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APPENDIX B

Categories and 2-categories

I do not believe in categories of any kind. Duke Ellington

We begin this appendix by reviewing some basic notions about categories. The
second section defines and proves basic properties of 2-categories. These are applied in
Section 3 to the study of adjoint functors. The fourth section has the main theorem,
which spells out the appropriate notion of equivalence for 2-categories. Most of these
notions and results are known in some form in general category theory. We have tried
to present them in more concrete terms than usual, and hope that this, and a deficiency
of references, will not offend category theorists. We expect geometers will find the going
abstract enough; for a first reading, it should suffice to concentrate on the definitions,
examples, and statements of the propositions.

In the last section we make a few remarks about set theoretic foundations, and the
axiom of choice, which is used freely in the text. These are not designed to put us
in any axiomatic set-theoretical framework, but rather to explain why we avoid doing
this.

1. Categories

A category C has objects and morphisms, also called maps or mappings or
arrows. To each morphism is associated two objects, its source and its target. We
write f : X → Y to mean that f is a morphism with the object X as its source and
the object Y as its target, and we say that f is a morphism from X to Y .1 For any
morphism f from X to Y , and any morphism g from Y to Z, there must be a morphism
from X to Z, called the composite of f and g, and denoted g ◦ f or sometimes simply
gf . The following properties must be satisfied:

(a) For any object X there is a morphism 1X : X → X such that f ◦ 1X = f for
all f : X → Y and 1X ◦ g = g for all g : Y → X.

(b) For any f : X → Y , g : Y → Z, and h : Z →W , h ◦ (g ◦ f) = (h ◦ g) ◦ f .

Exercise B.1. Identity maps, if they exist, are unique.

A map f : X → Y is an isomorphism if there is a map f−1 : Y → X such that
f−1 ◦ f = 1X and f ◦ f−1 = 1Y .

1Although the notation f : X → Y is suggested by the functional notation of set theory, it does
not mean that f assigns elements of Y to elements of X . In the category of schemes, for example, a
morphism is much more than a function on underlying sets.
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Exercise B.2. (1) An inverse, if it exists, is unique. (2) If f : X → Y is an
isomorphism, and g : Y → Z is an isomorphism, then g ◦ f is an isomorphism, with
inverse f−1 ◦ g−1.

A subcategory C′ of a category C consists of some of the objects of C and some
of the morphisms of C, such that: (a) the source and target of any morphism in C′ is
in C′; (b) if f : X → Y and g : Y → Z are in C′, then g ◦ f is also in C′; and (c) if an
object X is in C′, then 1X is also in C′. It follows that C′ forms a category.

If C and D are categories, a (covariant) functor F from C to D assigns to each
object X in C an object F (X) in D, and to each morphism f : X → Y in C a morphism
F (f) : F (X) → F (Y ) in D, such that: (a) if f : X → Y and g : Y → Z in C, then
F (g ◦ f) = F (g) ◦F (f); (b) F (1X) = 1F (X) for all objects X of C. We write F : C → D
to mean that F is a functor from C to D.

Exercise B.3. (1) If f : X → Y is an isomorphism, then F (f) is an isomorphism,
with inverse F (f−1). (2) In the definition of functor, the property that F (1X) = 1F (X)

could be replaced by the weaker property that F (1X) is an isomorphism, or that it has
a left or a right inverse.

If F : C → D and G : D → E are functors, their composite, denoted G ◦ F or GF ,
is the functor from C to E defined by G ◦ F (X) = G(F (X)) and G ◦ F (f) = G(F (f)).
With this composition law, the categories form a category, denoted (Cat).

If F and G are functors from C to D, a natural transformation θ from F to G
assigns to each object X in C a morphism θX from F (X) to G(X) in D, such that for
any morphism f : X → Y in C, G(f) ◦ θX = θY ◦ F (f), i.e., the diagram

F (X)
F (f)

//

θX

��

F (Y )

θY

��
G(X)

G(f)
// G(Y )

commutes. The notation θ : F ⇒ G is used to indicate that θ is a natural transformation
from F to G. It is a natural isomorphism if each θX is an isomorphism, in which
case one writes θ : F

∼
⇒ G.

If F , G, and H are functors from C to D, two natural transformations θ from F to
G and η from G to H can be composed, giving a natural transformation η ◦ θ from F
to H . This is defined by setting (η ◦ θ)X = ηX ◦ θX .

Exercise B.4. (1) For fixed categories C and D, there is a category HOM(C,D) (or
HOM(Cat)(C,D)) with objects the functors from C to D, and with arrows from F to G
the natural transformations. (2) If θ is a natural isomorphism from F to G, then θ−1,
defined by (θ−1)X = (θX)−1, is a natural isomorphism from G to F , with θ−1 ◦ θ = 1F
and θ ◦ θ−1 = 1G.

A functor F : C → D is a strict isomorphism if there is a functor G : D → C such
that G ◦ F and F ◦G are the identity functors 1C on C and 1D on D.
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A functor F : C → D is an equivalence of categories if there is a functor G : D → C
together with natural isomorphisms θ from G ◦ F to 1C and η from F ◦G to 1D. (Note
that only the existence of G, θ, and η is required, and they need not be unique.)

A functor F : C → D is called faithful if for any morphisms f : X → Y and
g : X → Y in C, the equality of F (f) and F (g) implies the equality of f and g. A
functor F is called full if, for any objects X and Y of C, any morphism from F (X)
to F (Y ) in D has the form F (f) for some f : X → Y in C. A functor F : C → D is
essentially surjective if, for every object X in D, there is an object P in C and an
isomorphism from F (P ) to X in D.

The inclusion of a subcategory C′ in a category C is always a faithful functor. If C′

is obtained by choosing some of the objects of C, and all morphisms between them, this
inclusion is also full, and C′ is called a full subcategory.

Exercise B.5. Suppose F and G are naturally isomorphic functors. Then F is
faithful (resp. full, resp. essentially surjective) if and only if G is faithful (resp. full,
resp. essentially surjective).

Exercise B.6. If F : C → D is full and faithful, and f : X → Y is a morphism in
C, show that f is an isomorphism if and only if F (f) is an isomorphism.

Proposition B.1. A functor is an equivalence of categories if and only if it is full,
faithful, and essentially surjective.

Proof. We sketch the proof of the implication ⇐. Suppose F : C → D is the
functor. For each object X of D, choose (by an appropriate axiom of choice if necessary,
cf. Section 5) an object G(X) of C and an isomorphism ηX : F (G(X))→ X in D. For
a morphism f : X → Y in D, there is a unique morphism G(f) : G(X) → G(Y ) in C
such that F (G(f)) = ηY

−1 ◦ f ◦ ηX . Verify that G is a functor. For an object P of C,
define θP : G(F (P ))→ P to be the morphism such that F (θP ) = ηF (P ), and verify that
θ and η are natural isomorphisms. �

Exercise B.7. Complete the proof of this proposition.

Exercise B.8. Show that a functor F : C → D is an equivalence of categories if and
only if there is a functor G : D → C and natural isomorphisms θ from G ◦ F to 1C and
η from F ◦ G to 1D such that F (θP ) = ηF (P ) for all objects P in C and G(ηX) = θG(X)

for all objects X in D. In this case the data (F,G, θ−1, η) is what is called an adjoint
equivalence, cf. [65, §IV.4] and Section 3.

Exercise B.9. Let F : C → D and G : D → E be functors. (1) F and G faithful
(resp. full, resp. essentially surjective) imply GF faithful (resp. full, resp. essentially
surjective). (2) GF faithful implies F faithful; GF essentially surjective implies G
essentially surjective; GF full and F essentially surjective implies G full; GF full and
G full and faithful implies F full. (3) If GF is an equivalence of categories, and either
F is essentially surjective or G is full and faithful, then F and G are both equivalences
of categories.

Example B.2. A full subcategory C′ of C is a skeleton of C if every object of C is
isomorphic to exactly one object of C′. The inclusion C′ → C is then an equivalence of
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categories. For any category C, the choice of one object from each isomorphism class of
objects determines a skeleton C′. For example, if C is the category of finite nonempty
sets, the full subcategory whose objects are the sets {1, . . . , n} for n ≥ 1 is a skeleton
of C.

Example B.3. The product C×D of two categories C and D is the category whose
objects are pairs (X, Y ) of objects X of C, Y of D; a morphism (f, g) : (X, Y )→ (X ′, Y ′)
is a pair of morphisms f : X → X ′ in C and g : Y → Y ′ in D, with composition
induced by that in each category. One constructs similarly a product of any number of
categories.

The opposite category Cop of a category C is obtained by reversing all the arrows of
C. A contravariant functor from C to D is a covariant functor F from Cop to D. This
assigns to each object X of C an object F (X) of D, and to each morphism f : X → Y
of C a morphism F (f) : F (Y ) → F (X). These satisfy: if f : X → Y and g : Y → Z,
then F (g ◦ f) = F (f) ◦ F (g), as well as F (1X) = 1F (X) for all objects X.

Definition B.4. A commutative square

V
q //

p

��

Y

t

��
X s

// Z

of objects and morphisms in a category C is called cartesian if it satisfies the following
universal property. For any object U and morphisms f : U → X and g : U → Y such
that sf = tg, there is a unique morphism h : U → V such that ph = f and qf = g:

U

f

��

g

##
h

  
V

q //

p

��

Y

t

��
X s

// Z

It follows that V is unique up to canonical isomorphism: if V ′, p′ : V ′ → X, q′ : V ′ → Y
also satisfy the universal property, there is a unique isomorphism ϑ : V ′ → V such that
p′ = pϑ and q′ = qϑ.

If the diagram is cartesian, one writes V = X ×Z Y , and V is called the (or a)
fibered product of X and Y over Z. If the morphisms s and t need to be specified,
one writes V = X s×tY or V = X s×Z,tY . The morphism h : U → X×Z Y determined
by f and g is usually denoted (f, g). The projection X ×Z Y → X is often called the
pullback of the morphism Y → Z by s : X → Z.

If the category C has a final object • (so each object of C has a unique morphism
to •) then the fibered product X ×• Y is called the product of X and Y , and denoted
X × Y .
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Exercise B.10. Construct fibered products for arbitrary morphisms s : X → Z and
t : Y → Z in the category (Set) of sets and the category (Top) of topological spaces.

Exercise B.11. (1) Given morphisms s : X → Z, t : Y → Z, s′ : X ′ → Z ′, t′ : Y ′ →
Z ′, and morphisms f : X ′ → X, g : Y ′ → Y , h : Z ′ → Z, with sf = hs′ and tg = ht′,
construct a canonical morphism X ′×Z′ Y ′ → X×Z Y , whenever these fibered products
exist. (2) For any morphism f : X → Y , construct a canonical morphism X → X×Y X,
whenever this fibered product exists; it is called the diagonal morphism.

Exercise B.12. (1) For any morphism s : X → Y , the fibered product X ×Y
Y = X s×Y,1Y

Y exists and is canonically isomorphic to X. (2) There is a canonical
isomorphism ofX s×Z,tY with Y t×Z,sX, with one existing if and only if the other exists.
(3) Suppose s : X → Z, t : Y → Z, u : Y →W , and v : V →W are given, and X ×Z Y
and Y ×W V exist. If one of the fibered products (X×ZY )×Y (Y ×W V ), (X×ZY )×W V
or X ×Z (Y ×W V ) exists, then all exist and are canonically isomorphic. This fibered
product is also denoted X ×Z Y ×W V ; it is characterized by a universal property for
triples of morphisms f : U → X, g : U → Y , and h : U → V such that sf = tg and
ug = vh: there is a unique morphism (f, g, h) : U → X ×Z Y ×W V such that f , g,
and h are recovered by composing (f, g, h) with the projections to the three factors.
(4) Suppose s : X → Y , t : Y → Z, and f : W → Z are morphisms, and Y t×Z,f W
exists. Then X ts×Z,fW exists if and only if X ×Y (Y ×ZW ) exists, and then they are
canonically isomorphic. (5) Suppose morphisms X → Z, Y → Z, and Z → T are given,
and X ×T Y and Z ×T Z exist. Then X ×Z Y exists if and only if (X ×T Y )×Z×TZ Z
exists, and then they are canonically isomorphic; here X×T Y → Z×TZ is the canonical
map, and Z → Z ×T Z the diagonal map, of the preceding exercise. In particular, if
C has a final object, there is a canonical isomorphism X ×Z Y ∼= (X × Y ) ×Z×Z Z,
whenever these fibered products exist.

For an object X in a category C, define a contravariant functor hX from C to the cat-
egory (Set) of sets, that takes an object S to the set hX(S) = Hom(S,X) of morphisms
from S to X, and takes a morphism u : T → S to the mapping hX(u) : hX(T )→ hX(S)
which sends g : S → X to g ◦ u : T → X. The elements of hX(S) are called S-valued

points of X.

Exercise B.13. For any functor H : Cop → (Set), any object ζ in H(X) determines
a natural transformation from hX to H ; this assigns to an object S of C the map
from hX(S) to H(S) that takes g : S → X to H(g)(ζ). Show that every natural
transformation from hX to H arises in this way from a unique ζ in H(X).

Any morphism f : X → Y in C determines a mapping from hX(S) to hY (S) that
takes g : S → X to f ◦ g : S → Y . This determines a covariant functor

C → HOM(Cop, (Set)).

Exercise B.14. Show that this functor is full and faithful.

A functor H : Cop → (Set) is representable by an object X of C if one has a
natural isomorphism between hX and H . This is given by an element ζ in H(X) such
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that, for all S, the map hX(S) → H that takes g : S → X to H(g)(ζ) is a bijection.
(Note that one must specify bothX and ζ to represent H .) By Exercise B.14, the object
X that represents H is determined up to canonical isomorphism. This combination of
ideas is known as Yoneda’s Lemma.

