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CHAPTER 4

Stacks and Stackification

In this chapter we will endow our base category S with an additional structure, a
Grothendieck topology. Using Grothendieck topologies it makes sense to speak of sheaves
over a category. To a topological space, for instance, one associates the category of all
open sets with inclusion maps. A sheaf over a topological space is given in terms of
this category. Reflecting upon the definition of sheaves, one discovers that the essential
notion needed to write down what a sheaf is, is that of a covering family. For the
category associated with a topological space, these are just families of inclusions that
cover the image.

Several of our examples drawn from algebraic geometry have illustrated the short-
comings of the usual Zariski topology. For many groupsG (e.g., finite groups), G-torsors
are almost never locally trivial for the Zariski topology. When we encountered modular
families of elliptic curves and noted the property that every family can be analytically
locally obtained from these by pullback, it was shown by example that this statement
is no longer true in the algebraic setting if we use the Zariski topology. What works in
both of these cases is to interpret “locally” to mean locally for the étale topology, which
is a Grothendieck topology. For the formal definition of a Grothendieck topology see
the Glossary.

A category endowed with a Grothendieck topology is called a site. Thus it makes
sense to speak of sheaves on a site. We use the topology on S to define what it means for
a CFG over S to be a stack. In fact, there will be two stack axioms. If a CFG satisfies
only the first it is called a prestack. If the CFG is that associated with a presheaf as
in Example 2.4, then the stack axioms reduce to the sheaf axioms. In this way, stacks
appear as generalizations of sheaves.

In our “key case”, where S is the category of schemes over the base scheme Λ, we
put the étale topology on S. In this topology a family of maps {Ui → S} is a covering
family if all structure maps Ui → S are étale and

∐
i Ui → S is surjective.

1. The stack axioms

Definition 4.1. A site is a category together with a Grothendieck topology. When
the choice of Grothendieck topology on a category S is understood, we will often omit
explicit mention of it and refer, e.g., to a CFG over a site S.

Let X → S be a CFG over a site S. The key case is that of S being the category of
schemes over Λ with the étale topology, where Λ a fixed base scheme. The reader may
consider only this case at a first reading. Another good example to keep in mind is the
category of open subsets of a topological space, and inclusions of open subsets.
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62 Stacks and Stackification

Let x and y be objects of X over the same object S of S. Recall, if T is any scheme
over S, with structural map f : T → S, there are pullbacks f ∗(x) and f ∗(y), each
defined up to canonical isomorphism. We define a presheaf IsomX(x, y) by setting

IsomX(x, y)(T ) = {isomorphisms from f ∗(x) to f ∗(y) in XT}.

Because this is defined for T equipped with a structural map to S, it is a presheaf
on the category S. (More common notation, in this context, would be S/S, the slice
category of schemes over S.) The definition appears to depend on choices of pullbacks
f ∗(x) and f ∗(y), but if x̄ and ȳ denote other choices of pullbacks, then using the
canonical isomorphisms x̄ ∼= f ∗(x) and ȳ ∼= f ∗(y) we can canonically identify the set
of isomorphisms x̄ → ȳ with the set of isomorphisms f ∗(x) → f ∗(y). To be a presheaf
means there are restriction maps: given g : T ′ → S and a morphism h : T ′ → T such
that g = f◦h, then there is a unique morphism ψ : g∗(x) → g∗(y) in XU whose composite

with g∗(y) → f ∗(y) is equal to the composite g∗(x) → f ∗(x)
ϕ
→ f ∗(y) for some given

ϕ ∈ IsomX(x, y)(T ). Then h∗(ϕ) is this morphism ψ.
The category S inherits a Grothendieck topology from S, in which a set of mor-

phisms in S is deemed a covering family if the collection of underlying morphisms of
schemes in S is a covering family. The first of the stack axioms is that this presheaf is
a sheaf for this inherited topology.
Axiom 1. If {Tα → T} is a covering family in the category of schemes over S, then

IsomX(x, y)(T ) →
∏

α

IsomX(x, y)(Tα) ⇉
∏

α,β

IsomX(x, y)(Tα ×T Tβ)

is an exact sequence of sets.1

Definition 4.2. A CFG X which satisfies Axiom 1 (for every object S of S and
pair of objects x and y of X over S) is called a prestack.

Let us verify Axiom 1 in some of our examples. For Mg, given two families π : C → S
and π′ : C ′ → S, and given T → S, then IsomMg

(π, π′)(T ) is the set of isomorphisms
T×SC → T×SC

′ over T . Let {Tα → T} be a covering family. Let {Tα×SC → Tα×SC
′}

be isomorphisms. The condition to pull back by either projection to the same element
of IsomMg

(π, π′)(Tα ×T Tβ) for every α and β is equivalent to the equality of the two
composite morphisms, involving the two projections:

∐

α,β

Tα ×T Tβ ×S C ⇉
∐

α

Tα ×S C → T ×S C
′.

