\right)$ will be called the fibered product of X_{\bullet} and Y_{\bullet} over Z_{\bullet}, notation $W_{\bullet}=X_{\bullet} \times_{Z_{\bullet}} Y_{\bullet}$.

The objects of W_{\bullet} are triples (x, y, c), where x and y are objects of X_{\bullet} and Z_{\bullet}, respectively, and c is a morphism in Z_{\bullet}. between $\phi_{0}(x)$ and $\psi_{0}(y)$:

$$
\phi_{0}(x) \xrightarrow{c} \psi_{0}(y)
$$

Given two such objects (x, y, c) and $\left(x^{\prime}, y^{\prime}, c^{\prime}\right)$ define a morphism from (x, y, c) to $\left(x^{\prime}, y^{\prime}, c^{\prime}\right)$ to be a pair $(a, b), x \xrightarrow{a} x^{\prime}, y \xrightarrow{b} y^{\prime}$, such that

commutes in Z_{\bullet}. Composition in W_{\bullet} is induced from composition in X_{\bullet} and Y_{\bullet}.
The two projections p_{\bullet}. and q_{\bullet}. are defined by projecting onto the first and second components, respectively (both on objects and morphisms).

To define $\theta: \phi_{\bullet} \circ p_{\bullet} \rightarrow \psi_{\bullet} \circ q_{\bullet}$, take $\theta: X_{0} \rightarrow Y_{1}$ to be the map $(x, y, c) \mapsto c$.
This fibered product satisfies a universal mapping property: given a groupoid V_{\bullet} and two morphisms $f_{\bullet}: V_{\bullet} \rightarrow X_{\bullet}$ and $g_{\bullet}: V_{\bullet} \rightarrow Y_{\bullet}$, together with a 2 -isomorphism $\tau: \phi_{c} o m \circ f_{\bullet} \Rightarrow \psi_{c} o m \circ g_{\bullet}$, there is a unique morphism $h_{\bullet}=\left(f_{\bullet}, g_{\bullet}\right): V_{\bullet} \rightarrow X_{\bullet} \times x_{\bullet} Y_{\bullet}$ such that $f_{\bullet}=p_{\bullet} \circ h_{\bullet}, g_{\bullet}=q_{\bullet} \circ h_{\bullet}$, and τ is determined from θ by $\tau=\theta * 1_{h_{\bullet}}$. In fact, h. is defined by $h_{0}(v)=\left(f_{0}(v), g_{0}(v), \tau(v)\right)$ for $v \in V_{0}$, and $h_{1}(d)=\left(f_{1}(d), g_{1}(d)\right)$ for $d \in V_{1}$.

A 2-commutative diagram

means that a 2 -isomorphism τ from $\phi_{\bullet} \circ f_{\bullet}$ to $\psi_{\bullet} \circ g$ is specified. It strictly commutes in case $\phi_{\bullet} \circ f_{\bullet}=\psi_{\bullet} \circ g_{\bullet}$. In this case the 2-isomorphism is taken to be $\epsilon: V_{0} \rightarrow Z_{1}$ given by $\epsilon=e \circ \phi_{o} \circ f_{0}=e \circ \psi_{o} \circ g_{0}$.

Exercise C.51. Show that a 2 -commutative diagram strictly commutes exactly when the 2-isomorphism $\theta: V_{0} \rightarrow Z_{1}$ factors through Z_{0}, i.e., $\theta=e \circ \theta_{0}$ for some map $\theta_{0}: V_{0} \rightarrow Z_{0}$.

The diagram is called 2-cartesian if it is 2-commutative and the induced map$\operatorname{ping}\left(f_{\bullet}, g_{\bullet}\right): V_{\bullet} \rightarrow X_{\bullet} \times_{Z_{\bullet}} Y_{\bullet}$ is an isomorphism. Such a V_{\bullet} will not satisfy the same universal property as the fibered product we have constructed; but it does satisfy a universal property in an appropriate 2-categorical sense (see Exercise C.56). The universal property just described is easier to use in practise.

The diagram is called strictly 2 -cartesian if the induced mapping $\left(f_{\bullet}, g_{\bullet}\right): V_{\bullet} \rightarrow$ $X_{0} \times{ }_{Z_{0}} Y_{\bullet}$ is a strict isomorphism.

Example C.37. Let X be a right G-set and $X \rtimes G$ the associated transformation groupoid. Consider the diagram

where σ is the action map and π is the canonical map. This diagram does not strictly commute, so we consider the 2-isomorphism $\eta: \pi \circ p_{1} \rightarrow \pi \circ \sigma$ given by the identity map on $X \times G$. This gives a 2-commutative diagram

and it is not difficult to see that the corresponding map from the set $X \times G$ to the fibered product $X \times_{X \rtimes G} X$ is a strict isomorphism. Thus $X \rtimes G$ can be considered to be a quotient of X by G, but a much better quotient than the set-theoretic quotient, because the set-theoretic quotient does not make the corresponding Diagram (2) a cartesian diagram of sets (or groupoids).

Remark C.38. Diagram (2) also has a 'dual' property, which expresses the fact that $X \rtimes G$ is a quotient of X by the action of G. This property is that for every set S and every morphism $f: X \rightarrow S$, such that $f \circ p_{1}=f \circ \sigma$ there exists a unique morphism $\bar{f}: X \rtimes G \rightarrow S$ such that $\bar{f} \circ \pi=f$:

We refer to this property as the cocartesian property of Diagram (2). There is also a more complicated version of this property for an arbitrary groupoid in place of the set S, for which we refer to Exercise C.53.

Exercise C.52. Generalize the previous example by replacing the transformation groupoid $X \rtimes G$ by an arbitrary groupoid X. In other words, construct a 2-cartesian diagram

Show in fact that X_{1} is strictly isomorphic to the fibered product $X_{0} \times_{X_{0}} X_{0}$. This diagram also has a cocartesian property with respect to maps into sets S.

Exercise C.53. Show that for any groupoid X_{\bullet}, the morphism $\pi: X_{0} \rightarrow X_{\bullet}$ makes X. a 2-quotient of X_{0} in the 2-category (Gpd) (in the sense of Definition B.17).

Exercise C.54. If $X_{\bullet}=X$ and $Y_{\bullet}=Y$ are sets, so ϕ_{\bullet} and ψ_{\bullet} are given by maps $f: X \rightarrow Z_{0}$ and $g: Y \rightarrow Z_{0}$, then the fibered product $X \times_{Z_{\mathbf{\bullet}}} Y$ is strictly isomorphic to the set

$$
W=\left\{(x, y, c) \in X \times Y \times Z_{1} \mid s(c)=f(x) \text { and } t(c)=g(y)\right\}
$$

In the preceding exercise, if $Y=X$ and $g=f$, one gets a 2-cartesian diagram

with $W=\left\{\left(y_{1}, y_{2}, a\right) \in Y \times Y \times Z_{1} \mid f\left(y_{1}\right) \xrightarrow{a} f\left(y_{2}\right)\right\}$, and $\theta: W \rightarrow Z_{1}$ is the third projection.