If F → G and H → G are natural transformations between functors from Cop to
(Set), there is a fibered product F ×G H , which takes an object S of C to the set

(F ×G H)(S) = F (S)×G(S) H(S)

of pairs of elements in F (S) and H(S) with the same image in G(S). A morphism
u : T → S in C is sent to the map from F (S)×G(S)H(S) to F (T )×G(T )H(T ) determined
by F (u) and H(u). The fibered product F ×G H is a contravariant functor from C to
(Set). It comes equipped with natural transformations (called projections) from F×GH
to F and to H ; it is a fibered product in the category of contravariant functors from C
to (Set).

Exercise B.15. A commutative diagram as in Definition B.4 is cartesian if and
only if, for every object S in C, the corresponding diagram of S-valued points is a
cartesian diagram in the category of sets. That is, the map

hV (S) → hX(S)×hZ(S) hY (S)

is a bijection. Equivalently, the canonical natural transformation from hV to hX×hZ
hY

is a natural isomorphism.

A natural transformation F → G between contravariant functors from C to (Set) is
called representable if, for every object X in C and natural transformation hX → G,
the fibered product F ×G hX is representable. If Y is an object representing F ×G hX ,
the projection from F ×G hX to hX determines a morphism from Y to X in C.

Exercise B.16. If Y ′ is another object representing F ×G hX , the morphism from
Y ′ to X determined by F → G factors uniquely into Y ′ → Y → X, where the first
morphism is an isomorphism and the second is the morphism of the definition.

Exercise B.17. The composite of two representable natural transformations is
representable. If F → G is representable, then F ×G H → H is representable for any
natural transformation H → G. If F → G is representable, and H is representable,
then F ×G H is representable for any H → G.

If F and G are contravariant functors from C to (Set), F is a subfunctor of G if, for
every object S of C, F (S) is a subset of G(S), and, for every morphism u : T → S, the
map F (u) from F (S) to F (T ) is the restriction of the map G(u) from G(S) to G(T ).

Let π : X → Y be a morphism in a category C, and assume that a fibered product
X×Y X exists, with projections p1 and p2 from X×Y X to X. The morphism π makes
Y a quotient of X if it satisfies the following universal mapping property: for any
morphism u : X → Z such that the two morphisms u ◦ p1 and u ◦ p2 from X ×Y X to Z
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are equal, there is a unique morphism v : Y → Z such that u = v ◦ π:

X ×Y X
p2 //

p1

��

X

π

�� u

��

X
π //

u
,,

Y

v

  
Z

For π to make Y a quotient of X amounts to the fibered product square satisfying this
dual cocartesian property as well as the cartesian property.

For more about categories, functors, and natural transformations, see [65]. For
more on representable functors, see [EGA 0.8.1].

2. 2-categories

A 2-category C has objects (denoted here X, Y , etc.), morphisms, sometimes
called 1-morphisms or arrows (denoted here f , g, etc.), and 2-morphisms (denoted
here α, β, etc.). Each morphism f has a source and target object, for which we write
f : X → Y as before, and there are identity morphisms 1X : X → X for each object X,
with compositions g ◦ f : X → Z for each f : X → Y and g : Y → Z. These objects
and morphisms are required to satisfy the category axioms; this category is called the
underlying category of the 2-category C.

A 2-morphism α has a source morphism f and a target morphism g, with both f
and g required to be morphisms with the same source and target. We write α : f ⇒ g to
mean that α is a 2-morphism with source f and target g, and we say α is a 2-morphism
from f to g. If f and g are morphisms from X to Y , this may be denoted

X

f
''

g
77

�� ��
�� α Y.

There are two operations on 2-morphisms. First, if α : f ⇒ g and β : g ⇒ h are 2-
morphisms, with f , g, and h all morphisms with the same source and target, there is a
2-morphism, denoted β ◦ α, from f to h:

X
!!

�� ��
�� α

==�� ��
�� β

// Y ///o/o/o/o/o X
&&
88

�� ��
�� β◦α Y.

Second, if α : f ⇒ f ′, with f and f ′ morphisms from X to Y , and β : g ⇒ g′, with g
and g′ from Y to Z, then there is a 2-morphism β ∗ α from g ◦ f to g′ ◦ f ′:

X
''
77

�� ��
�� α Y

''
77

�� ��
�� β Z ///o/o/o X

**
44

�� ��
�� β∗α Z.
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As the pictures indicate, these are sometimes called vertical and horizontal composi-
tion of 2-morphisms.2 These operations are required to satisfy the following properties,
each of which is an identity between 2-morphisms:

(a) If α : f ⇒ g, β : g ⇒ h, and γ : h⇒ i, then (γ ◦ β) ◦ α = γ ◦ (β ◦ α) : f ⇒ i.
(b) For every morphism f , there is a 2-morphism 1f : f ⇒ f such that α ◦ 1f = α

for all α : f ⇒ g and 1f ◦ β = β for all β : g ⇒ f . (This 1f is unique.)
(c) For α : f ⇒ g, with f and g from X to Y , α ∗ 11X

= α = 11Y
∗ α.

(d) For f : X → Y and g : Y → Z, 1g ∗ 1f = 1g◦f .
(e) If α : f ⇒ f ′, with f and f ′ mapping X to Y , and β : g ⇒ g′, with g and

g′ mapping Y to Z, and γ : h ⇒ h′, with h and h′ mapping Z to W , then
γ ∗ (β ∗ α) = (γ ∗ β) ∗ α, as 2-morphisms from h ◦ g ◦ f to h′ ◦ g′ ◦ f ′.

(f) (Exchange) Given morphisms f , f ′, f ′′ from X to Y , morphisms g, g′, g′′ from
Y to Z, and 2-morphisms α : f ⇒ f ′, α′ : f ′ ⇒ f ′′, β : g ⇒ g′, and β ′ : g′ ⇒ g′′,
we have (β ′ ◦ β) ∗ (α′ ◦ α) = (β ′ ∗ α′) ◦ (β ∗ α). In pictures:

X
  

�� ��
�� α

>>�� ��
�� α′

// Y
��

�� ��
�� β

__�� ��
�� β

′

// Z ///o/o/o/o/o X
%%

�� ��
�� β∗α

99�� ��
�� β

′∗α′

// Z

���O
�O

���O
�O

X
%%
99

�� ��
��α′◦α Y

%%
99

�� ��
�� β

′◦β Z ///o/o/o/o/o X
((
66

�� ��
�� Z

It follows from (a) and (b) that, for any two objects X and Y , we have a category,
denoted HOM(X, Y ) (or HOMC(X, Y )), whose objects are morphisms f : X → Y , and
whose arrows are 2-morphisms α : f ⇒ g, composed by the vertical composition.

A 2-morphism α : f ⇒ g is a 2-isomorphism if there is a 2-morphism α−1 : g ⇒ f
with α−1 ◦ α = 1f and α ◦ α−1 = 1g. Such α−1 is unique, if it exists. The notation

α : f
∼
⇒ g means that α is a 2-isomorphism. We say that morphisms f and g are 2-

isomorphic if there is a 2-isomorphism between them, and then we write f
∼
⇒ g. Given

any 2-category, one can throw away all 2-morphisms that are not 2-isomorphisms, with
the result remaining a 2-category. (Almost all 2-morphisms appearing in this book are
in fact 2-isomorphisms.)

Exercise B.18. (1) For α : f ⇒ f ′ and β : g ⇒ g′ as in the definition of β ∗ α, we
have

β ∗ α = (β ∗ 1f ′) ◦ (1g ∗ α) = (1g′ ∗ α) ◦ (β ∗ 1f ).

In particular, the ∗-product is determined by the ◦-product and the ∗-product for which
one of the factors in an identity 2-morphism. (2) When β ∗ α is defined, if α and β are
2-isomorphisms, then β ∗ α is a 2-isomorphism, with inverse β−1 ∗ α−1.

2The reader should be warned that the symbols ◦, ∗, •, ·, as well as juxtaposition, and probably
others, have been used for one or the other of these operations.
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The 2-morphisms in a 2-category are sometimes called 2-cells. In this case the
morphisms are called 1-cells, and the objects may be called 0-cells.

A diagram

V

a

��

b //

����
<Dα

Y

g

��
X

f
// Z

means that a 2-morphism α : f a ⇒ g b is specified. (If the arrow is pointed in the
other direction, it indicates a 2-morphism from g b to f a.) We say that the diagram 2-

commutes when a 2-isomorphism α : f a
∼
⇒ g b is given. When f a = g b, the diagram

is said to strictly commute, and α is taken to be 1fa = 1g b; in this case the arrow ⇒
in the diagram may be replaced by an equality sign =. The same terminology is used
when the square is replaced by any polygon, with arrows starting at some vertex and
moving in opposite directions toward another vertex.

The axioms, particularly the exchange property, allow one to compose 2-morphisms
across diagrams, with the result being independent of choices. For example, given a
diagram

S
a //

b
��

����
<Dα

T

c

��

d

��
����
=Eβ

U
e //

&&
g

����
<Dγ
V

h
��

f //

����
=Eδ

W

i

��
X

j
// Y

one gets a 2-morphism from j g b to i d a, by first doing γ, then α and δ (in either order),
and finally doing β. Officially, this 2-morphism is

(1i ∗ β ∗ 1a) ◦ (δ ∗ α) ◦ (1j ∗ γ ∗ 1b),

noting that δ ∗α = (δ ∗1c a)◦ (1j h ∗α) = (1i f ∗α)◦ (δ ∗1e b). Sometimes one can express
an equality among 2-morphisms by saying that the results of such pastings of polygons
around the sides of a solid polytope in 3-space are the same, but these diagrams (with
their labels) are not easy to draw, nor are they easy to manipulate to prove identities.
In fact, it is often useful to express an equality among 2-morphisms by an ordinary
commutative diagram involving 2-morphisms in a HOM-category. For example, the
above situation can be expressed by the diagram

j ◦ h ◦ c ◦ a
δ

#+PPPPPPPPPPP

PPPPPPPPPPP

j ◦ g ◦ b
γ +3 j ◦ h ◦ e ◦ b

α
3;nnnnnnnnnnn

nnnnnnnnnnn

δ #+PPPPPPPPPPP

PPPPPPPPPPP
i ◦ f ◦ c ◦ a

β +3 i ◦ d ◦ a

i ◦ f ◦ e ◦ b

α
3;nnnnnnnnnnn

nnnnnnnnnnn
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in the category HOM(S, Y ), with the central square commuting. When no confusion
is possible, we omit the identity 2-isomorphisms from the labels over double arrows; in
this example, the γ over the first double arrow is short for 1j ∗ γ ∗ 1b, and similarly for
the others. Similarly, (1) of Exercise B.18 says that the diagrams

g ◦ f
α +3

β∗α �'HHHHHHHH

HHHHHHHH
g ◦ f ′

β

��

g ◦ f

β

��

β∗α

 (HHHHHHHH

HHHHHHHH

g′ ◦ f ′ g′ ◦ f
α

+3 g′ ◦ f ′

commute.

Exercise B.19. Let h : X → X be a morphism in a 2-category, and let θ : 1X
∼
⇒ h

be a 2-isomorphism. Show that θ ∗ 1h = 1h ∗ θ from h to h ◦ h, i.e., the diagram

h 1X ◦ h

θ

��
h ◦ 1X

θ
+3 h ◦ h

commutes in the category HOM(X,X).

Exercise B.20. Properties (d) and (f) say that the assignment

HOM(X, Y )× HOM(Y, Z)→ HOM(X,Z)

that takes (f, g) to g ◦ f , and (α, β) to β ∗ α, is a functor. Property (e) implies that,
for X, Y , Z and W , the diagram of categories

HOM(X, Y )× HOM(Y, Z)× HOM(Z,W )

��

// HOM(X,Z)×HOM(Z,W )

��
HOM(X, Y )× HOM(Y,W ) // HOM(X,W )

commutes. Property (c) implies that the composite functor

HOM(X, Y )→ HOM(X,X)× HOM(X, Y )→ HOM(X, Y ),

where the first takes f to (1X , f) and α to (11X
, α), is the identity functor.

We give several examples, starting with the prototype from geometry.

Example B.5. There is a 2-category (Top), whose objects are topological spaces,
whose morphisms are continuous maps, and whose 2-morphisms come from homotopies
— but here we must take appropriate equivalence classes. Given continuous maps f
and g from X to Y , a homotopy from f to g is a continuous mapping

H : X × [0, 1] → Y

with H(x, 0) = f(x) and H(x, 1) = g(x) for all x ∈ X. Call two homotopies H0 and
H1 equivalent if there is a continuous mapping

K : X × [0, 1]× [0, 1] → Y
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with K(x, t, 0) = H0(x, t), K(x, t, 1) = H1(x, t), K(x, 0, u) = f(x), and K(x, 1, u) =
g(x) for all x ∈ X, t, u ∈ [0, 1]. (This is an equivalence relation.) A 2-morphism from
f to g is defined to be an equivalence class of homotopies from f to g.

If f , g, and h map X to Y , and H1 is a homotopy from f to g, and H2 a homotopy
from g to h, define H2 ◦H1 by

H2 ◦H1(x, t) =

{

H1(x, 2t), 0 ≤ t ≤ 1/2

H2(x, 2t− 1), 1/2 ≤ t ≤ 1
.

This passes to equivalence of homotopies, so defines the vertical composition β ◦ α of
2-morphisms. It is associative by the same calculation made to show the associativity
of fundamental groups.

If f and f ′ map X to Y , and g and g′ map Y to Z, and H1 is a homotpy from f to
f ′, and H2 is a homotopy from g to g′, define a homotopy H2 ∗H1 from g ◦ f to g′ ◦ f ′

by
(H2 ∗H1)(x, t) = H2(H1(x, t), t) x ∈ X, 0 ≤ t ≤ 1.