By descent for morphisms to a scheme (Proposition A.13), this condition implies there
is a unique morphism T ×S C → T ×S C

′ whose composite with
∐
Tα ×S C → T ×S C

is that indicated above. This morphism is an isomorphism because it becomes an
isomorphism after faithfully flat base change (by [EGA IV.2.7.1]).

To verify that BG is a prestack, we use descent for morphisms as above to prove the
existence of an isomorphism given one locally. It remains to see that it is G-equivariant,

1A sequence of sets A → B ⇉ C is exact if A is mapped bijectively onto the set of elements in B

which have the same image in C by the two maps from B to C.
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but this amounts to checking equalities of morphisms, and again we use descent for
morphisms (actually just the uniqueness part of descent for morphisms). The same
argument applies for Mg,n: we use descent for morphisms to produce the isomorphism,
and then the uniqueness assertion of descent for morphisms to check compatibilities of
the sections. Similar arguments apply for [X/G], Vn (vector bundles), Cn (n-sheeted
coverings) and the other variants of moduli stacks Mg, Mg,n, Mg,n(X, β).

The same kind of argument also applies to the CFG [R ⇉ U ]pre obtained from a
groupoid scheme R ⇉ U . In this CFG, we recall, a morphism is given by a map to R.
So, if R ⇉ U is any groupoid scheme, the CFG [R ⇉ U ]pre is a prestack.

2. Stacks

A prestack is a stack if it satisfies a descent-type hypothesis, to the effect that an
object can be constructed locally by gluing. We make use of projection maps p1 : Tα×T

Tβ → Tα and p2 : Tα×T Tβ → Tβ , or for T ′ → T , projection maps p1, p2 : T ′′ → T ′ where
T ′′ = T ′ ×T T

′.
Axiom 2. If {Tα → T} is a covering family, then given any collection of objects
tα over Tα and isomorphisms ϕαβ : p∗1tα → p∗2tβ over Tα ×T Tβ satisfying the cocycle
condition, there is an object x over T and for each α, an isomorphism λα : xα → tα,
where xα denotes a pullback to Tα. These isomorphisms are required to satisfy the
natural compatibility condition on Tα ×T Tβ.

The cocycle condition states that, with projections p12 : Tα×T Tβ ×T Tγ → Tα×T Tβ ,
etc., the diagram

p∗12p
∗
1tα

p∗12ϕαβ
// p∗12p

∗
2tβ p∗23p

∗
1tβ

p∗23ϕβγ

��

p∗13p
∗
1tα p∗13ϕαγ

// p∗13p
∗
2tγ p∗23p

∗
2tγ

commutes, where the equal signs denote canonical isomorphisms of pullbacks. The
natural compatibility condition on Tα ×T Tβ is the commutativity of the following
diagram

p∗1xα

p∗1λα
// p∗1tα

ϕαβ

��
p∗2xβ

p∗2λβ

// p∗2tβ

(again involving a canonical isomorphism of pullbacks denoted with an equal sign).

Definition 4.3. A CFG X is a stack if it satisfies both Axiom 1 and Axiom 2.

In Axiom 2, the tuple of objects xα, together with isomorphisms ϕαβ satisfying the
cocycle condition, is called a descent datum. If the conclusion of Axiom 2 holds,
we say the descent datum is effective. The condition in Axiom 2 can alternatively
be expressed by writing T ′ for the disjoint union of all the Tα, and then speaking of a
single object over T ′ and an isomorphism of its pullbacks to T ′′ = T ′×T T

′. In practice
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this gives an equivalent formulation of Axiom 2. But this involves two subtleties. First,
the disjoint union of the Tα is not required to exist in the category S. Second, if we
restate Axiom 2 using only one-element covering families, then there will be no provision
requiring a choice of objects ti over Ti, for some collection of i, to determine an object
over

∐
Ti. The category of schemes has arbitrary disjoint unions. The second issue is

avoided when the following hypothesis is satisfied.
Hypothesis. We suppose S is the category of schemes over Λ with the étale topology,
and X is a CFG which satisfies: for any collection of schemes Sα, if we set S =

∐
α Sα,

then some (or equivalently, any) choice of change of base functors XS → XSα
determines

an equivalence of categories

XS →
∏

α

XSα
.

(The product category, on the right, is the category whose objects are tuples of objects
in XSα

for each α, and whose morphisms are tuples of morphisms.)
Assuming the Hypothesis, Axiom 2 is equivalent to:

Axiom 2′. If f : T ′ → T is a covering map (meaning that {f} is a one-element covering
family), and x′ is any object over T ′, with isomorphism ϕ : p∗1x

′ → p∗2x
′ satisfying the

cocycle condition p∗23ϕ ◦ p∗12ϕ = p∗13ϕ, then there exists an object x over T and an
isomorphism f ∗x→ x′ over T ′ such that p∗2λ = ϕ ◦ p∗1λ.