Example C.39. Let $W_{\text {. }}$ be the fibered product $(X \rtimes G) \times_{B G} . p t$. From the construction of the fibered product we can identify W_{0} with $X \times G$ and W_{1} with $X \times G \times G$, with $s(x, g, h)=(x, g h), t(x, g, h)=(x g, h)$, and $(x, g, h) \cdot\left(x g, g^{\prime}, h^{\prime}\right)=\left(x, g g^{\prime}, h^{\prime}\right)$.

Exercise C.55. Show that the canonical morphism $\alpha_{\bullet}: X \rightarrow W_{\bullet}$, defined by $\alpha_{0}(x)=(x, e)$ and $\alpha_{1}(x)=(x, e, e)$, satisfies the conditions of Proposition C.34, so α_{\bullet} is an isomorphism. Thus the diagram

is 2-cartesian. Construct a morphism $\beta_{\mathbf{\bullet}}: W_{\mathbf{\bullet}} \rightarrow X$ by the formulas $\beta_{0}(x, g)=x g$ and $\beta_{1}(x, g, h)=x g h$. Verify that $\beta_{\bullet} \circ \alpha_{\bullet}=1_{X}$, and construct a 2 -isomorphism from $\alpha_{\bullet} \circ \beta_{\bullet}$ to $1_{W_{\bullet}}$.

Note that $X \rightarrow X \rtimes G$ is the "general" quotient by G. Thus we see that every quotient by G is a pullback from the quotient of $p t$ by G (which is $B G$.). This justifies calling $p t \rightarrow B G$. the universal quotient by G.

Exercise C.56. (*) Show that a 2-commutative diagram is 2-cartesian as defined here if and only if it is 2-cartesian in the the 2-category of groupoids, i.e., it satisfies the universal property of Appendix B, Definition B.17.

Note how this universal mapping property characterizes the fibered product W_{\bullet} up to an isomorphism which is unique up to a unique 2-isomorphism. This is the natural analogue in a 2-category of the usual 'unique up to unique isomorphism' in an ordinary category.

5.1. Square morphisms.

Definition C.40. A morphism of groupoids $\phi_{\mathbf{\bullet}}: X_{\bullet} \rightarrow Y_{\bullet}$ is called square if the diagrams

are cartesian diagrams of sets. Since s and t are obtained from each other by the involution i, it suffices to verify that one of these diagrams is cartesian.

Exercise C.57. The morphism $X \rtimes G \rightarrow B G$. of Example C. 23 is square.
Exercise C.58. If X_{\bullet} is a groupoid, then any square morphism $X_{\bullet} \rightarrow B G_{\bullet}$ makes X. strictly isomorphic to a transformation groupoid associated to an action of G on X_{0}.

5.2. Restrictions and Pullbacks.

Definition C.41. Let X. be a groupoid, Y_{0} a set and $\phi_{0}: Y_{0} \rightarrow X_{0}$ a map. Define Y_{1} to be the fibered product (of sets)

So an element of Y_{1} is a triple $\left(y, y^{\prime}, a\right) \in Y_{0} \times Y_{0} \times X_{1}$ with $\phi_{0}(y) \xrightarrow{a} \phi_{0}\left(y^{\prime}\right)$. Define the structure of a groupoid on Y_{0} by the rule

$$
\left(y, y^{\prime}, a\right) \cdot\left(y^{\prime}, y^{\prime \prime}, b\right)=\left(y, y^{\prime \prime}, a \cdot b\right)
$$

We get an induced morphism of groupoids $\phi_{\bullet}: Y_{\bullet} \rightarrow X_{\bullet}$, defined by $\phi_{1}\left(y, y^{\prime}, a\right)=a$.
The groupoid Y_{\bullet} is called the restriction of X_{\bullet} via $Y_{0} \rightarrow X_{0}$; following [50], it may be denoted $\left.X \bullet\right|_{Y_{0}} .{ }^{4}$

[^3]Note that by construction, $Y_{\bullet} \rightarrow X_{\mathbf{\bullet}}$ is injective (full and faithful). It is an isomorphism exactly when the image of the map $Y_{0} \rightarrow X_{0}$ intersects all isomorphism classes of X. , by Proposition C.34.

Example C.42. Let X be a right G-set and $U \subset X$ a subset. The restriction of $X \rtimes G$ to U is not a transformation groupoid unless U is G-invariant. Thus we see that very natural constructions can lead out of the world of group actions.

Example C.43. If $\pi(X)$. is the fundamental group of a topological space X, and A is a subset of X, then the restriction of $\pi(X)$. to A is the groupoid $\pi(X, A)$.

Exercise C.59. Show that any morphism : $X_{\bullet} \rightarrow Y_{\bullet}$ factors canonically into $X_{\bullet} \rightarrow$ $Y_{\bullet}^{\prime} \rightarrow Y_{\bullet}$, with $X_{0} \rightarrow Y_{0}^{\prime}$ injective, and $Y_{\bullet}^{\prime} \rightarrow Y_{\bullet}$ an isomorphism.

Definition C.44. Let X. be a groupoid, and $f: X_{0} \rightarrow Z$ a map to a set Z such that $f \circ s=f \circ t$. For any map $Z^{\prime} \rightarrow Z$, construct a pullback groupoid X^{\prime}. by setting $X_{0}^{\prime}=X_{0} \times{ }_{Z} Z^{\prime}, X_{1}^{\prime}=X_{1} \times{ }_{Z} Z^{\prime}$, with s^{\prime} and t^{\prime} induced by s and t, as is m^{\prime} from m, by means of the isomorphism $X_{1}^{\prime}{ }_{t^{\prime}} \times{ }_{X_{0}^{\prime}, s^{\prime}} X_{1}^{\prime} \cong\left(X_{1} \times_{X_{0}, s} X_{1}\right) \times{ }_{Z} Z^{\prime}$.

Exercise C.60. Verify that X_{\bullet}^{\prime} is a groupoid. Show that the induced morphism $X_{\bullet}^{\prime} \rightarrow X_{\bullet}$ is square.