This passes to equivalence classes, defining the horizontal product β∗α of 2-morphisms.

Exercise B.21. Verify that these operations make (Top) into a 2-category, in which
all 2-morphisms are 2-isomorphisms.

Example B.6. There is a 2-category (CC) of chain complexes of abelian groups (and
similarly, a 2-category (CCR) of chain complexes of R-modules, for a commutative ring
R). The objects are the usual chain complexes C = C•, with boundary homomorphisms
dn : Cn → Cn−1 satisfying dn−1 ◦ dn = 0. A morphism f = f• from C to D is a
collection of homomorphisms fn : Cn → Dn, commuting with the boundary maps. A
chain homotopy α = α• from f to g is a collection of homomorphisms αn : Cn → Dn+1

such that dn+1 ◦ αn + αn−1 ◦ dn = gn − fn for all n. Call two chain homomotopies
α and β from f to g equivalent if there is a collection θ = θ• of homomorphisms
θn : Cn → Dn+2 such that

dn+2 ◦ θn − θn−1 ◦ dn = βn − αn

for all n. (This is an equivalence relation.) A 2-morphism from f to g is an equivalence
class of such chain homotopies.

If f , g, and h map C to D, α is a chain homotopy from f to g, and β is a chain
homotopy from g to h, define the chain homotopy β ◦ α from f to h by the formula
(β ◦α)n = αn+βn. This passes to equivalence classes, so defines a vertical composition
of 2-morphisms. If f and f ′ map C to D, and g and g′ map D to E, and α is a
chain homotopy from f to f ′ and β is a chain homotopy from g to g′, define the chain
homotopy β ∗ α from g ◦ f to g′ ◦ f ′ by the formula

(β ∗ α)n = gn+1 ◦ αn + βn ◦ f
′
n.

(This is equivalent to the alternative βn ◦fn+g′n+1 ◦αn.) This respects the equivalence,
so defines a horizontal composition of 2-morphisms.

Exercise B.22. Verify that these objects, morphisms, and 2-morphisms satisfy the
axioms to form a 2-category.
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Example B.7. The 2-category (Grp) has groups as objects, group homomorphisms
as morphisms, and, if f and g are homomorphisms from X to Y , a 2-morphism from f
to g is an element y in Y such that

g(x) = y−1 · f(x) · y for all x ∈ X.

If z gives a 2-morphism from g to h, the composition z ◦ y from f to h is given by y · z.
If y : f ⇒ f ′, with f and f ′ from X to Y , and z : g ⇒ g′, with g and g′ from Y to Z,
then z ∗ y : g ◦ f ⇒ g′ ◦ f ′ is given by the element g(y) · z = z · g′(y) of Z.

Exercise B.23. Verify that these operations make (Grp) into a 2-category, in which
all 2-morphisms are 2-isomorphisms.

The following example, with variations, is the key example for this text.

Example B.8. Categories form a 2-category (Cat). Its objects are categories C,
its morphisms are functors F : C → D, and its 2-morphisms α : F ⇒ G are natural
transformations from F to G. If α : F ⇒ G and β : G⇒ H are natural transformations
between functors from C to D, then β ◦ α : F ⇒ H is the natural transformation that
takes an object X of C to the morphism βX ◦ αX from F (X) to H(X). If F , F ′ are
functors from C to D, with α : F ⇒ F ′, and G, G′ are functors from D to E , with
β : G⇒ G′, define β ∗ α : G ◦ F ⇒ G′ ◦ F ′ to take the object X of C to the morphism

G′(αX) ◦ βF (X) = βF ′(X) ◦G(αX)

of E .

Exercise B.24. Verify that these operations make (Cat) into a 2-category. (Not
all 2-morphisms are 2-isomorphisms.)

Thinking of groupoids of sets as categories shows that groupoids of sets form a
2-category (Gpd). More generally:

Example B.9. Let S be a category. Let (S-Gpd) be the category whose objects
are S-groupoids, whose morphisms are morphisms of S-groupoids (see Chapter 3). If
(ϕ,Φ) and (ψ,Ψ) are morphisms from R′ ⇉ U ′ to R ⇉ U , define a 2-morphism from
(ϕ,Φ) to (ψ,Ψ) to be a morphism α : U ′ → R in S such that s ◦ α = ϕ, t ◦ α = ψ, and
the diagram

R′
(αs′,Ψ)

//

(Φ,αt′)
��

R t×s R

m

��
R t×s R

m // R

commutes.

Exercise B.25. Make (S-Gpd) into a 2-category, in which all 2-morphisms are
2-isomorphisms.

Exercise B.26. There is a category whose objects are sets, with an arrow from X
to Y being a subset f of X ×Y . Define the composition of f with g from Y to Z to be
the set of (x, z) in X × Z such that there is a y in Y with (x, y) in f and (y, z) in g.
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This category can be enriched to a 2-category by defining a unique 2-cell from subsets
f and g of X × Y if f is contained in g, with no 2-cell from f to g otherwise. Verify
that this is a 2-category.

Exercise B.27. If C is a 2-category, construct a category C, whose objects are the
same as the objects of C, but whose morphisms from X to Y are equivalence classes of
morphisms f : X → Y in C, where f is equivalent to g if there is a 2-isomorphism from
f to g. Show that this is an equivalence relation, and that C is a category, with the
canonical map from the underlying category of C to C being a functor. Examples are:
the category of topological spaces with homotopy classes of mappings; the category
of groups with homomorphisms up to inner automorphism; the category of categories,
with functors up to natural isomorphism. This category C is sometimes called the
classifying category of C, see [11].

Exercise B.28. Any category C determines a 2-category, with the same objects
and morphisms, and with the only 2-morphisms being identities 1f , for morphisms f
in C.

We say that a 2-category is a 1-category if its only 2-morphisms are identities. In
this spirit, one says that a category is a 0-category if its only morphisms are identity
maps.

Exercise B.29. If C is a 2-category, a category C′ can be constructed as follows.
The objects of C′ are the objects of C; the morphisms of C′ from X to Y are the 2-
morphisms α : f ⇒ g, where f and g are maps from X to Y in C. The composite of α
followed by β is β ∗ α. Verify that C′ is a category.

Exercise B.30. (1) If C is a 2-category, and f : X → Y a morphism in C, we have,
for every object S of C, a functor

fS : HOM(S,X)→ HOM(S, Y )

taking h : S → X to f ◦ h : S → Y , and α : h⇒ h′ to 1f ∗ α : f ◦ h⇒ f ◦ h′. Similarly,
there are functors

fS : HOM(Y, S)→ HOM(X,S)

taking h : Y → S to h ◦ f : X → S and α : h⇒ h′ to α ∗ 1f : h ◦ f ⇒ h′ ◦ f .

(2) If also g : Y → Z, then (g ◦ f)S = gS ◦ fS and (g ◦ f)S = fS ◦ gS. If f = 1X ,
then fS = 1HOM(S,X) and fS = 1HOM(X,S). It follows that, if f is an isomorphism, then
each functor fS and fS is an isomorphism of categories.

(3) If f and g are morphisms from X to Y , and σ : f ⇒ g is a 2-morphism, then σ
determines a natural transformation σS from fS to gS (taking h : S → X to σ∗1h), and
a natural transformation σS from fS to gS (taking h : Y → S to 1h∗σ). If also τ : g ⇒ h,

then (τ ◦ σ)S = τS ◦ σS. If σ = 1f , then σS is the identity natural isomorphism on fS.
Hence, if σ is invertible, then σS is a natural isomorphism.

(4) For fixed objects X, Y , and S of C, there is a functor HOM(X, Y ) →
HOM(Cat)(HOM(S,X),HOM(S, Y )) taking f to fS and σ to σS.
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Just as two topological spaces can be homotopy equivalent, there is a notion for two
objects in any 2-category to be 2-isomorphic. In fact, there are several ways to say this:

Proposition B.10. Let f : X → Y be a morphism in a 2-category C. The following
are equivalent:

(1) There is a morphism g : Y → X together with 2-isomorphisms φ : 1X
∼
⇒ g ◦ f

and ψ : 1Y
∼
⇒ f ◦ g.

(2) There is a morphism g : Y → X and 2-isomorphisms φ : 1X
∼
⇒ g ◦ f and

ψ : 1Y
∼
⇒ f ◦ g such that 1f ∗ φ = ψ ∗ 1f (as 2-isomorphisms from f to fgf)

and φ ∗ 1g = 1g ∗ ψ (as 2-isomorphisms from g to gfg). That is, the diagrams

f 1Y ◦ f

ψ

��

g 1X ◦ g

φ

��
f ◦ 1X

φ
+3 f ◦ g ◦ f g ◦ 1Y

ψ
+3 g ◦ f ◦ g

commute, in the categories HOM(X, Y ) and HOM(Y,X) respectively.
(3) For every object S of C, the functor fS : HOM(S,X) → HOM(S, Y ) is an

equivalence of categories.
(4) The functors fX and fY are equivalences of categories.

Proof. We show first how (1) implies (3). By Exercise B.30, we have the functor

gS : HOM(S, Y )→ HOM(S,X), and we have a natural isomorphism φS : 1HOM(S,X)
∼
⇒

gS ◦ fS. Similarly, we have a natural isomorphism ψS : 1HOM(S,Y )
∼
⇒ fS ◦ gS.

Next we prove that (4) implies (2), which finishes the proof since (4) is a special
case of (3) and (1) is a special case of (2). Since fY is essentially surjective, there

is a morphism g : Y → X and a 2-isomorphism ψ : 1Y
∼
⇒ f ◦ g. Since fX is full

and faithful, there is a unique 2-morphism φ : 1X ⇒ g ◦ f such that fX(φ) is the 2-
isomorphism ψ ∗ 1f from f = 1Y ◦ f to f ◦ g ◦ f ; this φ is an isomorphism since fX(φ)
is an isomorphism (Exercise B.6). Since fX(φ) = 1f ∗ φ, we have one of the required
equations 1f ∗ φ = ψ ∗ 1f . To prove that the 2-morphisms φ ∗ 1g and 1g ∗ ψ from g to
g ◦ f ◦ g are equal in HOM(Y,X), it suffices to show that their images by the faithful
functor fY are equal, i.e., to show that 1f ∗ (φ ∗ 1g) = 1f ∗ (1g ∗ ψ). Now

1f ∗ (φ ∗ 1g) = (1f ∗ φ) ∗ 1g = (ψ ∗ 1f) ∗ 1g = ψ ∗ 1fg

= 1fg ∗ ψ = (1f ∗ 1g) ∗ ψ = 1f ∗ (1g ∗ ψ),

as required; the fourth equality used Exercise B.19. �

This proof shows that, given f , g, φ, and ψ, either of the equations 1f ∗ φ = ψ ∗ 1f
or φ ∗ 1g = 1g ∗ ψ implies the other.

Definition B.11. We call a morphism f : X → Y in a 2-category 2-invertible or
a 2-equivalence, if it satisfies the conditions of the proposition. (We do not use the
more natural term 2-isomorphism, to avoid confusion with invertible 2-morphisms.)

On the other hand, if there exists a 2-invertible morphism f : X → Y , then we call
the objects X and Y 2-isomorphic, as there is no danger of confusion in this context.
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A triple (g, φ, η) satisfying the conditions of (2) may be called a 2-inverse of f . A
quadruple satisfying the conditions of (2) is sometimes called an adjoint equivalence.
In practice, one uses (1) to check that a morphism is 2-invertible, but one uses the full
data of (2) in making constructions.

Exercise B.31. Show that the conditions of the proposition are equivalent to each
of the following:

(5) For every object S of C, the functor fS : HOM(Y, S) → HOM(X,S) is an
equivalence of categories.

(6) The functors fX and fY are equivalences of categories.
(7) The functors fX and fY are essentially surjective.

(8) There is a morphism g : Y → X and 2-isomorphisms φ : 1X
∼
⇒ g ◦ f and

η : f ◦ g
∼
⇒ 1Y such that the composition f = f ◦ 1X

φ
⇒ f ◦ g ◦ f

η
⇒ 1Y ◦ f = f

is equal to 1f , and the composition g = 1X ◦ g
φ
⇒ g ◦ f ◦ g

η
⇒ g ◦ 1Y = g is

equal to 1g.

(9) There is a morphism g : Y → X and 2-isomorphisms ψ : 1Y
∼
⇒ f ◦ g and

θ : g ◦ f
∼
⇒ 1X such that the composition f = 1Y ◦ f

ψ
⇒ f ◦ g ◦ f

θ
⇒ f ◦ 1X = f

is equal to 1f , and the composition g = g ◦ 1Y
ψ
⇒ g ◦ f ◦ g

θ
⇒ 1X ◦ g = g is

equal to 1g.

(10) There is a morphism g : Y → X and 2-isomorphisms θ : g ◦ f
∼
⇒ 1X and

η : f ◦ g
∼
⇒ 1Y such that the diagrams

f ◦ g ◦ f
θ +3

η

��

f ◦ 1X g ◦ f ◦ g
θ +3

η

��

1X ◦ g

1Y ◦ f f g ◦ 1Y g

commute.

It follows from Proposition B.20 in the next section, together with (9) of the pre-
ceding exercise, that if (g, φ, ψ) is a 2-inverse of f , then any other 2-inverse of f has
the form (g′, φ′, ψ′), for a unique 2-isomorphism θ : g

∼
⇒ g′ with φ′ = (θ ∗ 1f) ◦ φ and

ψ′ = (1f ∗ θ) ◦ ψ.