The Hypothesis is satisfied by all of CFGs over schemes that we have seen as ex-
amples. An advantage of Axiom 2′ is that it nicely parallels many assertions from the
theory of descent (Appendix A). For instance, when G is an affine group scheme over
the base scheme Λ, then Axioms 1 and 2′ are implied by (a) and (b), respectively, of
Corollary A.16. This gives us the first of several examples of stacks that we now list:

(1) BG is a stack, for any affine group scheme G over Λ.
(2) X is a stack for any scheme X: Axioms 1 and 2 follow from descent for mor-

phisms to X.
(3) More generally, if X = h is the CFG associated to a presheaf h on S, then the

stack axioms for X are equivalent to the sheaf axioms.
(4) Combining the first two examples, the CFG [X/G] is a stack, for any affine

group scheme G acting on a scheme X, respectively.
(5) The following are stacks: Mg and Mg for g ≥ 2; Mg,n and Mg,n for 2g+n ≥ 3;

Mg,n(X, β). To show these are stacks, use Proposition A.18 to verify Axiom 2′,
applied to the relative dualizing sheaf of a family of (stable or smooth) curves;
the relative dualizing sheaf twisted by the sections; or twisted by the pullback
of an ample line bundle on the projective variety X.

(6) The CFG Vn is a stack by Proposition A.11. The CFG Sn is a stack by
Proposition A.12.

The hypothesis that G is an affine group scheme is a convenient one because it is
satisfied for the most common linear algebraic groups (GLn, PGLn, etc.), as well as for
finite groups. However the assertions can be generalized to the case G quasi-affine by
appealing to the more general descent result of Proposition A.17.



Stacks 65

Exercise 4.1. Which of the following CFGs are prestacks? Which are stacks? (a)
the CFG of families of (smooth) genus 0 curves. (b) The category of finite flat covers
E → S of degree d (for some integer d). (c) The CFG associated with the presheaf
whose sections on S are the isomorphism classes of families of elliptic curves over S.
(d) The category of projectivized vector bundles P(V ) → S.

If X, Y, and Z are stacks, and X → Z and Y → Z are morphisms, then the fiber
product X×Z Y is a stack. It is a matter of routine verification of axioms to show this.
E.g., a descent datum for X ×Z Y consists of a descent datum for X, a descent datum
for Y, and compatible isomorphisms in Z; by Axiom 2 for X and Y we produce objects
and by Axiom 1 for Z we produce an isomorphism, which taken together show that the
descent datum for X ×Z Y is effective.

Remark 4.4. The stack axioms for a CFG on a general site can be stated in
a way that avoids any reference to the presheaf IsomX(x, y). It will be convenient
to have these reformulations below, in §4.4. For Axiom 1, the CFG axioms let us
identify isomorphisms f ∗(x) → f ∗(y) in XT with morphisms f ∗(x) → y over f : T → S.
Moreover the axiom applies in case x is an object over T rather than over S (by applying
the axiom as stated to the objects x and f ∗(y) over T ). So the axiom is equivalent to:

For any f : T → S, objects y over S and t over T , covering family {Tα → T} and
morphisms tα → t over Tα → T , let tαβ → tα and tαβ → tβ be morphisms over the
respective projections from Tαβ := Tα×T Tβ such that the composite morphisms to t are
equal. Then, composition with tα → t induces a bijection between morphisms t → y
over f and tuples (tα → y)α over Tα → S such that the diagram

tαβ
//

��

tβ

��
tα // y

commutes, for every α and β.
There is also a restatement of Axiom 2. Pullbacks in a CFG are only determined up

to isomorphism, so there is no loss of generality in assuming every isomorphism ϕαβ in
the axiom to be the identity. This means objects tαβ are given, each with a morphism
to tα identifying tαβ with p∗1tα and a morphism to tβ identifying tαβ also with p∗2tβ. We
introduce Tαβγ := Tα ×T Tβ ×T Tγ. If tαβγ → tαβ is a morphism over p12 : Tαβγ → Tαβ ,
then the CFG axioms dictate a unique tαβγ → tβγ over p23 making a commutative
square with tβ. Axiom 2, restated, is that in the diagram

tαβγ

||yy
yy

y

""EE
EE

E



��
tαβ

�� ""EE
EE

EE
tαγ

yy

||yy

EE

""EE

tβγ

||yyyyy

��
tα tβ tγ

if the two curved arrows, defined to be the unique morphisms over p13 making the
left-hand square resp. right-hand square commutative, are equal (this is the cocycle
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condition), then there exists an object t over T and morphisms tα → t such that the
composites tαβ → tα → t and tαβ → tβ → t are equal, for every α and β.

3. Stacks from groupoid schemes

Given a groupoid scheme R ⇉ U , we saw that the associated CFG [R ⇉ U ]pre

is a prestack. For instance, Example 3.12 shows that [G ⇉ Λ]pre is equivalent to the
category of trivial G-torsors. However [R ⇉ U ]pre is not a stack in general. A general
G-torsor is only locally trivial, which means that Axiom 2 will most certainly fail.