5.3. Representable and gerbe-like morphisms.

Definition C.45. A morphism $\phi_{\bullet}: X_{\bullet} \rightarrow Y_{\bullet}$ of groupoids is called representable if the induced mapping

$$
\left(s, t, \phi_{1}\right): X_{1} \longrightarrow\left(X_{0} \times X_{0}\right) \times_{Y_{0} \times Y_{0}} Y_{1}
$$

is injective; that is, ϕ_{0} is faithful as a functor between categories. The morphism is said to be gerbe-like if this map $\left(s, t, \phi_{1}\right)$ is surjective, and the induced map $X_{0} / \cong \rightarrow Y_{0} / \cong$ is surjective; that is, ϕ_{0} is a full and essentially surjective functor. So a representable and gerbe-like morphism is an isomorphism.

For any groupoid $X_{\mathbf{\bullet}}$, the canonical morphism $X_{0} \rightarrow X_{\bullet}$ is representable (but not usually injective). If X_{\bullet}^{\prime} is a pullback of X_{\bullet}, as defined in the last section, the map $X_{\bullet}^{\prime} \rightarrow X_{\bullet}$ is representable.

The canonical morphism from X. to X_{0} / \cong is gerbe-like. Any surjective homomorphism $G \rightarrow H$ of groups determines a gerbe-like homomorphism $B G_{\bullet} \rightarrow B H_{\bullet}$.

Exercise C.61. Let $\phi_{\mathbf{\bullet}}: X_{\mathbf{\bullet}} \rightarrow Y_{\bullet}$ be a morphism of groupoids. The following are equivalent:
(i) $\phi_{\mathbf{0}}$ is representable;
(ii) For any set T and morphism $T \rightarrow Y_{\bullet}$, the fibered product $X_{\bullet} \times_{Y_{\bullet}} T$ is rigid;
(iii) For any rigid groupoid T_{\bullet} and morphism $T_{\bullet} \rightarrow Y_{\bullet}$, the fibered product $X_{\bullet} \times_{Y_{\bullet}} T_{\bullet}$ is rigid;
(iv) For any 2-cartesian diagram

with T_{\bullet} rigid, $S_{\mathbf{\bullet}}$ is also rigid.
(v) For any set T and morphism $T \rightarrow Y_{\bullet}$, there is a set S and a 2-cartesian diagram

Exercise C.62. Show that any morphism $X_{\bullet} \rightarrow Y_{\bullet}$ factors canonically into a gerbelike morphism $X_{\bullet} \rightarrow Z_{\bullet}$ followed by a representable morphism $Z_{\bullet} \rightarrow Y_{\bullet}$.

Exercise C.63. For a morphism $\phi_{\mathbf{\bullet}}: X_{\bullet} \rightarrow Y_{\bullet}$ of groupoids, show that the following are equivalent:
(i) $\phi_{\mathbf{0}}$ is gerbe-like;
(ii) For any morphism $p t \rightarrow Y_{\bullet}$ (given by $y \in Y_{0}$), the fibered product $X_{\mathbf{\bullet}} \times_{Y_{\mathbf{\bullet}}} p t$ is non-empty and transitive.
(iii) For any morphism $\psi_{\bullet}: p t \rightarrow Y_{\bullet}$, there is a group G and a 2-cartesian diagram

6. Simplicial constructions

We fix a groupoid X_{\bullet} and explain several constructions of new groupoids out of X_{\bullet}. For any integer $n \geq 1$, denote by X_{n} the set of n composable morphisms in X_{\bullet}, i.e.,

$$
\begin{gathered}
X_{n}=\left\{\left(a_{1}, \ldots, a_{n}\right) \in\left(X_{1}\right)^{n} \mid t\left(a_{i}\right)=s\left(a_{i+1}\right) \text { for } 1 \leq i<n\right\}: \\
* \xrightarrow{a_{1}} * \xrightarrow{a_{2}} \cdots \xrightarrow{a_{n}} *
\end{gathered}
$$

6.1. Groupoid of diagrams. Let X. be a groupoid. Define a new groupoid $X_{\bullet}\{n\}$, for $n \geq 1$ as follows. An object of $X_{\bullet}\{n\}$ is an n-tuple of composable arrows in X_{\bullet}, i.e., an element of X_{n}. A morphism in $X_{\bullet}\{n\}$ from $\left(a_{1}, \ldots, a_{n}\right) \in X_{n}$ to $\left(b_{1}, \ldots, b_{n}\right) \in X_{n}$ is a commutative diagram in X.

i.e., an $(n+1)$-tuple $\left(\phi_{0}, \ldots, \phi_{n}\right)$ of arrows in X_{\bullet} such that $\phi_{i-1} \cdot b_{i}=a_{i} \cdot \phi_{i}$, for all $i=1, \ldots, n$.

Composition in $X_{\bullet}\{n\}$ is defined by composing vertically:

$$
\left(\phi_{0}, \ldots, \phi_{n}\right) \cdot\left(\psi_{0}, \ldots, \psi_{n}\right)=\left(\phi_{0} \cdot \psi_{0}, \ldots, \phi_{n} \cdot \psi_{n}\right)
$$

We call the groupoid $X_{\bullet}\{n\}$ the groupoid of n-diagrams of X_{\bullet}.

Exercise C.64. Construct a strict isomorphism between $X .\{1\}$ and the restriction of X. by the map $s: X_{1} \rightarrow X_{0}$. More generally, construct a strict isomorphism between $X_{\bullet}\{n\}$ and the restriction of X_{\bullet} by the map from X_{n} to X_{0} that takes $\left(a_{1}, \ldots, a_{n}\right)$ to $s\left(a_{1}\right)$. Conclude that all of the groupoids $X .\{n\}$ are isomorphic to X_{\bullet}.

ExERCISE C.65. Define a groupoid $V_{\bullet}^{(n)}$ with $V_{0}^{(n)}=X_{n}, V_{1}^{(n)}=X_{2 n+1}$, $s\left(a_{1}, \ldots, a_{n}, c, b_{1}, \ldots, b_{n}\right)=\left(a_{n}^{-1}, \ldots, a_{1}^{-1}\right)$, and $t\left(a_{1}, \ldots, a_{n}, c, b_{1}, \ldots, b_{n}\right)=\left(b_{1}, \ldots, b_{n}\right)$. Construct a strict isomorphism between $V_{\bullet}^{(n)}$ and $X_{\bullet}\{n\}$. Deduce that $X_{\bullet}\{n\}\{1\}$ is strictly isomorphic to $X_{\bullet}\{2 n+1\}$. Prove more generally that $X_{\bullet}\{n\}\{m\}$ is strictly isomorphic to $X_{\bullet}\{(n+1)(m+1)-1\}$.