Exercise B.32. In the 2-category (Top), two spaces are 2-isomorphic exactly when
they have the same homotopy type. In the 2-category (Grp), two groups are 2-
isomorphic if and only if they are isomorphic groups. In the 2-category (Cat), two
categories are 2-isomorphic when they are equivalent.

Exercise B.33. Show that the condition of being 2-isomorphic is an equivalence
relation on the objects of a 2-category.

When applied to the 2-category (Cat), Proposition B.10 and Exercise B.31 give a
variety of criteria for a functor F from a category C to a category D to be an equivalence
of categories. Note that the equivalence with (9) recovers the result of Exercise B.8.
For the 2-category (Top), one recovers a criterion of Vogt [90]. The general statement,
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in the form that (1) implies (9), appears in [63], where it is attributed to a combination
of folklore and R. Street.

Definition B.12. A sub-2-category C′ of a 2-category C is obtained by selecting
some of the objects, some of the morphisms, and some of the 2-morphisms, of C, in
such a way that all identities 1X of selected objects and 1f of selected morphisms are
selected, and all composites g ◦ f and β ◦ α of selected morphisms or 2-morphisms are
selected, as is the product β ∗ α, whenever such composites or products are defined
in C. It is easy to verify that C′ is a 2-category. A sub-2-category C′ is called a full

sub-2-category of C if any morphism in C between two objects of C′ is in C′, and any
2-morphism in C between two morphisms in C′ is in C′.

Example B.13. The 2-category (Grp) of groups forms a full sub-2-category of the
2-category (Gpd) of groupoids of sets, which in turn forms a full sub-2-category of the
2-category (Cat) of categories.

Most “mappings” from one 2-category to another will not preserve all the structure
strictly; rather, the expected identities will be true only up to specified 2-isomorphisms.
These “pseudofunctors” will be studied in Section 4. We include here a brief discussion
of the stronger notion, called a 2-functor, as a warmup. A 2-functor F : C → D from
one 2-category to another assigns to each object X in C an object F (X) in D, to
each morphism f : X → Y in C a morphism F (f) : F (X) → F (Y ) in D, and to each
2-morphism α : f ⇒ g in C a 2-morphism F (α) : F (f)⇒ F (g) in D, satisfying:

(a) F (1X) = 1F (X) for all objects X of C;
(b) F (1f) = 1F (f) for all morphisms f of C;
(c) F (g ◦ f) = F (g) ◦ F (f) for f : X → Y , g : Y → Z in C;
(d) F (β ◦ α) = F (β) ◦ F (α) for α : f ⇒ g, β : g ⇒ h in C;
(e) F (β ∗ α) = F (β) ∗ F (α) when β ∗ α is defined in C.

This gives a functor between the underlying categories (called the underlying

functor). For objects X and Y of C, it also gives a functor HOM(X, Y ) →
HOM(F (X), (F (Y )) (by (b) and (d)). For example, the inclusion of a sub-2-category
in a 2-category is a 2-functor.

Exercise B.34. Construct a 2-functor from the 2-category (Top) of topological
spaces to the 2-category (Gpd) of groupoids, that takes a space X to its fundamental
groupoid.

Example B.14. There is a 2-functor from the 2-category (Top) to the 2-category
(CC) of chain complexes. This takes a topological space X to the chain complex C•(X)
of nondegenerate cubical chains.3 A continuous mapping f : X → Y is sent to the chain
mapping f• : C•(X) → C•(Y ) that takes σ to f ◦ σ. A homotopy H : X × [0, 1] → Y

3Cn(X) is the free module on the set of continuous maps σ : [0, 1]n → X , modulo the submod-
ule generated by those σ such that, for some 1 ≤ i ≤ n, σ(t1, . . . , tn) is a constant function of ti.
The boundary dn : Cn(X) → Cn−1(X) is defined by the formula dn =

∑

n

i=1
(−1)i(∂0

i
− ∂1

i
), where

∂ǫ

i
(σ)(t1, . . . , tn−1) = σ(t1, . . . , ti−1, ǫ, ti, . . . , tn−1).
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from f to g determines a chain homotopy αH from f• to g•, by the formula

αH(σ)(t1, . . . , tn+1) = H(σ(t2, . . . , tn+1), t1).
4

Exercise B.35. Verify that αH is a chain homotopy. Show that equivalent homo-
topies from f to g determine equivalent chain homotopies from f• to g•, so a 2-morphism
in (Top) determines a 2-morphism in (CC). Show that taking X to C•(X), f to f•,
and an equivalence class of H ’s to the equivalence class of αH ’s, determines a 2-functor
from (Top) to (CC).

If F and G are 2-functors from a 2-category C to a 2-category D, a 2-natural

transformation θ from F to G assigns to each object X of C a morphism θX : F (X)→
G(X) in D, satisfying two properties. First, for all f : X → Y in C, the diagram

F (X)
F (f)

//

θX

��

F (Y )

θY

��
G(X)

G(f)
// G(Y )

must commute. This says that θ is a natural transformation between the underlying
functors on the underlying categories. The second property says that for any f, g : X →
Y and 2-morphism α : f ⇒ g in C, the two morphisms 1θY

∗F (α) andG(α)∗1θX
, pictured

by

F (X)
F (f)

++

F (g)
33

�� ��
��F (α)F (Y )

θY // G(Y ) F (X)
θX // G(X)

G(f)
++

G(g)
33

�� ��
��G(α)G(Y )

from θY ◦ F (f) = G(f) ◦ θX to θY ◦ F (g) = G(g) ◦ θX must be equal. A 2-natural
transformation is a 2-natural isomorphism if each θX is an isomorphism.

Exercise B.36. Define vertical and horizontal composition of 2-natural transfor-
mations, by the formulas: (β ◦ α)X = βX ◦ αX ; and (β ∗ α)X = G′(αX) ◦ βF (X) =
βF ′(X) ◦ G(αX), the latter when α (resp. β) is a 2-natural transformation from F to
F ′ (resp. G to G′). Show that, with these operations, 2-categories, 2-functors, and
2-natural transformations form the objects, arrows, and 2-cells of a 2-category (2-Cat).

One can call a 2-functor F : C → D a strict 2-isomorphism if there is a 2-functor
G : D → C with G◦F = 1C and F ◦G = 1D. This notion is much too strong to be useful.
Somewhat better is the following: A 2-functor F : C → D between 2-categories is a 2-

equivalence if there is a 2-functor G : D → C and there are 2-natural isomorphisms
from G ◦ F to 1C and from F ◦G to 1D.

Exercise B.37. Let F : C → D be a 2-functor. The following are equivalent:
(1) F is a 2-equivalence. (2) F determines an equivalence between the underlying
categories, and, for all objects X and Y of C, the induced functor HOM(X, Y ) →
HOM(F (X), F (Y )) is a strict isomorphism of categories.

4Readers who prefer simplices may use the method of acyclic models to obtain a similar 2-functor
involving simplicial complexes.
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These 2-functors are relatively rare in the world of 2-categories, and the notion of
“isomorphism” that appears in the preceding exercise is too strong to be very useful; a
more flexible notation is discussed in Section 4.

Definition B.15. The opposite 2-category Cop of a 2-category C is obtained by
reversing the direction of the 1- morphisms, keeping the direction of the 2-morphisms
the same. Thus if f and g are morphisms from X to Y in C, and α is a 2-morphism from
f to g, then in Cop there are morphisms f and g from Y to X, with α a 2-morphism
from f to g.

Definition B.16. A 2-commutative diagram

V

p

��

q //

����
<Dθ

Y

t

��
X s

// Z

(with θ a 2-isomorphism from s p to t q) is said to be 2-cartesian if it satisfies the
following universal property: For any morphisms f : U → X and g : U → Y and 2-
isomorphism φ : sf

∼
⇒ tg, there is a morphism h : U → V and 2-isomorphisms α : f

∼
⇒

ph and β : qh
∼
⇒ g such that φ = (1t ∗ β) ◦ (θ ∗ 1h) ◦ (1s ∗ α):

U

f

��

g

##
h

  
pppp
4<α

����
DL

β

V
q //

p

��
����
<Dθ

Y

t

��
X s

// Z

In addition, we must have the following uniqueness: if h′ : U → V and α′ : f
∼
⇒ ph′

and β ′ : qh′
∼
⇒ g also have φ = (1t ∗ β

′) ◦ (θ ∗ 1h′) ◦ (1s ∗ α
′), then there is a unique

2-isomorphism ρ : h
∼
⇒ h′ such that α′ = (1p ∗ ρ) ◦ α and β = β ′ ◦ (1q ∗ ρ). In this case

we will call V a fibered product of X and Y over Z, and write V = X ×Z Y , but
note that the morphisms, and especially the 2-isomorphism, are understood to be part
of the structure.

Exercise B.38. Given a diagram

X ′
s′ //

��
����
=Eα

Y ′
t′ //

��
����
=Eβ

Z ′

��
X s

// Y
t

// Z
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if the two squares are 2-cartesian, show that the resulting diagram

X ′
t′s′ //

��
����
=Eγ

Z ′

��
Y

ts
// Z

is also 2-cartesian, with γ = (β ∗ 1s′) ◦ (1t ∗ α). State and prove analogues of the other
parts of Exercises B.11 and B.12 for 2-cartesian diagrams.

Definition B.17. (∗) The notion of a quotient in a 2-category is more complicated
than that in an ordinary category. To define it, we need some notation for some fibered
products. Let π : X → Y be a morphism in a 2-category C, and assume there is a fibered
product X1 = X×Y X, with its projections p1 and p2 from X1 to X and 2-isomorphism
θ : π◦p1 ⇒ π◦p2. In addition, assume that there is a fibered productX2 = X×YX×YX,
with its projections q1, q2, q3 : X2 → X, with associated 2-isomorphisms

θ12 : π ◦ q1 ⇒ π ◦ q2, θ23 : π ◦ q2 ⇒ π ◦ q3.

Set θ13 = θ23 ◦ θ12 : π ◦ q1 ⇒ π ◦ q3. For 1 ≤ i < j ≤ 3 we have projections pij : X2 → X1,
with 2-isomorphisms αij : qi ⇒ p1 ◦ pij and αji : qj ⇒ p2 ◦ pij, such that the diagrams

π ◦ qi

θij

��

αij +3 π ◦ p1 ◦ pij

θ
��

π ◦ qj
αji

+3 π ◦ p2 ◦ pij

commute. Define α1 = α13 ◦α−1
12 : π ◦ p1 ◦ p12 ⇒ π ◦ p1 ◦ p13, α2 = α23 ◦ α−1

21 : π ◦ p2 ◦ p12 ⇒
π ◦ p1 ◦ p23, and α3 = α32 ◦ α−1

31 : π ◦ p2 ◦ p13 ⇒ π ◦ p2 ◦ p23.
5

We say that π : X → Y makes Y a 2-quotient of X if it satisfies the following
universal mapping property. For any morphism u : X → Z, and any 2-isomorphism
τ : u ◦ p1 ⇒ u : p2, such that the diagram

u ◦ p1 ◦ p12

τ

��

α1 +3 u ◦ p1 ◦ p13
τ +3 u ◦ p2 ◦ p13

α3

��
u ◦ p2 ◦ p12 α2

+3 u ◦ p1 ◦ p23 τ
+3 u ◦ p2 ◦ p23

5This data may be assembled into a cube, with X2 on one vertex, Y on the opposite vertex, three
copies of X1 on vertices adjacent to X2, three copies of X adjacent to Y , with the various projections
along the edges, and the 2-isomorphisms across the sides. To say that X → Y is a 2-quotient can
be thought of as an appropriate “2-cocartesian” property of this cube, which amounts to a descent
criterion.



app-42 Categories and 2-categories

commutes, there is a morphism v : Y → Z and a 2-isomorphism ρ : u⇒ v ◦ π such that
the diagram

u ◦ p1

τ

��

ρ +3 v ◦ π ◦ p1

θ
��

u ◦ p2
ρ

+3 v ◦ π ◦ p2

commutes. This must satisfy the following uniqueness property: if v′ : Y → Z and
ρ′ : u⇒ v′ ◦ π are another morphism and 2-isomorphism satisfying the same properties,
there is a unique 2-isomorphism ζ : v ⇒ v′ such that the diagram

u
ρ +3

ρ′ �&
EE

EE
EE

EE

EE
EE

EE
EE

v ◦ π

ζ
��

v′ ◦ π

commutes.

Definition B.18. The opposite 2-category Cop of a 2-category C is obtained by
reversing the direction of the 1- morphisms, keeping the direction of the 2-morphisms
the same. Thus if f and g are morphisms from X to Y in C, and α is a 2-morphism from
f to g, then in Cop there are morphisms f and g from Y to X, with α a 2-morphism
from f to g.

3. Adjoints

Adjointness of functors is a familiar notion from category theory. Recall, we say
that functors F : X → Y and G : Y → X are adjoint functors, if for every pair of objects
X of X and Y of Y , we have a bijection

(1) HomX (GY,X) ∼→ HomY(Y, FX),

natural in X and Y . More specifically, we say that F is right adjoint to G, and G is left
adjoint to F . For instance, let π : S → T be a continuous map of topological spaces, so
we have functors π−1 and π∗ between the categories of sheaves on S and on T . Then
π∗ is right adjoint to π−1. In algebraic geometry, when π is a morphism of schemes and
our categories are of sheaves of OS and OT modules, then π∗ is right adjoint to π∗; the
latter defined by π∗F = (π−1F)⊗π−1OT

OS. What is less familiar (and difficult to find
in the literature) are results to the effect that adjointness repects base change. The
goal of this section is to develop the machinery to arrive at such results in a natural
way.