Since G-torsors are a topic that is familiar to us, we know how to proceed in this
case. We enlarge the category to contain all the locally trivial G-torsors, and we obtain
the category BG which is a stack (at least, e.g., when G is an affine group scheme over
the base). In this section, we imitate this construction for a general groupoid scheme.
There will be a notion of (R ⇉ U)-torsor. This will be a stack when the groupoid
satisfies a hypothesis that allows a result from the theory of descent to be applied, akin
to requiring G to be affine (or at least quasi-affine) over the base scheme. We emphasize
that notion of (R ⇉ U)-torsor is supposed to be parallel to (and a generalization of)
the notion of G-torsor.

Consider the prestack [R ⇉ U ]pre. A descent datum, in the setting of Axiom 2′,
consists of a morphism ϕ : T ′ → U (object over T ′) and a morphism Φ: T ′′ → R
satisfying s◦Φ = ϕ◦p1 and t◦Φ = ϕ◦p2 (morphism from the pullback by p1 : T ′′ → T ′

to the pullback by p2 : T ′′ → T ′). This must satisfy the cocycle condition, and it can
be checked that this precisely says that (ϕ,Φ) is a morphism of groupoid schemes from
T ′′ → T ′ to R ⇉ U . One idea for producing a stack would be to enlarge the category
by admitting, as objects, any covering T ′ → T together with morphism of groupoid
schemes from T ′′ → T ′ to R ⇉ U . Then one faces the challenging task of describing
morphisms between objects, and compositions of morphisms (see Remark 4.25, below).
We choose a different approach, one which constrains the choice of T ′ → T . For
instance, in the case of the groupoid scheme G ⇉ Λ, the T ′ will have to be a G-torsor
E with projection to T . This means, then, that T ′′ can be canonically identified with
E × G (making the projections maps first projection pr1 and action a). The point is
that the resulting morphism of groupoid schemes

E ×G //

pr1
��

a

��

G

�� ��
E // Λ

yields a cartesian diagram when either the left-hand vertical maps or the right-hand
vertical maps are selected. In rough terms, the category of (R ⇉ U)-torsors will be the
category whose objects are pairs consisting of a morphism of schemes T ′ → T and a
morphism of groupoid schemes from T ′′ := T ′ ×T T

′ ⇉ T ′ to R ⇉ U , where the latter
is required to give rise to a cartesian diagram by selecting either the pair of source
maps or the pair of target maps. As in the case of G-torsors, a morphism over S → T
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will be a morphism S ′ → T ′ satisfying some compatibility properties (akin to the G-
equivariance requirement). Also as in the case of G-torsors, there will be an additional
local triviality requirement.

Definition 4.5. Consider a morphism (φ,Φ) of groupoid schemes from R′ ⇉ U ′

to R ⇉ U :

R′
Φ

//

s′

��
t′

��

R

s

��
t

��

U ′
φ

// U

We say that (φ,Φ) is a square morphism of groupoid schemes if the diagrams

R′
Φ //

s′

��

R

s

��
and

R′
Φ //

t′

��

R

t

��

U ′
φ

// U U ′
φ

// U

are cartesian.

Notice that since either a source map or a target map can be obtained from the
other by composing with the inverse map, if one of these diagram is cartesian, then the
other must be cartesian as well.

Definition 4.6. Let g : T ′ → T be a morphism of schemes. A banal groupoid

scheme for g is a groupoid scheme p, q : T ′′ ⇉ T ′ such that g ◦ p = g ◦ q and such that
(p, q) : T ′′ → T ′ ×T T

′ is an isomorphism.

In other words, T ′′ ⇉ T ′ is one of the groupoid schemes that we saw arising from a
morphism of schemes in Example 3.1. Notice that, given morphisms p and q from T ′′

to T ′ such that g ◦ p = g ◦ q and (p, q) : T ′′ ∼→ T ′ ×T T
′, there is then a unique groupoid

scheme structure on T ′′ ⇉ T ′ having structure morphisms p and q.

Example 4.7. Let R ⇉ U be a groupoid scheme. There is then a square morphism
of groupoid schemes

R t×s R
pr2 //

pr1
��

m

��

R

s

��
t

��
R

t // U

The groupoid scheme on the left is a banal groupoid scheme for the morphism s : R → U .

Exercise 4.2. Verify the assertions of Example 4.7. [Hint: use the fact mentioned
in Exercise 3.1(d), that the diagrams of Axiom (2) for groupoid scheme are cartesian.]

Exercise 4.3. Let s, t : R ⇉ U be a groupoid scheme, X a scheme, and f : U → X
a morphism such that f ◦ s = f ◦ t. If g : X ′ → X is any morphism, with banal
groupoid scheme p, q : X ′′ ⇉ X ′ for g, then any lift φ : U → X ′ of f extends uniquely
to a morphism of groupoid schemes (φ,Φ) from R ⇉ U to X ′′ ⇉ X ′.
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We describe a category of (R ⇉ U)-torsors. Then [R ⇉ U ] will be defined as the
full subcategory of objects satisfying a local triviality requirement.