Definition C.46. Define the shift of X_{\bullet} by n to be the subgroupoid $X_{\bullet}[n]$ of $X_{\bullet}\{n\}$ defined by

$$
\begin{aligned}
& \left(X_{\bullet}[n]\right)_{0}=\left(X_{\bullet}\{n\}\right)_{0}=X_{n} \\
& \left(X_{\bullet}[n]\right)_{1}=\left\{\left(\phi_{0}, \ldots, \phi_{n}\right) \in\left(X_{\bullet}\{n\}\right)_{1} \mid \phi_{1}, \ldots, \phi_{n} \text { are identity morphisms }\right\} .
\end{aligned}
$$

Exercise C.66. (1) Define a groupoid $W_{\bullet}^{(n)}$ by $W_{0}^{(n)}=X_{n}, W_{1}^{(n)}=X_{n+1}$, with $s\left(a_{1}, \ldots, a_{n+1}\right)=\left(a_{1} \cdot a_{2}, a_{3}, \ldots, a_{n+1}\right), t\left(a_{1}, \ldots, a_{n+1}\right)=\left(a_{2}, a_{3}, \ldots, a_{n+1}\right)$, and

$$
\left(a_{1}, \ldots, a_{n+1}\right) \cdot\left(b_{1}, \ldots, b_{n+1}\right)=\left(a_{1} \cdot b_{1}, b_{2}, \ldots, b_{n+1}\right)
$$

(2) Construct a strict isomorphism between $W_{\bullet}^{(n)}$ and the cross product groupoid $X_{n} \times_{X_{n-1}} X_{n} \rightrightarrows X_{n}$, constructed from the morphism $X_{n} \rightarrow X_{n-1}$ that maps $\left(a_{1}, \ldots, a_{n}\right)$ to $\left(a_{2}, \ldots, a_{n}\right)$. (3) Show that $W_{\bullet}^{(n)}$ is strictly isomorphic to $X_{\bullet}\{n\}$.

Exercise C.67. Define a morphism $X_{\bullet}[n+1] \rightarrow X_{\bullet}[n]$ by leaving out the last component. Prove that this morphism is square.

Exercise C.68. ${ }^{(*)}$ For $0 \leq k \leq n$, and $n \geq 2$, define $d_{k}: X_{n} \rightarrow X_{n-1}$ by the formulas $d_{0}\left(a_{1}, \ldots, a_{n}\right)=\left(a_{2}, \ldots, a_{n}\right), d_{k}\left(a_{1}, \ldots, a_{n}\right)=\left(a_{1}, \ldots, a_{k} \cdot a_{k+1}, \ldots, a_{n}\right)$ for $0<$ $k<n$, and $d_{n}\left(a_{1}, \ldots, a_{n}\right)=\left(a_{1}, \ldots, a_{n-1}\right)$. For any $1 \leq k \leq n$, construct a groupoid $U_{\bullet}=X_{\bullet}(n, k)$ with $U_{0}=X_{n-1}, U_{1}=X_{n}, s=d_{k}, t=d_{k-1}$, and

$$
\left(a_{1}, \ldots, a_{n}\right) \cdot\left(b_{1}, \ldots, b_{n}\right)=\left(a_{1}, \ldots, a_{k-1}, a_{k} \cdot b_{k}, b_{k+1}, \ldots, b_{n}\right) .
$$

(1) Show that $X_{\bullet}(n, k)$ is strictly isomorphic to $X_{\bullet}(n, l)$ for any $1 \leq k, l \leq n$. (2) The formulas $\phi_{1}\left(a_{1}, \ldots, a_{n}\right)=a_{k}$ and $\phi_{0}\left(a_{1}, \ldots, a_{n-1}\right)=s\left(a_{k}\right)$ determine a morphism $\phi_{\bullet}: U_{\bullet} \rightarrow X_{\bullet}$. Show that this morphism is faithful and essentially surjective, but not usually full.

6.2. Simplicial sets.

Definition C.47. A simplicial set X_{*} specifies a set X_{n} of n-simplices for each nonnegative integer n, together with face maps $d_{i}: X_{n} \rightarrow X_{n-1}$ for $0 \leq i \leq n$, and degeneracy maps $s_{i}: X_{n} \rightarrow X_{n+1}$ for $0 \leq i \leq n$, satisfying the following identities:
(a) $d_{i} d_{j}=d_{j-1} d_{i} \quad$ for $\quad i<j$;
(b) $s_{i} s_{j}=s_{j+1} s_{i} \quad$ for $\quad i \leq j$;
(c) $d_{i} s_{j}=\left\{\begin{array}{lll}s_{j-1} d_{i} & \text { for } \quad i<j ; \\ \text { id } & \text { for } & i=j, j+1 ; \\ s_{j} d_{i-1} & \text { for } & i>j+1 .\end{array}\right.$

A groupoid $X_{\text {. }}$ determines a simplicial set X_{*}, called the simplicial set of the groupoid, whose set of n-simplices is the set X_{n} of composable morphisms $\left(a_{1}, \ldots, a_{n}\right)$ in X_{\bullet}, with X_{0} the objects of $X_{\text {. }}$. For $n=1, d_{0}=t$ and $d_{1}=s$ are the two maps from X_{1} to X_{0}, and $s_{0}=e$ is the map from X_{0} to X_{1}. The general maps are defined by:

$$
d_{i}\left(a_{1}, \ldots, a_{n}\right)= \begin{cases}\left(a_{2}, \ldots, a_{n}\right) & \text { if } i=0 \\ \left(a_{1}, \ldots, a_{i} \cdot a_{i+1}, \ldots, a_{n}\right) & \text { if } 0<i<n \\ \left(a_{1}, \ldots, a_{n-1}\right) & \text { if } i=n\end{cases}
$$

and

$$
s_{i}\left(a_{1}, \ldots, a_{n}\right)= \begin{cases}\left(1_{s\left(a_{1}\right)}, a_{1}, \ldots, a_{n}\right) & \text { if } \quad i=0 \\ \left(a_{1}, \ldots, a_{i}, 1_{t\left(a_{i}\right)=s\left(a_{i+1}\right)}, a_{i+1}, \ldots, a_{n}\right) & \text { if } \quad 0<i<n \\ \left(a_{1}, \ldots, a_{n}, 1_{t\left(a_{n}\right)}\right) & \text { if } \quad i=n\end{cases}
$$