The reader familiar with category theory is probably aware of some equivalent for-
mulations of the notion of adjointness. For instance, the bijection (1) is completely
determined by the universal map Y → F (GY ), that is, the image of 1GY under (1)
when X = GY . There is, similarly, a universal map G(FX) → X. Conversely, a pair
of natural transformations 1Y ⇒ F ◦G and G◦F ⇒ 1X satisfying conditions analogous
to (2), below, uniquely determines the adjointness relation between F and G. The
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connections among the various notions of adjointness will be spelled out in detail in
section 3.2.

Here we use the language of 2-categories to develop the concept of adjointness and
properties relating adjointness with base change. Specializing to the 2-category (Cat),
we recover the usual notion of adjoint functors, and specializing further to the adjoint
functors π∗ and π∗ (see Example B.22), we recover the properties concerning adjointness
and base change alluded to above.

3.1. Adjunctions. We start with the notion of adjunction, in the form of a pair
of functors and universal morphisms, abstracted to a general 2-category.

Definition B.19. Let X and Y be objects in a 2-category C. An adjunction from
X to Y is a quadruple (f, g, η, ǫ), consisting of two morphisms f : X → Y and g : Y → X
and two 2-morphisms η : 1Y ⇒ f ◦ g and ǫ : g ◦ f ⇒ 1X , such that (1f ∗ ǫ) ◦ (η ∗ 1f) = 1f
and (ǫ ∗ 1g) ◦ (1g ∗ η) = 1g; that is, the following diagrams commute:

1Y ◦ f
η +3 f ◦ g ◦ f

ǫ

��

g ◦ 1Y
η +3 g ◦ f ◦ g

ǫ

��
f f ◦ 1X g 1X ◦ g

(2)

For those who prefer diagrams in 3 dimensions, we can rephrase (2) as the condition
that in each diagram below, the “front” faces and “back” faces compose to the same
2-morphism. In the left-hand diagram, the dashed arrow is f : X → Y , and in the
right-hand diagram it is g : Y → X, with the obvious 2-morphisms understood for the
“back” faces that border the dashed arrow.

Y

ǫ

�� ��?
??

??
?? g

1Y //

η

��

Y Y

g   A
AA

AA
AA

A

1Y //

**UUUUUUUUUUU

η

��

Y
g

  A
AA

AA
AA

A

ǫ

��
X

f
>>}}}}}}}}

1X

//

44iiiiiiiiiii
X

f

>>}}}}}}}}
X

??�������

f

1X

// X

The 2-morphism η is called the unit of the adjunction, and ǫ the counit.

Exercise B.39. Suppose (f, g, η, ǫ) is an adjunction from X to Y in a 2-category
C, and V is any object in C.

(1) If a : V → X and b : V → Y are morphisms in C, there is a canonical bijection

{ 2-morphisms from g ◦ b to a } ←→ { 2-morphisms from b to f ◦ a}.

This takes a 2-morphism θ : g◦b⇒ a to the composite b = 1Y ◦b
η
⇒ f ◦g◦b

θ
⇒ f ◦a; the

inverse takes a 2-morphism π : b⇒ f ◦a to the composite g ◦ b
π
⇒ g ◦f ◦a

ǫ
⇒ 1X ◦a = a.

Verify that these are inverse bijections.
(2) There is an adjunction (fV , gV , ηV , ǫV ) from HOM(V,X) to HOM(V, Y ) in the

2-category (Cat). Here fV , gV , ηV , and ǫV are the functors and natural transforma-
tions defined in Exercise B.30, Similarly, there is an adjunction (gV , fV , ηV , ǫV ) from
HOM(Y, V ) to HOM(X, V ).
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Proposition B.20. If (f, g, η, ǫ) and (f, g′, η′, ǫ′) are adjunctions from X to Y ,

there is a unique 2-isomorphism θ : g
∼
⇒ g′ such that (1f ∗θ)◦η = η′ and ǫ′ ◦(θ∗1f ) = ǫ:

1Y
η +3

η′ �&
EE

EE
EE

EE

EE
EE

EE
EE

f ◦ g

θ
��

g ◦ f
ǫ +3

θ
��

1X

f ◦ g′ g′ ◦ f
ǫ′

8@yyyyyyyy

yyyyyyyy

Proof. Define θ to be the composition

g = g ◦ 1Y
η′

⇒ g ◦ f ◦ g′
ǫ
⇒ 1X ◦ g

′ = g′.

To see that the first diagram commutes, consider the diagram

1Y
η′ +3

η

��

f ◦ g′ 1Y ◦ f ◦ g
′

η

��

f ◦ g′

LLLLLLLLLL

LLLLLLLLLL

f ◦ g f ◦ g ◦ 1Y
η′

+3 f ◦ g ◦ f ◦ g′
ǫ

+3 f ◦ 1X ◦ g
′ f ◦ g′

The left rectangle commutes by the exchange property, and the right trapezoid com-
mutes by an adjunction property of η and ǫ. The bottom row is 1f ∗ θ. Similarly, the
commutativity of the second diagram is seen from the diagram

g ◦ f

KKKKKKKKKK

KKKKKKKKKK
g ◦ 1Y ◦ f

η′ +3 g ◦ f ◦ g′ ◦ f
ǫ +3

ǫ′

��

1X ◦ g
′ ◦ f g′ ◦ f

ǫ′

��
g ◦ f g ◦ f ◦ 1X g ◦ f

ǫ
+3 1X

To see that θ is an isomorphism, define θ′ : g′ ⇒ g to be the composite

g′ = g′ ◦ 1Y
η
⇒ g′ ◦ f ◦ g

ǫ′

⇒ 1X ◦ g = g.

It suffices to show that θ′◦θ = 1g and θ◦θ′ = 1′g. By symmetry, θ′ satisfies the identities
(1f ∗ θ

′) ◦ η′ = η and ǫ ◦ (θ′ ∗ 1f) = ǫ′. Hence the composite θ′ ◦ θ satisfies the identities
(1f ∗ (θ′ ◦ θ)) ◦ η = η and ǫ ◦ ((θ′ ◦ θ) ∗ 1f) = ǫ, and similarly for θ ◦ θ′. It therefore
suffices to prove the following uniqueness assertion: if θ : g ⇒ g satisfies (1f ∗ θ) ◦ η = η
(and ǫ ◦ (θ ∗ 1f ) = ǫ), then θ = 1g. For this, consider the diagram

g g ◦ 1Y
η +3 g ◦ f ◦ g

ǫ +3

1g∗1f ∗θ

��

1X ◦ g

θ

��

g

θ

��
g g ◦ 1Y η

+3 g ◦ f ◦ g
ǫ

+3 1X ◦ g g

The left rectangle commutes by assumption, the middle square commutes by the ex-
change property, and the right square commutes by property (c) of 2-categories. Read-
ing around the diagram, one finds 1g = θ ◦ 1g, so θ = 1g, as required. �
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Given a morphism f : X → Y in a 2-category, this proposition justifies the use of
the notation (f, f ′, ηf , ǫf) for an adjunction from X to Y , and to call (f ′, ηf , ǫf) (or
sometimes just f ′) a left adjoint of f . This notation is particularly useful when we
want to compare adjoints for several morphisms. Whenever we have two composable
morphisms, each with a left adjoint, the composite can be given the adjoint structure
of the following exercise.

Exercise B.40. Suppose (f, f ′, ηf , ǫf ) is an adjunction from X to Y , and
(g, g′, ηg, ǫg) is an adjunction from Y to Z. Define an adjunction (g ◦ f, f ′ ◦ g′, ηgf , ǫgf )
from X to Z, where ηgf is the composite

1Z
ηg

⇒ g ◦ g′ = g ◦ 1Y ◦ g
′ η

f

⇒ g ◦ f ◦ f ′ ◦ g′,

and ǫgf is the composite

f ′ ◦ g′ ◦ g ◦ f
ǫg

⇒ f ′ ◦ 1Y ◦ f = f ′ ◦ f
ǫf

⇒ 1X .

Verify that (g ◦ f, f ′ ◦ g′, ηgf , ǫgf ) is an adjunction from X to Z.

3.2. Adjoint functors. When applied to the 2-category (Cat) of categories, the
notion of adjunction we have been discussing coincides with the usual notion of adjoint
functors. In this context, an adjunction (F,G, η, ǫ) from a category X to a category Y
consists of functors F : X → Y , G : Y → X , and natural transformations η : 1Y ⇒ F ◦G

and ǫ : G ◦ F ⇒ 1X , such that the composite F = 1Y ◦ F
η
⇒ F ◦ G ◦ F

ǫ
⇒ F ◦ 1X = F

is the identity on F , and G = G ◦ 1Y
η
⇒ G ◦ F ◦G

ǫ
⇒ 1X ◦G = G is the identity on G.

We say that G is a left adjoint of F , and F is a right adjoint of G, when this data
is specified. If a given F has a left adjoint, it is unique up to a natural isomorphism,
by Proposition B.20.

Exercise B.41. For every object X of X , F (ǫX)◦ηF (X) = 1F (X). For every object Y
of Y , ǫG(Y )◦G(ηY ) = 1G(Y ). For every morphism a : X → X ′ of X , a◦ǫX = ǫX′◦G(F (a)).
For every morphism b : Y → Y ′ of Y , F (G(b)) ◦ ηY = ηY ′ ◦ b.

The usual definition an adjoint pair of functors prescribes, for every pair of objects
X ∈ X and Y ∈ Y , a bijection

φY,X : HomX (G(Y ), X)→ HomY(Y, F (X)),

between the morphisms from G(Y ) to X in X and the morphisms from Y to F (X)
in Y , which is natural in X and Y ; that is, for any morphisms a : X → X ′ in X and
b : Y ′ → Y in Y , the diagrams

HomX (G(Y ), X)
φY,X //

aG(Y )

��

HomY(Y, F (X))

F (a)Y

��

HomX (G(Y ), X)
φY,X //

G(b)X

��

HomY(Y, F (X))

bF (X)

��
HomX (G(Y ), X ′)

φY,X′

// HomY(Y, F (X ′)) HomX (G(Y ′), X)
φY ′,X

// HomY(Y ′, F (X))

commute. Equivalently, for c : G(Y )→ X in X , and any a : X → X ′ and b : Y ′ → Y ,

φY ′,X′(a ◦ c ◦G(b)) = F (a) ◦ φY,X(c) ◦ b.
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These two notions of adjoints coincide, for fixed functors F and G. Given η and ǫ,
define φY,X : Hom(G(Y ), X)→ Hom(Y, F (X)) by the formula

φY,X(c) = F (c) ◦ ηY ,

i.e., φY,X(c) is the composite Y
ηY
→ F (G(Y ))

F (c)
→ F (X). The inverse map from

Hom(Y, F (X)) to Hom(G(Y ), X) is defined by

φY,X
−1(d) = ǫX ◦G(d),

i.e., φY,X
−1(d) is the composite G(Y )

G(d)
→ G(F (X))

ǫX→ X. Conversely, given natural
bijections φY,X for all X and Y , define η and ǫ by the formulas

ηY = φY,G(Y )(1G(Y )), ǫX = φF (X),X
−1(1F (X)).

Exercise B.42. Verify that the maps φY,X and φY,X
−1 defined from η and ǫ are

inverse bijections, natural in X and Y . Verify that the maps ηY and ǫX defined from
a collection {φY,X} define natural transformations η : 1Y ⇒ F ◦G and ǫ : G ◦ F ⇒ 1X ,
such that (F,G, η, ǫ) defines an adjoint from X to Y . Verify that these correspondences
{φY,X} ↔ (η, ǫ) are inverse bijections.

3.3. Base change.

Definition B.21. Suppose we have a 2-commutative diagram

W

q

��

g //

����
<Dα

Y

p

��
X

f
// Z

in a 2-category, and that each of the morphisms p and q is part of an adjunction
(p, p′, ηp, ǫp) and (q, q′, ηq, ǫq). Define a base change 2-morphism6

cα : p′ ◦ f ⇒ g ◦ q′

to be the composite

p′ ◦ f = p′ ◦ f ◦ 1X
ηq

⇒ p′ ◦ f ◦ q ◦ q′
α
⇒ p′ ◦ p ◦ g ◦ q′

ǫp

⇒ 1Y ◦ g ◦ q
′ = g ◦ q′.

If f and g are also part of adjunctions (f, f ′, ηf , ǫf ) and (g, g′, ηg, ǫg), define a 2-
morphism

α′ : g′ ◦ p′ ⇒ q′ ◦ f ′

to be the composite

g′ ◦ p′ = g′ ◦ p′ ◦ 1Z
ηf

⇒ g′ ◦ p′ ◦ f ◦ f ′ cα⇒ g′ ◦ g ◦ q′ ◦ f ′ ǫg

⇒ 1W ◦ q
′ ◦ f = q′ ◦ f.

6In category theory, α and cα are called mates of each other, see [51]. Category theorists often
write adjunctions in the order (f ′, f, η, ǫ), with the left adjoint preceding the right adjoint.
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Exercise B.43. (1) If p and q have left adjoints, show that the following diagram
commutes:

f 1Z ◦ f
ηp

+3 p ◦ p′ ◦ f

cα

��
f ◦ 1X

ηq
+3 f ◦ q ◦ q′ α

+3 p ◦ g ◦ q′

If f and g also have left adjoints, show that the following diagrams commute:

p′ p′ ◦ 1Z
ηf

+3 p′ ◦ f ◦ f ′

cα

��

g′ ◦ p′ ◦ f

cα

��

α′

+3 q′ ◦ f ′ ◦ f
ǫf +3 q′ ◦ 1X

1Y ◦ p
′

ηg
+3 g ◦ g′ ◦ p′

α′

+3 g ◦ q′ ◦ f ′ g′ ◦ g ◦ q′
ǫg

+3 1W ◦ q
′ q′

(2) Deduce that cα is equal to the composite

p′ ◦ f = 1Y ◦ p
′ ◦ f

ηg

⇒ g ◦ g′ ◦ p′ ◦ f
α′

⇒ g ◦ q′ ◦ f ′ ◦ f
ǫf

⇒ g ◦ q′ ◦ 1X = g ◦ q′.