Preliminary definition. A (R ⇉ U)-torsor will consist of a morphism g : T ′ → T ,
a banal groupoid T ′′ ⇉ T ′ for g, and a square morphism of groupoid schemes (γ,Γ)
from T ′′ ⇉ T ′ to R ⇉ U . These form a category, fibered in groupoids over the base
category of schemes. If we have another object, h : S ′ → S with S ′′ ⇉ S ′ and morphism
(ξ,Ξ) to R ⇉ U , then a morphism between these objects over f : S → T will consist of
a morphism φ : S ′ → T ′ satisfying two conditions.

(i) The morphism φ fits into a cartesian diagram

S ′
φ

//

h
��

T ′

g

��

S
f

// T

Hence, by Exercise 4.3, there is then a unique Φ: S ′′ → T ′′ making (φ,Φ) a
morphism of groupoid schemes.

(ii) We have γ ◦ φ = ξ and Γ ◦ Φ = Ξ, in other words, a commutative diagram of
groupoid schemes

S ′′

�� ��

Ξ //

Φ &&NNNNNN R

s

��

t

��

T ′′

�� ��

Γ

88qqqqqq

S ′
ξ

//

φ &&NNNNNN U

T ′
γ

88qqqqqq

As in earlier examples, the verification of the CFG axioms for this category is based
on the existence and universal property of the fiber product of schemes. (Given an
object g : T ′ → T , etc., and an arbitrary morphism f : S → T , set S ′ = S ×T T

′ with
projection maps h to S and φ to T ′, and S ′′ = S ×T T

′′, and take ξ to be γ ◦ φ.) We
point out, that in this preliminary definition there is no mention yet of the topology on
the base category. Our next task is to impose a local triviality hypothesis on objects,
using the Grothendieck topology of S.

Example 4.8. The scheme U , map s : R → U , and square morphism of groupoid
schemes of Example 4.7 constitute an (R ⇉ U)-torsor (over the scheme U).

Definition 4.9. Given a pair consisting of a banal groupoid scheme g : T ′ → T
and a square morphism of groupoid schemes (γ,Γ) from T ′′ → T ′ to R ⇉ U , we say
that this object is

(i) trivial if there exists a morphism to the object of Example 4.8 (over some
morphism T → U), and

(ii) locally trivial if there exists a trivial object h : S ′ → S with S ′′ ⇉ S ′ and
morphism (ξ,Ξ) to R ⇉ U , a covering map f : S → T , and a morphism from
the trivial object to the given object over this morphism f .
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Definition 4.10. The CFG [R ⇉ U ] is defined to be the category of locally trivial
(R ⇉ U)-torsors. Specifically, it is the full subcategory of the category in the Prelimi-
nary definition, consisting of objects that are locally trivial (Definition 4.9).

For the sake of brevity, we will speak of (R ⇉ U)-torsors with the understanding
that they will always be locally trivial, i.e., objects of [R ⇉ U ]. The notion of locally
trivial makes sense over an arbitrary site (base category equipped with a Grothendieck
topology). Of course, for us this will usually be a category of schemes with the étale
topology.

In the case R ⇉ U is G ⇉ Λ, we see that a (G ⇉ Λ)-torsor is just a G-torsor
E → S, together with a choice of product E × G (which, by the projection map and
action map, is isomorphic to E ×S E). This choice is not significant: the same G-

torsor with a different choice of product Ẽ ×G is canonically isomorphic (in the CFG
[R ⇉ U ]) to E × G by the morphism φ = 1E. The (G ⇉ Λ)-torsor E → S is trivial
precisely when E is G-equivariantly isomorphic to S × G, and the locally triviality
condition in Definition 4.9(ii) is the same as the usual local triviality condition on a
G-torsor (cf. Example 2.3).

Just as in the case of G-torsors, we will be able to prove that [R ⇉ U ] is a stack,
provided that the groupoid scheme R ⇉ U satisfies some hypothesis that will enable us
to invoke an appropriate result from the theory of descent. We want to use descent for
affine schemes (Proposition A.12), or more generally quasi-affine schemes (Proposition
A.17). It turns out to be most natural to place the hypothesis on the relative diagonal
of the groupoid (s, t) : R → U × U . The reason is that given another groupoid scheme
R′ ⇉ U ′ with a morphism to R ⇉ U that is supposed to be an equivalence of groupoids,
the relative diagonal R′ → U ′ × U ′ will be a pullback of R → U × U (see Condition
1.3(i)). To put this in a concrete setting, the CFG X (where X is a scheme) will be
represented by the groupoid U ×X U ⇉ U for any covering U → X. The properties
(separated, affine, etc.) of an individual projection map U ×X U → U depend heavily
on the choice of U . Whereas, the relative diagonal U ×X U → U ×U is gotten by base
change from the absolute diagonal X → X ×X, and hence inherits any property that
is preserved by base change (e.g., it is always separated and is proper precisely when
X is separated, regardless of the choice of U). For this reason, we focus on properties
of the relative diagonal.