Exercise C.69. Verify (a), (b), and (c), so X_{*} is a simplicial set.
A morphism $\phi_{*}: X_{*} \rightarrow Y_{*}$ of simplicial sets is given by a mapping $\phi_{n}: X_{n} \rightarrow Y_{n}$ for each $n \geq 0$, commuting with the face and degeneracy operators. A morphism $\phi_{\bullet}: X_{\bullet} \rightarrow Y_{\bullet}$ of groupoids determines a morphism $\phi_{*}: X_{*} \rightarrow Y_{*}$ of their simplicial sets, where ϕ_{0} and ϕ_{1} are the given maps, and $\phi_{n}\left(a_{1}, \ldots, a_{n}\right)=\left(\phi_{1}\left(a_{1}\right), \ldots, \phi_{1}\left(a_{n}\right)\right)$ for $n \geq 1$. If ϕ_{*} and ψ_{*} are morphisms from X_{*} to Y_{*}, a homotopy h from ϕ_{*} to ψ_{*} is given by a collection of maps $h_{i}: X_{n} \rightarrow Y_{n+1}$ for all $0 \leq i \leq n$, satisfying:
(a) $d_{0} h_{0}=\phi_{n}$ and $d_{n+1} h_{n}=\psi_{n}$;
(b) $d_{i} h_{j}=\left\{\begin{array}{lll}h_{j-1} d_{i} & \text { if } \quad i<j ; \\ d_{j} h_{j-1} & \text { if } \quad i=j>0 ; \\ h_{j} d_{i-1} & \text { if } & i=n .\end{array}\right.$
(c) $s_{i} h_{j}=\left\{\begin{array}{lll}h_{j+1} s_{i} & \text { if } & i \leq j ; \\ h_{j} s_{i-1} & \text { if } & i>j\end{array}\right.$

Exercise C.70. If $\theta: X_{0} \rightarrow Y_{1}$ gives a 2-isomorphism between morphisms ϕ. and ψ_{\bullet} from a groupoid X_{\bullet} to a groupoid Y_{\bullet}, show that the mappings $h_{i}: X_{n} \rightarrow Y_{n+1}$ defined by

$$
h_{i}\left(a_{1}, \ldots, a_{n}\right)=\left(\phi_{1}\left(a_{1}\right), \ldots \phi_{1}\left(a_{i}\right), \theta\left(t\left(a_{i}\right)\right)=\theta\left(s\left(a_{i+1}\right)\right), \psi_{1}\left(a_{i+1}\right), \ldots, \psi_{1}\left(a_{n}\right)\right)
$$

defines a homotopy from ψ_{*} to ϕ_{*}.
Definition C.48. A simplicial set X_{*} satisfies the Kan condition if, for every $0 \leq k \leq n$ and sequence $\sigma_{0}, \ldots, \sigma_{k-1}, \sigma_{k+1}, \ldots, \sigma_{n}$ of $n(n-1)$-simplices satisfying $d_{i}\left(\sigma_{j}\right)=d_{j-1}\left(\sigma_{i}\right)$ for all $i<j$ and $i \neq k \neq j$, there is a σ in X_{n} with $d_{i}(\sigma)=\sigma_{i}$ for all $i \neq k$. This condition is the simplicial analogue of the fact that the union of n faces of an n-simplex is a retract of the simplex. The Kan condition implies that the condition
of being homotopic is an equivalence relation. It also implies that the homotopy groups of the geometric realization of the simplicial set can be computed combinatorially. For these and other facts about simplicial sets we refer to $[\mathbf{6 0}]$ and $[\mathbf{6 7}]$.

Exercise C.71. Show that the simplicial set of a groupoid satisfies the Kan condition. [For $k=0$, and $\sigma_{1}=\left(b_{1}, \ldots, b_{n-1}\right)$ and $\sigma_{2}=\left(c_{1}, \ldots, c_{n-1}\right)$, the other σ_{i} are determined, and one may take $\sigma=\left(c_{1}, c_{1}^{-1} \cdot b_{1}, b_{2}, \ldots, b_{n-1}\right)$. For $k=1, \sigma_{0}=\left(a_{1}, \ldots, a_{n-1}\right)$ and $\sigma_{2}=\left(c_{1}, \ldots, c_{n-1}\right)$, take $\sigma=\left(c_{1}, a_{1}, a_{2}, \ldots, a_{n-1}\right)$. For $k>1, \sigma_{0}=\left(a_{1}, \ldots, a_{n-1}\right)$ and $\sigma_{1}=\left(b_{1}, \ldots, b_{n-1}\right)$, take $\sigma=\left(b_{1} \cdot a_{1}^{-1}, a_{1}, a_{2}, \ldots, a_{n-1}\right)$.]

Definition C.49. The standard n-simplex $\Delta(n)$ is defined by

$$
\Delta(n)=\left\{\left(t_{0}, \ldots, t_{n}\right) \in \mathbb{R}^{n+1} \mid t_{i} \geq 0 \text { and } \sum_{i=0}^{n} t_{i}=1\right\}
$$

regarded as a topological subspace of Euclidean space. For a simplicial set X_{*}, construct the topological space

$$
X=\coprod_{n \geq 0} X_{n} \times \Delta(n)
$$

Topologically, X is the disjoint union of copies of the standard n-simplex, with one for each n-simplex in X_{*}. Define the geometric realization $\left|X_{*}\right|$ of X_{*} to be the quotient space X / \sim of X by the equivalence relation generated by all

$$
\left(d_{i}(\sigma),\left(t_{0}, \ldots, t_{n-1}\right)\right) \sim\left(\sigma,\left(t_{0}, \ldots, t_{i-1}, 0, t_{i}, \ldots, t_{n-1}\right)\right.
$$

for $\sigma \in X_{n},\left(t_{0}, \ldots, t_{n-1}\right) \in \Delta(n-1), 0 \leq i \leq n$, and

$$
\left(d_{i}(\sigma),\left(t_{0}, \ldots, t_{n+1}\right)\right) \sim\left(\sigma,\left(t_{0}, \ldots, t_{i-1}, t_{i}+t_{i+1}, t_{i+2}, \ldots, t_{n+1}\right)\right.
$$

for $\sigma \in X_{n},\left(t_{0}, \ldots, t_{n+1}\right) \in \Delta(n+1), 0 \leq i \leq n$. An n-simplex σ in X_{n} is called nondegenerate if it does not have the form $s_{i}(\tau)$ for $\tau \in X_{n-1}$ and some $0 \leq i \leq n-1$. For each n-simplex σ there is a continuous mapping from $\Delta(n)$ to $\left|X_{*}\right|$ that takes $t \in \Delta(n)$ to the equivalence class of (σ, t). If σ is nondegenerate, this maps the interior of $\Delta(n)$ homeomorphically onto its image. The space $\left|X_{*}\right|$ is a CW-complex, with these images as its cells.

A morphism $\phi_{*}: X_{*} \rightarrow Y_{*}$ determines a continuous mapping $\left|\phi_{*}\right|:\left|X_{*}\right| \rightarrow\left|Y_{*}\right|$. Homotopic mappings of simplicial sets determine homotopic mappings between their geometric realizations.