(3) The correspondence of Exercise B.39, applied to the adjunction (p, p′, ηp, ǫp)
takes cα : p′ ◦ f ⇒ g ◦ q′ to a 2-morphism from f to p ◦ g ◦ q′. Show that this morphism

is the composite f = f ◦ 1X
ηq

⇒ f ◦ q ◦ q′
α
⇒ p ◦ g ◦ q′. The inverse of the correspondence

of Exercise B.39, applied to the adjunction (g, g′, ηg, ǫg), produces a 2-morphism from

g′ ◦ p′ ◦ f to q′. Show that this is g′ ◦ p′ ◦ f
α′

⇒ q′ ◦ f ′ ◦ f
ǫf

⇒ q′.

Exercise B.44. (1) Consider a diagram

U

r

��

i //

����
<Dβ

W

q

��

g //

����
<Dα

Y

p

��
V

h
// X

f
// Z

in a 2-category C. Define γ : (f ◦ h) ◦ r ⇒ p ◦ (g ◦ i) to be the composite

(f ◦ h) ◦ r = f ◦ h ◦ r
β
⇒ f ◦ q ◦ i

α
⇒ p ◦ g ◦ i = p ◦ (g ◦ i).

If p, q, and r have left adjoints, show that the diagram

p′ ◦ f ◦ h

cα

��

p′ ◦ (f ◦ h)
cγ

#+OOOOOOOOOO

OOOOOOOOOO

g ◦ q′ ◦ h
cβ

+3 g ◦ i ◦ r′ (g ◦ i) ◦ r′

commutes.
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(2) Dually, given a diagram

U

r

��

i // W

q

��

g // Y

p

��
V

h
// X

����|� β

f
// Z

����|� α

define γ : p ◦ (g ◦ i)⇒ (f ◦ h) ◦ r to be the composite

p ◦ (g ◦ i) = p ◦ g ◦ i
α
⇒ f ◦ q ◦ i

β
⇒ f ◦ h ◦ r = (f ◦ h) ◦ r.

If f , g, h, and i have adjoints, show that the following diagram commutes:

h′ ◦ f ′ ◦ p

cα

��

(f ◦ h)′ ◦ p
cγ

#+OOOOOOOOOO

OOOOOOOOOO

h′ ◦ q ◦ g′
cβ

+3 r ◦ i′ ◦ g′ r ◦ (g ◦ i)′

Example B.22. Let

W
g //

q

��

Y

p

��
X

f
// Z

be a commutative diagram of schemes. Then there is a natural base change morphism

p∗f∗F → g∗q
∗F .

A detailed treatment of the construction and properties of base change morphisms for
sheaves on schemes is given in the Glossary.

4. Pseudofunctors

In this section we consider 2-categories in their natural generality, where one rarely
has equality of morphisms; in their place are identities among 2-isomorphisms. Al-
though the definitions and assertions are natural enough, the verifications involve con-
siderable diagram chasing, much of which is left to the interested (and determined)
reader.

Definition B.23. If C and D are 2-categories, a (covariant) pseudofunctor F
from C to D assigns to each object X of C an object F (X) of D, to each morphism
f : X → Y of C a morphism F (f) : F (X) → F (Y ) in D, and to each 2-morphism
α : f ⇒ g a 2-morphism F (α) : F (f)⇒ F (g). In addition, we must have:

(1) for morphisms f : X → Y , g : Y → Z of C, a 2-isomorphism

γf,g = γFf,g : F (g ◦ f)
∼
⇒ F (g) ◦ F (f);

(2) for each object X of C, a 2-isomorphism

δX = δFX : F (1X)
∼
⇒ 1F (X).
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These must satisfy the following conditions:

(a) For morphisms f : W → X, g : X → Y , h : Y → Z in C, we have the equality

(1F (h) ∗ γf,g) ◦ γgf,h = (γg,h ∗ 1F (f)) ◦ γf,hg

of 2-morphisms from F (h ◦ g ◦ f) to F (h) ◦ F (g) ◦ F (f):

F (h ◦ g ◦ f)
γf,hg +3

γgf,h

��

F (h ◦ g) ◦ F (f)

γg,h

��
F (h) ◦ F (g ◦ f)

γf,g

+3 F (h) ◦ F (g) ◦ F (f)

(This can also be described by saying that the two ways to move down in the
diagram

F (X)
F (f)

//

F (gf)

((

F (hgf)

$$
F (Y )

F (g)
//

F (hg)

((
F (Z)

F (h)
// F (W )

agree.)
(b) For a morphism f : X → Y in C, we have the equalities

(1F (f) ∗ δX) ◦ γ1X ,f = 1F (f) = (δY ∗ 1F (f)) ◦ γf,1Y

of 2-morphisms from F (f) to F (f) ◦ 1F (X) = F (f) = 1F (Y ) ◦ F (f):

F (f) F (f) ◦ 1F (X) F (f) 1F (Y ) ◦ F (f)

F (f ◦ 1X)
γ1X ,f

+3 F (f) ◦ F (1X)

δX

KS

F (1Y ◦ f)
γf,1Y

+3 F (1Y ) ◦ F (f)

δY

KS

(c) For any morphism f in C, F (1f) = 1F (f); and, if α : f ⇒ g and β : g ⇒ h in C,
we have the equality

F (β ◦ α) = F (β) ◦ F (α)

of 2-morphisms from F (f) to F (h).
(d) If f, f ′ : X → Y , α : f ⇒ f ′, g, g′ : Y → Z, and β : g ⇒ g′ in C, then

(F (β) ∗ F (α)) ◦ γf,g = γf ′,g′ ◦ F (β ∗ α),

an equality of 2-morphisms from F (g ◦ f) to F (g′) ◦ F (f ′):

F (g ◦ f)

γf,g

��

F (β∗α)
+3 F (g′ ◦ f ′)

γf ′,g′

��
F (g) ◦ F (f)

F (β)∗F (α)
+3 F (g′) ◦ F (f ′)

We write F : C → D to denote that F is a pseudofunctor from C to D, with associated
2-isomorphisms δFX and γFf,g.
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Note by (c) that a pseudofunctor determines (honest) functors

HOM(X, Y ) −→ HOM(F (X), F (Y ))

for any objects X and Y in C. Note however that F does not induce a functor between
the underlying categories of C and D.

An important special case of this is when C is an ordinary category, regarded as a
2-category by specifying that its only 2-morphisms are identities. In this case there is
no need to specify what F does to 2-morphisms in C, and conditions (c) and (d) can
be omitted.

In the text, the situation of a contravariant pseudofunctor from an ordinary
category C to a 2-category D arises. This can be defined to be a pseudofunctor from
the opposite category Cop to D. Explicitly, the changes are: for a morphism f : X → Y
one has F (f) : F (Y )→ F (X), and for f : X → Y , g : Y → Z one has γf,g : F (g ◦ f)

∼
⇒

F (f) ◦ F (g), and the two conditions become:

(a) (γf,g ∗ 1F (h)) ◦ γgf,h = (1F (f) ∗ γg,h) ◦ γf,hg;
(b) (δX ∗ 1F (f)) ◦ γf,1X

= 1F (f) = (1F (f) ∗ δY ) ◦ γ1Y ,f .

Exercise B.45. If F : C → D and G : D → E are pseudofunctors, there is a com-
posite pseudofunctor G ◦ F . This takes an object X to G(F (X)), a morphism f to
G(F (f)), and a 2-morphism ρ to G(F (ρ)); and one sets γG◦F

f,g = γGF (f),F (g)◦G(γFf,g) and

δGFX = δGF (X) ◦G(δFX). Verify that this defines a pseudofunctor. Show that 2-categories,
with pseudofunctors as morphisms, form a category.

Exercise B.46. Construct a pseudofunctor B from the 2-category (Grp) of groups
to the 2-category (Cat) that takes a group G to the category BG of G-torsors (where
a group G is regarded as a topological group with the discrete topology).

Definition B.24. If F and G are pseudofunctors from C to D, a pseudonatural

transformation α from F to G consists of

(1) For each object X in C, a morphism αX : F (X)→ G(X) in D.
(2) For each morphism f : X → Y in C, a 2-isomorphism

τf = ταf : G(f) ◦ αX
∼
⇒ αY ◦ F (f)

in D. This is displayed in the diagram

F (X)
F (f)

//

αX

��
����
@Hτf

F (Y )

αY

��
G(X)

G(f)
// G(Y )

These must satisfy:

(a) For morphisms f : X → Y , g : Y → Z of C, we have an equality

(1αZ
∗ γFf,g) ◦ τgf = (τg ∗ 1F (f)) ◦ (1G(g) ∗ τf ) ◦ (γGf,g ∗ 1αX

)
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of 2-morphisms from G(gf) ◦ αX to αZ ◦ F (g) ◦ F (f):

G(g ◦ f) ◦ αX

τgf

��

γG
f,g +3 G(g) ◦G(f) ◦ αX

τf +3 G(g) ◦ αY ◦ F (f)

τg

��
αZ ◦ F (g ◦ f)

γF
f,g

+3 αZ ◦ F (g) ◦ F (f)

(b) For any object X of C, we have the equality

(1αX
∗ δFX) ◦ τ1X

= δGX ∗ 1αX

of 2-morphisms from G(1X) ◦ αX to αX ◦ 1F (X) = αX = 1G(X) ◦ αX :

G(1X) ◦ αX
δG
X +3

τ1X

��

1G(X) ◦ αX

αX ◦ F (1X)
δF
X

+3 αX ◦ 1F (X)

(c) For f, g : X → Y , and a 2-morphism ρ : f ⇒ g in C, we have the equality

τg ◦ (G(ρ) ∗ 1αX
) = (1αY

∗ F (ρ)) ◦ τf

of 2-morphisms from G(f) ◦ αX to αY ◦ F (g):

G(f) ◦ αX
τf +3

G(ρ)
��

αY ◦ F (f)

F (ρ)
��

G(g) ◦ αX τg
+3 αY ◦ F (g)

Exercise B.47. If F ,G,H are pseudofunctors from C to D, one can compose pseudo-
natural transformations α from F to G and β from G to H to get a pseudonatural
transformation β ◦ α from F to H . This is defined by setting (β ◦ α)X = βX ◦ αX and

τβ◦αf = (1βY
∗ ταf ) ◦ (τβf ∗ 1αX

). Show that this composition is associative, and has iden-
tities, so that the pseudofunctors from C to D and the pseudonatural transformations
between them form the objects and morphisms of a category.

Definition B.25. Suppose C and D are 2-categories, F and G are pseudofunctors
from C to D, and α and β are pseudonatural transformations from F to G. A modifi-

cation Θ from α to β assigns to each object X of C a 2-morphism ΘX : αX ⇒ βX :

F (X)

αX ++

βX

33
�� ��
�� ΘX G(X).

This must satisfy the property that for any morphisms f, g : X → Y and 2-morphism
ρ : f ⇒ g in C, we have the equality

(ΘY ∗ F (ρ)) ◦ ταf = τβg ◦ (G(ρ) ∗ΘX)
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of 2-morphisms from G(f) ◦ αX to βY ◦ F (g):

G(f) ◦ αX
G(ρ)∗ΘX+3

τα
f

��

G(g) ◦ βX

τ
β
g

��
αY ◦ F (f)

ΘY ∗F (ρ)
+3 βY ◦ F (g)

We write Θ: α ⇛ β to indicate that Θ is a modification from α to β. We call a
modification an isomodification if each ΘX is a 2-isomorphism. In this case we write

Θ: α
∼

⇛ β.

Note that each of the conditions on pseudofunctors, pseudonatural transformations,
and modifications is stated as an equality of 2-morphisms.

Exercise B.48. Show that the property of a modification in Definition B.25 follows
from the property

(ΘY ∗ 1F (f)) ◦ τ
α
f = τβf ◦ (1G(f) ∗ΘX)

for any morphism f : X → Y in C.

Exercise B.49. If Θ: α ⇛ β and Ξ: β ⇛ γ, with α, β, and γ pseudonatural
transformations from F to G, there is a modification Ξ◦Θ: α ⇛ γ, defined by (Ξ◦Θ)X =
ΞX ◦ΘX . If Θ: α ⇛ α′, with α, α′ : F ⇒ G, and Ξ: β ⇛ β ′, with β, β ′ : G⇒ H , there
is a modification Ξ ∗ Θ: β ◦ α ⇛ β ′ ◦ α′, defined by (Ξ ∗ Θ)X = ΞX ∗ ΘX . For fixed
2-categories C and D, these operations, together with those of Exercise B.47, make the
pseudofunctors from C to D into the objects of a 2-category PSFUN(C,D), with arrows
given by pseudonatural transformations, and 2-cells given by modifications.

When α and β are 2-natural transformations between 2-functors F and G, the
condition on a modification simplifies to the equation ΘY ∗ F (ρ) = G(ρ) ∗ΘX .

Exercise B.50. (∗) Given modifications Θ: α ⇛ α′ and Ξ: β ⇛ β ′ between 2-
natural transformations α, α′ : F ⇒ F ′, β, β ′ : G ⇒ G′, with 2-functors F, F ′ : C → D,
G,G′ : D → E , define a modification Ξ ⋄Θ: β ∗ α ⇛ β ′ ∗ α′ by the formula

(Ξ ⋄Θ)X = G′(ΘX) ∗ ΞF (X) = ΞF ′(X) ∗G(ΘX).