Proposition 4.11. Let R ⇉ U be a groupoid scheme. Assume that the relative
diagonal (s, t) : R → U × U is quasi-affine. Then [R ⇉ U ] is a stack (for the étale
topology on the base category of schemes).

In this situation we will call [R ⇉ U ] the stack of (R ⇉ U)-torsors. To maintain
the analogy with ordinary torsors, we will denote a typical object of [R ⇉ U ] by E → T
(of course an object will be understood to include a choice of product E ×T E and a
square morphism of groupoids from E ×T E ⇉ E to R ⇉ U).

Proof. Let E → T be an object of [R ⇉ U ]. Then, we claim, E is quasi-affine
over T × U . To address this claim, let us denote by g the morphism E → T and by
(γ,Γ) the morphism from E ×T E ⇉ E to R ⇉ U . The morphism (g, γ) : E → T ×U ,
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it is claimed, is quasi-affine. Let f : S → T be a covering map, h : D → S an object of
[R ⇉ U ] over S, and suppose a morphism ϕ in [R ⇉ U ] from this object to the object
E → T is given. Then there is a diagram

D
ϕ

//

h
��

E
γ

//

g

��

U

S
f

// T

in which the square is cartesian. As a consequence, we have a cartesian diagram

D
ϕ

//

(h,γ◦ϕ)
��

E

(g,γ)
��

S × U
f×1U

// T × U

The bottom map is a covering map. Hence (g, γ) is quasi-affine if and only if (h, γ ◦ ϕ)
is quasi-affine. So, to establish this claim, we are reduced to the case of a trivial object.
By the definition of triviality, there is a cartesian diagram

E //

(g,γ)
��

R

(s,t)
��

T × U // U × U

By hypothesis, (s, t) is quasi-affine, hence so is (g, γ), and the claim is established.
Now the proof of the proposition uses effective descent for schemes quasi-affine over

a given scheme (Proposition A.17). Consider an étale cover T ′ → T , an object E ′ → T ′

of [R ⇉ U ], and gluing data on T ′′ := T ′×T T
′ that satisfies the cocycle condition. Then

E ′ → T ′ × U is quasi-affine, and we have a descent datum which, by effective descent,
produces a scheme E quasi-affine over T ×U , together with a compatible isomorphism
T ′ ×T E ∼= E. We focus on E → T . We have also E → U , and by invoking descent for
morphisms to a given target (Proposition A.13), we recover a morphism E ×T E → R
whose composite with E ′×T ′E ′ → E×TE is the given morphism E ′×T ′E ′ → R. Now it
must be checked that the morphism from E×T E ⇉ E to R ⇉ U is a square morphism
of groupoid schemes. To be a morphism of groupoid schemes involves checking some
identities of morphisms. Again we know this after replacing each source by a covering,
so we have the desired identities by invoking now the uniqueness portion of Proposition
A.13. To be a square morphism of groupoid schemes, now, is that a certain morphism
to a fiber product is an isomorphism, when we know this holds after étale base change.
We need a result that says a morphism, which after étale base change becomes an
isomorphism, must itself be an isomorphism. This is so by [EGA IV.2.7.1] (which tells
us that this is true for base change by a faithfully flat quasi-compact morphism, and
using that an étale morphism is open we easily deduce that it is true for base change
by an étale morphism). �
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The hypothesis (s, t) quasi-affine is satisfied in many common situations. We list
a few of these. First, whenever s and t are étale, and (s, t) is quasi-compact and
separated, then it is quasi-affine; this is because any quasi-finite separated morphism
is quasi-affine [EGA IV.18.12.12]. If s and t are themselves quasi-affine, then (s, t)
will be quasi-affine provided R is quasi-separated, because it can be factored through
R × R. For instance, the groupoid scheme X × G ⇉ X arising from a group action
has this property whenever G is a group scheme, quasi-affine over Λ, and X is quasi-
separated over Λ. (Any locally Noetherian scheme is quasi-separated over an arbitrary
base scheme, so this applies to most group actions met in practice.)

4. Stackification via torsors

Let R ⇉ U be a groupoid scheme. There is a natural morphism of CFGs (defined
up to canonical 2-isomorphism) from [R ⇉ U ]pre to [R ⇉ U ]. To an object g : T → U
in [R ⇉ U ]pre there is an associated trivial (R ⇉ U)-torsor:

T g×s R t×s R
pr3 //

pr12
��

1T ×m

��

R

s

��
t

��
T ×U,s R

t◦pr2 //

pr1

��

U

T

(1)

To a morphism γ : T ′ → R in [R ⇉ U ]pre, over f : T ′ → T , between objects g′ : T ′ → U
and g : T → U (we recall, this means s ◦ γ = g′ and t ◦ γ = g ◦ f), there is the following
morphism in [R ⇉ U ]:

(2) (f ◦ pr1, m((i ◦ γ) × 1R)) : T ′ ×U,s R → T ×U,s R.