Exercise C.72. Any topological space X determines a simplicial set $S_{*}(X)$, where $S_{n}(X)$ is the set of all continuous mappings σ from the standard n-simplex to X, with $\left(d_{i} \sigma\right)\left(t_{0}, \ldots, t_{n-1}\right)=\sigma\left(t_{0}, \ldots, t_{i-1}, 0, t_{i}, \ldots, t_{n}\right)$ and $\left(s_{i} \sigma\right)\left(t_{0}, \ldots, t_{n+1}\right)=$ $\sigma\left(t_{0}, \ldots, t_{i-1}, t_{i}+t_{i+1}, t_{i+2}, \ldots, t_{n}\right)$, for $\sigma \in S_{n}(X)$ and $0 \leq i \leq n$. A continuous mapping $f: X \rightarrow Y$ determines a mapping $S_{*}(f): S_{*}(X) \rightarrow S_{*}(Y)$ of simplicial sets, so we have a functor from (Top) to the category (Sss) of simplicial sets. This functor is a right adjoint to the geometric realization functor from (Sss) to (Top): if X_{*} is a simplicial set and Y is a topological space, there is a canonical bijection

$$
\operatorname{Hom}\left(X_{*}, S_{*}(Y)\right) \longleftrightarrow \operatorname{Hom}\left(\left|X_{*}\right|, Y\right)
$$

In fact, 2 -isomorphisms of simplicial sets correspond to homotopies between spaces, so one has a strict isomorphism of categories $\operatorname{HOM}\left(X_{*}, S_{*}(Y)\right) \cong \operatorname{HOM}\left(\left|X_{*}\right|, Y\right)$. [See [67], §16.]
[What is the relation between a groupoid $X_{\text {. }}$ and the (relative) fundamental groupoid $\pi\left(\left|X_{*}\right|, X_{0}\right)$? Should we define product of simplicial sets? Should we point out that a simplicial set is the same thing as a contravariant functor from the category \mathcal{V} to (Set), where \mathcal{V} is the category with one object $\{0, \ldots, n\}$ for each nonnegative integer, and with morphisms nondecreasing mappings between such sets. And/or say that both definitions make sense for (Set) replaced by any category? Define the simplicial set I_{*} and state that a homotopy is the same as $X_{*} \times I_{*} \rightarrow Y_{*}([67], \S 6) ?$

There is a fancier 2-categorical notion in Barbara's chapter on group actions on stacks that could appear in this appendix? What else is needed in the text?]

Answers to Exercises

C.2. $e(x)$ is determined by the category properties (i)-(iv), as the identity of the monoid $\left\{a \in X_{1} \mid s(a)=x, t(a)=x\right\}$. If $i(f) \cdot f=e t(f)$ and $f \cdot i(f)=e s(f)$, then $i(f)=i(f) \cdot\left(f \cdot i^{\prime}(f)\right)=(i(f) \cdot f) \cdot i^{\prime}(f)=i^{\prime}(f)$. The proofs of identities (vii)-(ix) are similar to those in group theory.
C.6. The associativity is proved just as in the case of free groups.
C.7. The unity takes value 1 on $e\left(X_{0}\right)$ and 0 on the complement.
C.11. $G \ltimes X_{\bullet}$ is $G \times X_{1} \rightrightarrows X_{0}$, with $s(g, a)=s(a), t(g, a)=t(g a)$, and $(g, a) \cdot\left(g^{\prime}, a^{\prime}\right)=\left(g^{\prime} g, a \cdot g^{-1} a^{\prime}\right)$.
C.12. Each is (canonically) strictly isomorphic to a $G \ltimes X . \rtimes H$, which is the groupoid $G \times X_{1} \times H \rightrightarrows X_{0}$, with $s(g, a, h)=s(a), t(g, a, h)=t(g a h)$, and $(g, a, h) \cdot\left(g^{\prime}, a^{\prime}, h^{\prime}\right)=\left(g^{\prime} g, a \cdot g^{-1} a^{\prime} h^{-1}, h h^{\prime}\right)$.
C.13. The data $s, t: X_{1} \rightarrow X_{0}$ determine a directed graph Γ. Form X by adjoining a disk for each identity map $1_{x}, x \in X_{0}$, and a triangle for each $(a, b) \in X_{2}$: [pictures of disks bounding an arrow at x and a triangle with sides a , b , and $\mathrm{a} \cdot \mathrm{b}$ should be drawn here] Take A to be the set X_{0} of vertices. See Section 6.2 for more general constructions.
C.17. If ϕ_{a} is defined by a and $\phi_{a^{\prime}}$ is defined by a^{\prime}, then $\phi_{a^{\prime}}(g)=z^{-1} \phi_{a}(g) z$, with $z=a^{-1} \cdot a^{\prime}$.
C.20. The mass is $\frac{1}{(q+1)\left(q^{3}-1\right)}$.
C.21. This is the restriction of X. from the canonical map from E_{0} to X_{0}, cf. C.41.
C.29. To verify C.25, look at the map $(s, t) \mapsto H(a(s), t)$, which has $s \mapsto f(a(s))$ on the bottom, $s \mapsto g(a(s))$ on the top, $t \mapsto H(a(0), t)$ on the left side, and $t \mapsto H(a(1), t)$ on the right.
C.32. The only possible 2-isomorphism from f_{\bullet} to g. is given by $\theta(x)=$ $\left(f_{0}(x), g_{0}(x)\right) \in Y_{1} \subset Y_{0} \times Y_{0}$.
C.35. A morphism from $X_{\mathbf{\bullet}} \times I_{\mathbf{\bullet}}$ to Y_{\bullet} is given by a pair of maps $f_{0}, f_{1}: X_{0} \rightarrow Y_{0}$, and four maps $f_{00}, f_{01}, f_{10}, f_{11}: X_{1} \rightarrow Y_{1}$, satisfying some identities. The bijection is given by

$$
\phi_{0}=f_{0}, \psi_{0}=f_{1}, \phi_{1}=f_{00}, \psi_{1}=f_{11}, \theta=f_{01} \circ e, f_{01}=\phi_{1} \cdot \theta t, f_{10}=\psi_{1} \cdot i \theta t
$$