Show that 2-categories, 2-functors, 2-natural transformations, and modifications form
the objects, arrows, 2-cells, and 3-cells of a 3-category: in addition to the underlying
2-category structure formed by the objects, arrows, and 2-cells, the three operations ◦,
∗, and ⋄ on 3-cells satisfy the following associativity, exchange, and unity identities:7

(a) Γ◦ (Ξ◦Θ) = (Γ◦Ξ)◦Θ, Γ∗ (Ξ∗Θ) = (Γ∗Ξ)∗Θ, and Γ⋄ (Ξ⋄Θ) = (Γ⋄Ξ)⋄Θ;
(b) (Ξ′ ◦Ξ) ∗ (Θ′ ◦Θ) = (Ξ′ ∗Θ′) ◦ (Ξ ∗Θ), (Ξ′ ∗Ξ) ⋄ (Θ′ ∗Θ) = (Ξ′ ⋄Θ′) ∗ (Ξ ⋄Θ),

(Ξ′ ◦ Ξ) ⋄ (Θ′ ◦Θ) = (Ξ′ ⋄Θ′) ◦ (Ξ ⋄Θ);

7In each identity it is assumed that one, and hence the other, side of the equation is defined.
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(c) each 2-cell α has an identity 3-cell 1α : α ⇛ α, and the following identities are
satisfied: 1β ∗ 1α = 1β◦α when β ◦ α is defined; 1β ⋄ 1α = 1β∗α when β ∗ α is
defined; in addition, if Θ: α ⇛ β, α, β : f ⇒ g, f, g : X → Y , then

Θ ◦ 1α = Θ = 1β ◦Θ,Θ ∗ 11f
= Θ = 11g

∗Θ,Θ ⋄ 111X
= Θ = 111Y

⋄Θ.

A formal definition of 3-categories (equivalent to that in the preceding exercise) can
be found in [12], §7.3, but note that 2-categories, pseudofunctors, and pseudonatural
transformations, and modifications do not form a 3-category, only something weaker
called a (Gray) tricategory [32]. In fact, in contrast with Exercise B.36, 2-categories,
pseudofunctors, and pseudonatural transformations do not form a 2-category. In any
case, we have will have no need for the formalism of 3-categories.

Note that a 2-functor F is just a pseudofunctor for which the associated 2-
isomorphisms γFf,g and δFX are identities. A 2-natural transformation α : F ⇒ G be-
tween 2-functors is a pseudonatural transformation such that ταf is an identity for all
morphisms f .

Exercise B.51. For fixed 2-categories C and D, the 2-functors, 2-natural transfor-
mations, and modifications determine a sub-2-category 2-FUN(C,D) of the 2-category
PSFUN(C,D).

Exercise B.52. For any 2-category C, construct a 2-functor

C → 2-FUN(Cop, (Cat)).

The following theorem gives the notion of “isomorphism” between 2-categories that
one is likely to meet in practice.

Theorem B.26. Let F : C → D be a pseudofunctor between 2-categories. The
following are equivalent:

(1) (i) Every object of D is 2-isomorphic to an object of the form F (P ) for some
object P in C; (ii) For any objects P and Q in C, every morphism from F (P ) to F (Q)
is 2-isomorphic to a morphism of the form F (a), for some morphism a : P → Q in C;
(iii) For morphisms a and b from P to Q in C, any 2-morphism from F (a) to F (b) has
the form F (ρ) for a unique 2-morphism ρ : a⇒ b in C.

(2) There is a pseudofunctor G : D → C, together with four pseudonatural transfor-
mations:

α : G ◦ F ⇒ 1C, α′ : 1C ⇒ G ◦ F, β : F ◦G⇒ 1D, β ′ : 1D ⇒ F ◦G,

and four isomodifications:

Θ: 1FG
∼

⇛ β ′ ◦ β, Θ′ : 11D

∼

⇛ β ◦ β ′, Ξ: 1GF
∼

⇛ α′ ◦ α, Ξ′ : 11C

∼

⇛ α ◦ α′.

(3) As in (2), but with the additional identities:

1β ∗Θ = Θ′ ∗ 1β, 1β′ ∗Θ′ = Θ ∗ 1β′, 1α ∗ Ξ = Ξ′ ∗ 1α, 1α′ ∗ Ξ′ = Ξ ∗ 1α′.

(These are modifications from β to β ◦β ′ ◦β, from β ′ to β ′ ◦β ◦β ′, from α to α ◦α′ ◦α,
and from α′ to α′ ◦ α ◦ α′, respectively.)
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Note that conditions (ii) and (iii) of (1) say that every induced functor HOM(P,Q)→
HOM(F (P ), F (Q)) is a an equivalence of categories.

Proof. This is at least a folk theorem in 2-category theory, cf. [62, §2.2], but
since it is not easy to find a reference, we will sketch a proof. That (2) implies (1)
is quite straightforward. First we show that (2) implies (i) of (1). Since ΘY is a 2-
isomorphism 1FG(Y ) ⇒ β ′

Y ◦ βY and Θ′
Y is a 2-isomorphism 1Y ⇒ βY ◦ β

′
Y , it follows

that βY and β ′
Y are 2-equivalences, for any object Y of D. In particular, Y is 2-

isomorphic to F (G(Y )). Note, similarly, that αX and α′
X are 2-equivalences, for any

object X of C. Now we show the remainder of (2) ⇒ (1), namely, that every functor
HOM(P,Q) → HOM(F (P ), F (Q)) determined by F is an equivalence of categories.
Following this by the functor HOM(F (P ), F (Q))→ HOM(GF (P ), GF (Q)) induced by
G, and then by the functors

HOM(GF (P ), GF (Q))
(α′

P )
GF (Q)
−→ HOM(P,GF (Q))

(αQ)P

−→ HOM(P,Q),

each of which is an equivalence of categories by Proposition B.10 and Exercise B.31,
one obtains a functor from HOM(P,Q) to itself. A natural isomorphism of this functor
with the identity functor is given by sending f : P → Q to

αQ ◦GF (f) ◦ α′
P

τα′

f
⇒ αQ ◦ α

′
Q ◦ f

Ξ′

Q
−1

⇒ 1Q ◦ f = f ;

the naturality is proved by a use of property (c) for the pseudonatural transformation
α′. It follows that HOM(P,Q) → HOM(F (P ), F (Q)) is full and faithful, and, by the
same applied to G, that HOM(F (P ), F (Q)) → HOM(GF (P ), GF (Q)) is also full and
faithful; it then follows from Exercise B.9 that each of them must also be an equivalence
of categories.

We will show how to use (1) to construct all the data needed for (3). Then 25
identities among 2-isomorphisms must be verified to prove (3): 7 to prove that G is a
pseudofunctor, 3 each to prove that α, α′, β, and β ′ are pseudonatural transformations,
4 to verify that Θ, Θ′, Ξ, and Ξ′ are modifications, and 4 for the last conditions stated
in (3). A few of these identities will be immediate from the construction, but most
require – at least without a more sophisticated categorical language – tracing around
rather large diagrams in various HOM categories. The key that makes it all work is a
careful use of Proposition B.10.

For each object X of D, use (i) and Proposition B.10 to choose an object G(X)
in C together with morphisms βX : F (G(X)) → X and β ′

X : X → F (G(X)), and with

2-isomorphisms ΘX : 1FG(X)
∼
⇒ β ′

X ◦ βX and Θ′
X : 1X

∼
⇒ βX ◦ β

′
X , such that the two

conditions

1βX
∗ΘX = Θ′

X ∗ 1βX
and 1β′

X
∗Θ′

X = ΘX ∗ 1β′

X

are satisfied. For each morphism f : X → Y in D, use (ii) to choose a morphism

G(f) : G(X)→ G(Y ) in C, together with a 2-isomorphism λf : F (G(f))
∼
⇒ β ′

Y ◦ f ◦ βX .

Now for morphisms X
f
→ Y

g
→ Z in D, use (iii) to define γGf,g : G(g ◦ f)

∼
⇒ G(g) ◦G(f),
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by requiring F (γGf,g) to make the following diagram commute:

FG(g ◦ f)
F (γG

f,g
)

+3

λgf

��

F (G(g) ◦G(f))
γF

G(f),G(g)+3 FG(g) ◦ FG(f)

λg∗λf

��
β ′
Z ◦ g ◦ f ◦ βX β ′

Z ◦ g ◦ 1Y ◦ f ◦ βX
Θ′

Y

+3 β ′
Z ◦ g ◦ βY ◦ β

′
Y ◦ f ◦ βX

For each object X in D, define δGX : G(1X)
∼
⇒ 1G(X) by requiring F (δGX) to make the

following diagram commute:

FG(1X)
F (δG

X)
+3

λ1X

��

F (1G(X))

δF
G(X)

��
β ′
X ◦ βX 1FG(X)

ΘX

ks

For f : X → Y in D, define τβf : f ◦ βX
∼
⇒ βY ◦ FG(f) and τβ

′

f : FG(f) ◦ β ′
X

∼
⇒ β ′

Y ◦ f
to make the following diagrams commute:

f ◦ βX
τ

β
f +3 βY ◦ FG(f)

λf

��

FG(f) ◦ β ′
X

τ
β′

f +3

λf

��

β ′
Y ◦ f

1Y ◦ f ◦ βX
Θ′

Y

+3 βY ◦ β
′
Y ◦ f ◦ βX β ′

Y ◦ f ◦ βX ◦ β
′
X β ′

Y ◦ f ◦ 1X
Θ′

X

ks

For each object P in C, use (ii) to choose a morphism αP : GF (P )→ P , together with

a 2-isomorphism µP : F (αP )
∼
⇒ βF (P ). For each morphism a : P → Q in C, ταa : a◦αP

∼
⇒

αQ ◦GF (a) is determined so F (ταa ) makes

F (a ◦ αP )
F (τα

a )
+3

γF
αP ,a

��

F (αQ ◦GF (a))
γF

GF (a),αQ +3 F (αQ) ◦ FGF (a)

µQ

��

F (a) ◦ F (αP )
µP

+3 F (a) ◦ βF (P )
τ

β

F (a)

+3 βF (Q) ◦ FGF (a)

commute. Similarly choose α′
P : P → GF (P ) with µ′

P : F (α′
P )

∼
⇒ β ′

F (P ), and determine

τα
′

a : GF (a) ◦ α′
P

∼
⇒ α′

Q ◦ a so F (τα
′

a ) makes

F (GF (a) ◦ α′
P )

F (τα′

a )
+3

γF
α′

P
,GF (a)

��

F (α′
Q ◦ a)

γF
a,α′

Q +3 F (α′
Q) ◦ F (a)

µ′Q
��

FGF (a) ◦ F (α′
P )

µ′
P

+3 FGF (a) ◦ β ′
F (P )

τ
β′

F (a)

+3 β ′
F (Q) ◦ F (a)
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commute. For f, g : X → Y , and ρ : f ⇒ g in D, define G(ρ) : G(f) ⇒ G(g) by
requiring that F (G(ρ)) makes the diagram

FG(f)
F (G(ρ))

+3

λf

��

FG(g)

λf

��
β ′
Y ◦ f ◦ βX ρ

+3 β ′
Y ◦ g ◦ βX

commute. Finally, define, for each object P in C, 2-isomorphisms ΞP : 1GF (P )
∼
⇒ α′

P ◦αP
and Ξ′

P : 1P
∼
⇒ αP ◦ α

′
P , determined by the commutativity of the diagrams

F (1GF (P ))
F (ΞP )

+3

δF
GF (P )

��

F (α′
P ◦ αP )

γF
αP ,α′

P+3 F (α′
P ) ◦ F (αP )

µ′
P
∗µP

��
1FGF (P )

ΘF (P )

+3 β ′
F (P ) ◦ βF (P )

and

F (1P )
F (Ξ′

P
)
+3

δF
P

��

F (αP ◦ α
′
P )

γF
α′

P
,αP+3 F (αP ) ◦ F (α′

P )

µP ∗µ′
P

��
1F (P )

Θ′

F (P )

+3 βF (P ) ◦ β
′
F (P )

This completes the construction of the data. To prove each of the required iden-
tities, one writes it as a diagram, in which the maps are 2-isomorphisms between two
morphisms, usually in C, that should commute. By the faithfulness of F on the HOM
categories, it suffices to prove this after applying F . One then uses the diagrams just
constructed to see what this means, obtaining a large diagram that should commute.
Finally, one finds a way to subdivide this large diagram into smaller diagrams that
commute by properties of F and properties of 2-categories, especially the exchange
property. �

Exercise B.53. Complete the proof of this proposition.

Definition B.27. A pseudofunctor F : C → D is a pseudoequivalence if it sat-
isfies the equivalent conditions of the proposition.

Exercise B.54. Show that the composite of two pseudoequivalences is a pseudo-
equivalence. Being pseudoequivalent is therefore an equivalence relation on 2-categories.

There are several generalizations of these notions and results. The conditions on
pseudofunctors F and pseudonatural transformations α can be weakened, by allowing
the associated γFf,g, δ

F
X , and ταf (or sometimes their inverses) to be only 2-morphisms, not

2-isomorphisms. Such are called lax functors and lax natural transformations. There is
also a notion of a bicategory, in which the associativity equality γ◦(β◦α) = (γ◦β)◦α of
morphisms is replaced by a 2-isomorphism, and similarly for the equalities f = f ◦1X =
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1Y ◦ f for a morphism f : X → Y . (In a bicategory, each HOM(X, Y ) is a category,
but removing the 2-cells from a bicategory does not leave a category.) Theorem B.26
generalizes to the setting of bicategories, cf. [62]. Bicategories, 3-categories, and lax
notions are discussed in [12, §7].