In the case [G ⇉ Λ], this associates to an object T (i.e., T → Λ) the trivial G-torsor
T ×G→ T . A morphism γ : T → G over 1T is sent to the G-equivariant isomorphism
T ×G→ T ×G, (x, g) 7→ (x, γ(x)−1g). (Compare with Example 3.9.)

Definition 4.12. Let X0 be a CFG/S. Then a stackification of X0 is a stack X
together with a morphism of CFGs b : X0 → X such that for any stack Y the functor

HOM(X,Y) → HOM(X0,Y)

induced by composition with b is an equivalence of categories.

We wish to assert that the stack [R ⇉ U ] is a stackification of [R ⇉ U ]pre. This
means, in particular, that any given morphism f0 : [R ⇉ U ]pre → Y should, up to 2-
isomorphism, be the composition of a morphism f : [R ⇉ U ] → Y with the morphism
b : [R ⇉ U ]pre → [R ⇉ U ] defined in (1) and (2). We can give an informal description
of such a morphism f . Let E → T be an (R ⇉ U)-torsor. By local triviality, there
exists a covering map T ′ → T and a an isomorphism between a trivial torsor on T ′

and the pullback T ′ ×T E. The trivial torsor comes from a morphism T ′ → U , i.e., is
b(t′) for some object t′ of [R ⇉ U ]pre over T ′. Set y′ = f0(t

′). On T ′′ := T ′ ×T T
′ we
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have isomorphisms of the pullback of b(t′), by either projection map, with T ′′ ×T E.
Composing these, we get an isomorphism b(p∗1t

′) → b(p∗2t
′). A crucial fact below is

that b is, as a functor, fully faithful. So this isomorphism comes from an isomorphism
ϕ : p∗1t

′ → p∗2t
′, which must satisfy the cocycle condition since the cocycle condition

holds after applying b. Hence y′ and f0(ϕ) constitute a descent datum in Y . Since Y is
a stack, this descent datum is effective, meaning y′ is identified with a pullback of some
object y in YT . There is a functor f , sending E → T to y (it is of course also necessary
to specify how f acts on morphisms), and this is the desired morphism of stacks.

Turning this rough description into an assertion with proof is the next task. We
start with a preliminary result. It will be convenient to use the restatement of the stack
axioms of Remark 4.4.

Proposition 4.13. Let X0 be a CFG, let X be a stack, and let b : X0 → X be a
morphism of CFGs which, as a functor, is full and faithful. If, for every object T in S
and every object x of X over T there exists a covering family {Tα → T} and for every
α an object tα in X0 and a morphism b(tα) → x over Tα → T , then X is a stackification
of X0 (by the morphism b).

Proof. To show that HOM(X,Y) → HOM(X0,Y) is essentially surjective, we
suppose that f0 : X0 → Y is given. Let x be as in the statement of the proposition. So
there is a covering family {Tα → T}, with morphisms b(tα) → x. Set Tαβ = Tα ×T Tβ

and Tαβγ = Tα ×T Tβ ×T Tγ . Choose tαβ → tα over Tαβ → Tα. By the CFG axioms
there is a unique morphism b(tαβ) → b(tβ) over Tαβ → Tβ whose composite with the
morphism to x is equal to the composite b(tαβ) → b(tα) → x, and since b is fully
faithful this is the image under b of a morphism tαβ → tβ. Now let tαβγ → tαβ be
any morphism over Tαβγ → Tαβ and let tαβγ → tβγ be the unique morphism over
Tαβγ → Tβγ making a commutative diagram with tβ. The unique morphism tαβγ → tαγ

over Tαβγ → Tαγ making a commutative diagram with tα transforms via b to the
unique morphism b(tαβγ) → b(tαγ) whose composite with the morphism to x is equal
to b(tαβγ) → b(tαβ) → x. This in turn is equal to the composite b(tαβγ) → b(tβγ) → x,
equal to the image under b of the unique morphism tαβγ → tαγ making a commutative
diagram with tγ. So we have a commutative diagram

tαβγ

||yy
yy

y

""EE
EE

E

��
tαβ

�� ""EE
EE

EE
tαγ

yy

||yy

EE

""EE

tβγ

||yyyyy

��
tα tβ tγ

If we apply f0 we get a similar commutative diagram in Y. Since Y is a stack, it
follows from Axiom 2 (restated, as in Remark 4.4) that there is an object y, together
with morphisms f0(tα) → y, making commutative diagrams with the f0(tαβ). We define
f(x) = y.