C.36. For each point y in X, choose a path a_{y} from x to y, and map a path γ in $\pi(X)_{1}$ from y to z to the homotopy class of $a_{y} \cdot \gamma \cdot a_{z}^{-1}$.
C.37. Choose $x_{0} \in X_{0}$, and let $G=\operatorname{Aut}\left(x_{0}\right)$. Then $B G$ • is a subgroupoid of X_{\bullet}. Map X. to $B G$. by choosing $a_{x} \in X_{1}$ with $s\left(a_{x}\right)=x_{0}, t\left(a_{x}\right)=x$, with $a_{x_{0}}=e\left(x_{0}\right)$, and sending $b \in X_{1}$ to $a_{x} \cdot b \cdot a_{y}{ }^{-1}$. The map $x \mapsto a_{x}$ is a 2 -isomorphism from the composite $X_{\bullet} \rightarrow B G_{\bullet} \rightarrow X_{\bullet}$ to the identity on X_{\bullet}
C.41. If α is a 2 -isomorphism from $\phi_{\bullet}^{\prime} \phi_{\bullet}$ to $1_{X_{\bullet}}$ and β is a 2 -isomorphism from $\psi_{\bullet}^{\prime} \psi_{\bullet}$ to $1_{Y_{\bullet}}$, then $\theta(x)=\phi_{1}^{\prime} \beta \phi_{0}(x) \cdot \alpha(x)$ defines a 2 -isomorphism θ from $\phi_{\bullet}^{\prime} \psi_{\bullet}^{\prime} \psi_{\bullet} \phi_{\bullet}$ to $1_{X_{\bullet}}$. In the language of 2-categories, this is the composite of $1_{\phi_{\bullet}^{\prime}} * \beta * 1_{\phi_{\bullet}}$ from $\phi_{\bullet}^{\prime} \psi_{\bullet}^{\prime} \psi_{\bullet} \phi_{\bullet}$ to $\phi_{\bullet}^{\prime} 1_{Y_{\bullet}} \phi_{\bullet}=\phi_{\bullet}^{\prime} \phi_{\bullet}$ and α from $\phi_{\bullet}^{\prime} \phi_{\bullet}$ to $1_{X_{\bullet}}$.
C.42. Explicit isomorphisms between $G \ltimes(X / H)$ and $(G \backslash X) \rtimes H$, and 2isomorphisms between their composites and the identities, can be constructed from choices of section of the maps $X \rightarrow X / H$ and $X \rightarrow G \backslash X$. See Exercise C.47.
C.48. When Z has at most two elements.
C.49. (a) Each is equivalent to the exactness of the sequence $0 \rightarrow V \rightarrow W \oplus V^{\prime} \rightarrow$ $W^{\prime} \rightarrow 0$, the first taking v to $\left(L(v), \phi_{V}(v)\right)$, the second taking $\left(w, v^{\prime}\right)$ to $\phi_{W}(w)-L\left(v^{\prime}\right)$. (b) A splitting of $\operatorname{Ker}(L) \rightarrow V$ determines an isomorphism of $\operatorname{Ker}(L) \ltimes \operatorname{Coker}(L)$ to $V \ltimes W$, to which (a) applies; and similarly for a splitting $W \rightarrow \operatorname{Coker}(L)$. Without any splitting (for example for abelian groups), they are isomorphic because they both have components indexed by $\operatorname{Coker}(L)$, and all isotropy groups are $\operatorname{Ker}(L)$.
C.50. Apply the proposition.
C.53. Here $s=p_{1}$ and $t=p_{2}$ are the two projections from X_{1} to X_{0}, with θ given by the identity map on X_{1}. And $X_{2}=X_{1}{ }_{t} \times_{X_{0}, s} X_{1}$, with $q_{1}(a, b)=s(a)$, $\left.q_{2}(a, b)=t(a)=s(b)\right), q_{3}(a, b)=t(b), p_{12}(a, b)=a, p_{23}(a, b)=b, p_{13}(a, b)=a \cdot b$. Each $\theta_{i j}$ is given by a map from X_{2} to X_{1}; in fact $\theta_{i j}=p_{i j}$. Each $\alpha_{i j}, \alpha_{j i}$, and α_{i} is an identity. A morphism $u_{\bullet}: X_{0} \rightarrow Z_{\bullet}$ is given by map $u_{0}: X_{0} \rightarrow Z_{0}$, and $\tau: u_{0} \circ s \stackrel{\tau}{\Rightarrow} u_{0} \circ t$ is given by a map $\tau: X_{1} \rightarrow Z_{1}$ with $s \tau=u_{0} s, t \tau=u_{0} t$, and $\tau(a \cdot b)=\tau(a) \cdot \tau(b)$. The required $v_{\bullet}: X_{\bullet} \rightarrow Z_{\bullet}$ is defined by $v_{0}=u_{0}$ and $v_{1}=\tau ;$ and $\rho: u_{\bullet} \Rightarrow v_{\bullet} \circ \pi$ is given by the map $e \circ u_{0}: X_{0} \rightarrow Z_{1}$. For the uniqueness, if $v_{\bullet}^{\prime}: X_{\bullet} \rightarrow Z_{\bullet}$ and $\rho^{\prime}: u_{\bullet} \Rightarrow v_{\bullet}^{\prime} \circ \pi$ are others, the 2-isomorphism $\zeta: v_{\bullet} \Rightarrow v_{\bullet}^{\prime}$ is given by the map $\zeta=\rho^{\prime}: X_{0} \rightarrow Z_{1}$.
C.55. The 2-isomorphism is given by the mapping

$$
\theta: X \times G \longrightarrow X \times G \times G, \quad(x, g) \mapsto\left(x g, g^{-1}, g\right)
$$

C.59. Given $\phi_{\bullet}: X_{\bullet} \rightarrow Y_{\bullet}$, take $Y_{0}^{\prime}=X_{0} \times Y_{0}$, and define Y_{\bullet}^{\prime} to be the pullback of
 the graph of ϕ_{0} and X_{1} to Y_{1}^{\prime} by $a \mapsto\left(\phi_{1}(a), s(a), t(a)\right)$.
C.61. The equivalence of (ii) to (v) follows from Exercise C.40; that (i) implies (ii) follows from the construction of the fibered product $X_{\mathbf{\bullet}} \times_{Y_{\mathbf{0}}} T$; that (ii) implies (i) is proved by taking $T=Y_{0}$ and ψ_{0} the identity.
C.62. Factor the morphism into $X_{\rightarrow}: Y_{\bullet}^{\prime} \rightarrow Y_{\bullet}$ as in Exercise C.59. Let $Z_{0}=Y_{0}^{\prime}=$ $X_{0} \times Y_{0}$, and let Z_{1} be the image of $X_{1} \rightarrow Y_{1}^{\prime}$. The canonical map from X_{\bullet} to $Z_{\text {• }}$ is gerbe-like, and the canonical map $Z_{\bullet} \rightarrow Y_{\bullet}^{\prime}$ (and hence $Z_{\bullet} \rightarrow Y_{\bullet}^{\prime} \rightarrow Y_{\bullet}$) is representable.
C.63. The equivalence of (i) and (ii) follows from the construction of fibered products, and the equivalence of (ii) and (iii) from Exercise C.37.
C.64. If Y_{0} is the restriction, with $Y_{0}=X_{n}$, then Y_{1} consists of triples (a, b, c) with $a, b \in X_{n}, c \in X_{1}, s(c)=s\left(a_{1}\right)$, and $t(c)=s\left(b_{1}\right)$. Let $Z_{\bullet}=X_{\bullet}\{n\}$. Map Y_{\bullet} to Z_{\bullet} by the identity $Y_{0}=X_{n}=Z_{0}$ and map $Y_{1} \rightarrow Z_{1}$ by $(a, b, c) \mapsto\left(\phi_{0}, \ldots, \phi_{n}\right)$, where $\phi_{0}=c$ and $\phi_{i}=a_{i}^{-1} \cdot \ldots \cdot a_{1}^{-1} \cdot c \cdot b_{1} \cdot \ldots \cdot b_{i}$ for $1 \leq i \leq n$.
C.65. The product in $V_{\bullet}^{(n)}$ is defined by