5. Two remarks on set theory

The reader will have noticed that our discussion of categories is framed entirely in
the language of “naive set theory” — indeed, sets were not mentioned at all, except
in examples. In naive set theory, a set is prescribed by knowing the elements in the
set. In this sense, the objects and morphisms of a category (and the 2-morphisms of a
2-category) form sets, since these objects, morphisms (and 2-morphisms) are assumed
to be precisely defined. Thus a category is a permissible object in a category, since we
know what a category is, and so we have the category (Cat) of categories, which is a
2-category (cf. B.8). And, of course, this leads to Bertrand Russell’s famous paradox
about the set of all sets.

This problem is not particular to stacks, and those who have made peace with this
problem in other areas need not fret about it when studying stacks.8 The fact that
category theory plays a prominent role in the study of stacks, however, brings these
problems closer to the surface. And, just as going from objects to categories causes
the problem about the set of all sets, going from ordinary categories to 2-categories
increases the difficulty. Our aim in this section is to discuss these problems briefly,
and point out how to get around them. In this setting, one is not working with sets
as collections of well-defined objects, but within an axiomatic set theory, usually taken
today to be Zermelo-Fraenkel theory. We also discuss our use of the axiom of choice.

5.1. Categories. We have the need to consider three basic types of set-theoretic
structures: sets, categories and 2-categories. If we would like to consider the category
of all sets, for example, it is clear that categories cannot be sets. Similarly, if we need to
consider the 2-category of all categories, then 2-categories cannot be categories. In spite
of Russell’s paradox, we would like to do all usual set-theoretic operations (products,
disjoint unions, power sets etc.) not only with sets, but also with categories (less so
with 2-categories). For this it is necessary to introduce some set-theoretic hierarchy.

We may require all sets to be sets in the usual sense, i.e., the sets given by the
axioms of Zermelo-Fraenkel. Then we postulate the existence of classes and require
categories to be classes. More precisely, the collection of all morphisms in a category
is required to be a class — after all, a category can be thought of as its collection of
morphisms with a partially defined binary operation, the objects are then defined in
terms of the identity morphisms. We require classes to satisfy the same list of axioms as
sets. Besides the existence of sets and classes, we moreover postulate the existence of 2-
classes and require 2-categories to be 2-classes; note that 2-categories may be identified
with their collection of 2-arrows.

8We quote the footnote on the first page of the revised version [EGA I′]: “Nous considérons les
catégories d’un point de vue ‘naif’, comme s’il s’agissait d’ensembles et renvoyons à SGA, 4, I pour les
questions de logique liées à la théorie des catégories, et la justification du langage que nous utilisons.”
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Alternatively, (more precisely?) the required set-theoretic hierarchy may be intro-
duced via the theory of universes, cf. [65], §I.6, and [SGA4] §I. One postulates the
existence of three universes, U0, U1 and U2 and requires that U0 ∈ U1 ∈ U2. Recall that
all universes are actually sets (and thus consist of sets). We then use all sets in U0 as
sets, all sets in U1 as classes and all sets in U2 as 2-classes. In other words, we require
all sets (as the term is used in the book) to be in U0, all categories to be in U1 and all
2-categories to be in U2. If a category happens to be in U0, we call it small.

For many applications this notion of small is too restrictive. We find much more
useful the notion of essential smallness. A category is called essentially small if its
collection of isomorphism classes (i.e. its collection of objects up to isomorphism) is in
U0, i.e. is a set. When fibered categories are introduced, one can require the fibers to
be essentially small. These and the other groupoids that appear can be taken to be
essentially small.

We will not mention these set-theoretic issues in the main body of the book. The
reader who thinks in this language is invited to check that none of our constructions
with categories leave the universe U1, and that every time we construct a set from a
category we obtain a set in U0.

5.2. The axiom of choice. The only essential way in which we use the axiom of
choice is the following: we want a functor which is faithful, full, and essentially surjective
to have an inverse (a functor in the other direction such that both compositions are
naturally isomorphic to the identities). This is important because the natural notion
of isomorphism between stacks is expressed by such an equivalence. Note that this
actually uses the axiom of choice for classes of sets. This use of the axiom of choice can
be avoided if one understands that whenever we call two categories C1 and C2 equivalent
, this means that there exists a chain of categories and equivalences

C1 ←− D1 −→ D2 ←− . . .←− Dn −→ C2 .

In effect, this amounts to localizing the 2-category of categories at the equivalences
(For a discussion of similar localizations, see [28]). We prefer not to do this, but rather
assume that all equivalences have inverses. In view of these remarks, this use of the
axiom of choice may be viewed as merely a device of notational convenience.

We also remark that even though many general statements in the book formally
require the axiom of choice for their validity, in any specific application one usually has
more or less canonical choices at one’s disposal. For example, the fibered product of
schemes may be constructed in a canonical way, cf. [EGA I]; we do not need the axiom
of choice to pick an object satisfying the universal mapping property of fibered product.
Similarly, the construction of quotient sheaves can be carried out in a canonical way by
sheafifying (using an explicit sheafification construction) a given quotient presheaf.

In short, the reader can choose whatever set-theoretic foundations he or she is
comfortable with: we do not discuss them in the text. As with other areas of algebra
or geometry, the notions and theorems about stacks change very little with changes in
logical foundations.
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Answers to Exercises

B.1. If f ◦ a = f for all f , and b ◦ g = g for all g, then a = b ◦ a = b.

B.2. (1) If g ◦ f = 1X and f ◦ h = 1Y , then g = g ◦ 1Y = g ◦ (f ◦ h) = (g ◦ f) ◦ h =
1X ◦ h = h. (2) follows similarly from associativity.

B.7. For ⇒, given G, θ, and η, a morphism f : F (P ) → F (Q) has uniquely the
form f = F (a), where a : P → Q is given by a = θQ ◦ G(f) ◦ θ−1

P . For any object X
in D, the isomorphism ηX : FG(X)→ X shows that F is essentially surjective. Details
can be found in [65, §IV.4].

B.8. This is exactly what the proof of the proposition produces.

B.10. Take X ×Z Y = {(x, y) ∈ X × Y | s(x) = t(y)}, with the induced topology
in the topological case.

B.13. A natural transformation θ from hX to H assigns to every object S of C a
mapping θS from hX(S) to H(S). Applied to S = X, one gets ζ as θX(1X). For any S
and g : S → X, θS(g) = θS(hX(g)(1X)) = H(g)(θX(1X)) = H(g)(ζ), so θ is determined
by ζ .

B.18. Both parts follow readily from the exchange property.

B.19. By (1) of the preceding exercise, (θ ∗ 1h) ◦ (11X
∗ θ) = (1h ∗ θ) ◦ (θ ∗ 11X

).
Since 11X

∗ θ = θ ∗ 11X
= θ is invertible, the required equation follows.

B.25. Given α from (ϕ,Φ) to (ψ,Ψ) and β from (ψ,Ψ) to (ω,Ω), define β◦α : U ′ →
R to be the composite

U ′ (α,β)
−→ R t×s R

m
−→ R.

Given (ϕ′,Φ′) and (ψ′,Ψ′) from R′′ ⇉ U ′′ to R′ ⇉ U ′, and a 2-morphism β from (ϕ′,Φ′)
to (ψ′,Ψ′), define α ∗ β : U ′′ → R to be the composite

U ′′ (Φβ,αψ′)
−→ R t×s R

m
−→ R

(which is equal to m ◦ (αϕ′,Ψβ)).

B.30. In (3), the fact that σS is a natural transformation follows from the exchange
property: given ρ : h⇒ h′, (1g ∗ ρ) ◦ (σ ∗ 1h) = (σ ∗ 1h′) ◦ (1f ∗ ρ).

B.31. That (1) implies (5) and (7) implies (2) are similar to the proofs that (1)
implies (3) and (4) implies (2). To see that (7) implies (1), the essential surjectivity of

fY , applied to 1Y , provides a g : Y → X and a 2-isomorphism f ◦g
∼
⇒ 1Y ; fX essentially

surjective, applied to 1X , provides a g′ : Y → X and a 2-isomorphism f ◦ g′
∼
⇒ 1X . The

equivalence of (2), (8), (9) and (10) is seen by taking η and ψ to be inverses of each
other, and taking θ and φ to be inverses of each other.

B.34. If H : X × [0, 1] → Y is a homotopy, define a 2-morphism by the mapping
from π(X)0 to π(Y )1 that sends a point x in X to the path t 7→ H(x, t) in Y .
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B.43. That the diagrams commute follows from several applications of the exchange
property, together with the identity (1p ∗ ǫ

p) ◦ (ηp ∗ 1p) = 1p for the first diagram,
(ǫq ∗ 1q′) ◦ (1q′ ∗ η

q) = 1q′ for the second, and (1f ∗ ǫ
f) ◦ (ηf ∗ 1f) = 1f for the third. For

(2), consider the diagram

p′ ◦ f p′ ◦ 1Z ◦ f
ηf

+3 p′ ◦ f ◦ f ′ ◦ f

cα

��

ǫf +3 p′ ◦ f ◦ 1X

cα

��

p′ ◦ f

cα

��
1Y ◦ p

′ ◦ f
ηg

+3 g ◦ g′ ◦ p′ ◦ f
α′

+3 g ◦ q′ ◦ f ′ ◦ f
ǫf

+3 g ◦ q′ ◦ 1X g ◦ q′

The left rectangle commutes by the commutativity of the first diagram in (1), and the
other squares commute by the exchange property. The map along the top is the identity
on p′ ◦ f , by the defining property of (f, f ′, ηf , ǫf ). The assertions of (3) follow from
the other two commutative diagrams of (1).

B.35. If K : X×[0, 1]×[0, 1]→ Y gives an equivalence from the homotopy H to H ′,
then θK , defined by θK(σ)(t1, . . . , tn+2) = K(σ(t3, . . . , tn+2), t2, t1) gives an equivalence
from αH to αH′ . If f , g, and h map X to Y , and H1 is a homotopy from f to g, and
H2 is a homotopy from g to h, then θK defines an equivalence between αH2 ◦ αH1 and
αH2◦H1 , where K is defined by the formula K(x, s, t) = H1(x, s + 2t) if s+ 2t ≤ 1, and
K(x, s, t) = H2(x, (s+ 2t− 1)/(s+ 1)) if s+ 2t ≥ 1.

B.44. These are proved with several applications of the exchange property, as well
as the identity (1q ∗ ǫ

q) ◦ (ηq ∗ 1q) = 1q (for (1)).

B.46. This takes a homomorphism f : G → H to the functor B(f) : BG → BH
that takes a (right) G torsor E to the H-torsor E×fH = E×H/{(v ·x, y) ∼ (v, f(x)y)}.
If also g : H → K, γBf,g takes E to the isomorphism from E ×gf K to (E ×f H) ×g K

that takes (v, z) to ((v, 1), z), and δBG takes E to the isomorphism from E ×id G to
E that takes (v, x) to v · x. If a in H gives a 2-morphism from f to g, for f and g
homomorphisms from G to H , then B(a) is the natural transformation from B(f) to
B(g) that takes a G-torsor E to the map E ×f H to E ×g H , (v, y) 7→ (v, a−1y).

B.48. Use property (c) for β, together with the exchange property.

B.53. We will carry this out in one typical case, proving the first half of the pseud-
ofunctor property (b) for G, with its associated 2-isomorphisms γGf,g and δGX . That is,
we show that the diagram

G(f) G(f) ◦ 1G(X)

G(f ◦ 1X)
γG
1X,f

+3 G(f) ◦G(1X)

δG
X

KS
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commutes. Applying F , one needs the upper left square in the diagram

FG(f) F (G(f) ◦ 1G(X))
γF
1G(X),G(f)

+3 FG(f) ◦ F (1G(X))
δF
G(X) +3 FG(f) ◦ 1FG(X)

ΘX

��
FG(f ◦ 1X)

F (γG
1X ,f

)

+3

λf

��

F (G(f) ◦G(1X))

F (1G(f)∗δ
G
X

)

KS

γF
G(1X ),G(f)

+3 FG(f) ◦ FG(1X)

F (δG
X

)

KS

λ1X

+3

λf∗λ1X

��

FG(f) ◦ β ′
X ◦ βX

λfpx iiiiiiiiiiiiiii

iiiiiiiiiiiiiii

β ′
Y ◦ f ◦ βX β ′

Y ◦ f ◦ 1X ◦ βX
Θ′

X

+3 β ′
Y ◦ f ◦ βX ◦ β

′
X ◦ βX

to commute. The upper center square commutes by property (d) for F ; the upper right
square commutes by the definition of γGX ; the lower right triangle commutes by the
exchange property (e) for 2-categories. So we are reduced to showing that the outside
diagram commutes. For this we fill in the diagram differently:

FG(f) F (G(f) ◦ 1G(X))
γF
1G(X),G(f)

+3 FG(f) ◦ F (1G(X))

δF
G(X)

��

FG(f)

λf

��

FG(f) ◦ 1FG(X)

λf

��

ΘX +3 FG(f) ◦ β ′
X ◦ βX

λf

��
β ′
Y ◦ f ◦ βX β ′

Y ◦ f ◦ βX ◦ 1FG(X)
ΘX

+3 β ′
Y ◦ f ◦ βX ◦ β

′
X ◦ βX

β ′
Y ◦ f ◦ 1X ◦ βX

Θ′

X

+3 β ′
Y ◦ f ◦ βX ◦ β

′
X ◦ βX

The top square commutes by property (b) for F ; the next square down commutes by
property (c) of a 2-category; the one to its right commutes by the exchange property
(e). Finally, the lower rectangle commutes by the key property that

βX βX ◦ 1FG(X)

ΘX

��
1X ◦ βX

Θ′

X

+3 βX ◦ β
′
X ◦ βX

commutes. Most of the other verifications are similar to this.