$$
\left(a_{1}, \ldots, a_{n}, c, b_{1}, \ldots, b_{n}\right) \cdot\left(b_{n}^{-1}, \ldots, b_{1}^{-1}, d, e_{1}, \ldots, e_{n}\right)=\left(a_{1}, \ldots, a_{n}, c \cdot d, e_{1}, \ldots, e_{n}\right)
$$

Set $Z_{\bullet}=X_{\bullet}\{n\}$. Map $V_{\bullet}=V_{\bullet}^{(n)}$ to Z_{\bullet} by $V_{0}=X_{n}=Z_{0}$ and V_{1} to Z_{1} by $\left(a_{1}, \ldots, a_{n}, c, b_{1}, \ldots, b_{n}\right) \mapsto\left(\phi_{0}, \ldots, \phi_{n}\right)$, where $\phi_{0}=c$ and $\phi_{i}=$ $a_{n+1-i} \cdot \ldots \cdot a_{n} \cdot \bullet \cdot b_{1} \cdot \ldots \cdot b_{i}$ for $1 \leq i \leq n$. There is a canonical isomorphism between $\left(V_{\bullet}^{(n)}\right)^{(m)}$ and $V_{\bullet}^{((n+1)(m+1)-1)}$, both having objects identified with $X_{m n+m+n}$ and arrows identified with $X_{2(m n+m+n)+1}$.
C.66. (1) The identity e takes $\left(a_{1}, \ldots, a_{n}\right)$ to $\left(1_{s a_{1}}, a_{1}, \ldots, a_{n}\right)$ and the inverse i takes $\left(a_{1}, \ldots, a_{n+1}\right)$ to $\left(a_{1}^{-1}, a_{1} \cdot a_{2}, a_{3}, \ldots, a_{n+1}\right)$. (2) Let Z. be the cross product groupoid, so $Z_{0}=X_{n}=W_{0}^{(n)}$, and $Z_{1}=\left\{\left(\left(a_{1}, \ldots, a_{n}\right),\left(b_{1}, \ldots, b_{n}\right)\right) \mid a_{i}=b_{i}\right.$ for $\left.i>1\right\}$. Map Z_{1} to $W_{1}^{(n)}$ by sending $\left(\left(a_{1}, \ldots, a_{n}\right),\left(b_{1}, \ldots, b_{n}\right)\right)$ to $\left(a_{1} \cdot b_{1}^{-1}, b_{1}, \ldots, b_{n}\right)$. (3) We have $Z_{0}=X_{n}=\left(X_{\bullet}[n]\right)_{0}$, and $Z_{1} \rightarrow\left(X_{\bullet}[n]\right)_{1}$ by

$$
\left(\left(a_{1}, \ldots, a_{n}\right),\left(b_{1}, \ldots, a_{b}\right)\right) \mapsto\left(\phi_{0}, \ldots, \phi_{n}, a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}\right)
$$

with $\phi_{0}=a_{1} \cdot b_{1}^{-1}$ and $\phi_{i}=1_{s a_{i}}$ for $1 \leq i \leq n$.
C.67. Consider the morphism $W_{\bullet}^{(n+1)} \rightarrow W_{\bullet}^{(n)}$ that omits the last object on objects and arrows. This is easily checked to be square.
C.68. A strict isomorphism ϕ_{\bullet} from $X_{\bullet}(n, k)$ to $X .(n, k+1)$ is given by

$$
\phi_{1}\left(a_{1}, \ldots, a_{n}\right)=\left(a_{n}^{-1} \cdot \ldots \cdot a_{1}^{-1}, a_{1}, \ldots, a_{n-1}\right),
$$

with $\phi_{0}\left(a_{1}, \ldots, a_{n-1}\right)=\left(a_{n-1}^{-1} \cdot \ldots \cdot a_{1}^{-1}, a_{1}, \ldots, a_{n-2}\right)$. [Should we omit this exercise?]
C.71. For $k=0$, and $\sigma_{1}=\left(b_{1}, \ldots, b_{n-1}\right)$ and $\sigma_{2}=\left(c_{1}, \ldots, c_{n-1}\right)$, the other σ_{i} are determined, and one may take $\sigma=\left(c_{1}, c_{1}^{-1} \cdot b_{1}, b_{2}, \ldots, b_{n-1}\right)$. For $k=1, \sigma_{0}=$ $\left(a_{1}, \ldots, a_{n-1}\right)$ and $\sigma_{2}=\left(c_{1}, \ldots, c_{n-1}\right)$, take $\sigma=\left(c_{1}, a_{1}, a_{2}, \ldots, a_{n-1}\right)$. For $k>1, \sigma_{0}=$ $\left(a_{1}, \ldots, a_{n-1}\right)$ and $\sigma_{1}=\left(b_{1}, \ldots, b_{n-1}\right)$, take $\sigma=\left(b_{1} \cdot a_{1}^{-1}, a_{1}, a_{2}, \ldots, a_{n-1}\right)$.

[^0]: ${ }^{1}$ This notation is compatible with the composition notation $b \circ a$, which is useful in the common situation where an automorphism group of a mathematical structure is considered to act on the left, with the product given by composition.

[^1]: ${ }^{2}$ A mapping $f: U \rightarrow V$ of right G-sets is equivariant if $f(u g)=f(u) g$ for all $u \in U$ and $g \in G$.

[^2]: ${ }^{3}$ The $(*)$ means that this is a more difficult exercise, which isn't central to understanding.

[^3]: ${ }^{4}$ [The word "pullback" and the notation $\phi_{0}^{*}\left(X_{\bullet}\right)$ might seem more appropriate, since "restriction" connotes some kind of subobject, but the word pullback is used for another concept.]