It remains to specify how morphisms transform under f , and to supply a natural
isomorphism f ◦ b ⇒ f0. Let S → T be a morphism, x an object of X over T , and u
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an object of X over S. Suppose f(x) = y, with {Tα → T}, tα, tαβ → tα, tαβ → tβ , and
f0(tα) → y are as above. Suppose f(u) = v, with {Sγ → S}, sγ, sγδ → sγ, sγδ → sδ,
and f0(sγ) → v, analogously. Now consider a morphism u→ x over S → T . We define
f(u→ x) to be the morphism v → y characterized as follows. For each α and γ let Sαγε

be a collection of objects over Sγ×T Tα (with ε in an indexing set that depends on α and
γ) such that for each fixed γ the collection {Sαγε → Sγ} is a covering family. An example
of such a family is {Sγ ×T Tα → Sγ}. For each α, γ, and ε, let sαγε → sγ be a morphism
over Sαγε → Sγ Now there is a unique morphism b(sαγε) → b(tα) over Sαγε → Tα whose
composite with b(tα) → x is equal to the composite b(sαγε) → b(sγ) → u → x. As b is
fully faithful this is b applied to a unique morphism sαγε → tα. We may apply f0 and
compose with the morphism f0(tα) → y to get a morphism

f0(sαγε) → y.

This, we claim, gives rise to a unique morphism v → y by Axiom 1, restated as in
Remark 4.4; this we take to be f(u→ x).

To verify this we consider Sαγεβδη := Sαγε×SSβδη, with sαγεβδη → sαγε lying over the
first projection map and as usual a unique morphism sαγεβδη → sβδη whose image under
b makes a commutative diagram with v. This last morphism can be obtained by starting
with the unique morphism sαγεβδη → sγδ over Sαγεβδη → Sγδ making a commutative
diagram with sγ, and then selecting the unique morphism over Sαγεβδη → Sαγε making
the diagram below with sδ commute

sγδ

��

sαγεβδηoo_ _ _

��

sγδ

��

sαγεβδηoo

��
�

�

�

sγ sαγεoo sδ sβδηoo

Then a diagram chase shows that after applying f0 it gives a commutative diagram
with v. To be able to apply Axiom 1 to get a morphism v → y, we must verify that
the two morphisms f0(sαγεβδη) → y in the following diagram, going via f0(sαγε) and via
f0(sβδη), are equal:

f0(sαγεβδη)

xxpppppp

�� &&M
M

M

f0(sαγε)

&&NNNNNN
f0(sβδη)

MMM

&&MMM

f0(tαβ)

xxqqqqqq

��

f0(tα)

��

f0(tβ)

wwpppppppp

y

There is a unique morphism b(sαγεβδη) → b(tαβ) whose composite with the morphism to
x is equal to the composite b(sαγεβδη) → b(sγδ) → u → x. This morphism is b applied
to some morphism sαγεβδη → tαβ. If we can show that the composite with the map
to tα is equal to sαγεβδη → sαγε → tα, and analogously for the maps to tβ, then the
dotted arrow above will make both of the upper squares in the diagram commute and
the required equality of morphisms will follow. By faithfulness it suffices to verify these
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assertions after applying b. For the first assertion, both composites, further composed
with b(tα) → x, are equal to the composite b(sαγεβδη) → b(sγ) → u → x, and hence
they are equal. Similarly, both composites to b(tβ) are equal.

We claim that the morphism v → y thus produced is independent of the choice
of covering families {Sαγε → Sγ}. For this, it suffices to check that the morphism
produced is unchanged by refinement (i.e., replacing Sαγε → Sγ by Sαγελ → Sαγε → Sγ ,
where {Sαγελ → Sαγε} is a covering family) and also unchanged by a change of maps
to the Tα, i.e., re-indexing Sαγε as Sαβγλ and replacing Sαβγλ → Tα with some other
map Sαβγλ → Tβ. We leave the case of refinements as an exercise: the first step is
that, if we choose sαγελ → sαγε over Sαγελ → Sαγε, then the morphism b(sαγελ) → b(tα)
that is stipulated above is the composite b(sαγελ) → b(sαγε) → b(tα). Let us treat
changes of maps to the Tα. The maps Sαβγλ → Tα and Sαβγλ → Tβ determine a
map Sαβγλ → Tαβ . There is a unique morphism b(sαβγλ) → b(tαβ) whose composite
with the map to x is equal to the composite b(sαβγλ) → b(sγ) → u → x. Therefore
the composite morphism b(sαβγλ) → b(tαβ) → b(tα) is the morphism stipulated in
the construction. Analogously, the composite morphism to b(tβ) is as stipulated in
the construction applied to Sαβγλ → Tβ. The maps f0(sαβγλ) → f0(tα) → y and
f0(sαβγλ) → f0(tβ) → y are then equal, since they both factor through f0(tαβ).

We have, indeed, produced a functor f . Indeed, if w → u is a morphism in X0

over R → S, with image z → v in Y, then the composite z → v → y is seen to
satisfy the criteria characterizing the image under f of the composite w → u→ x. For,
if {Rπ → R} is a covering family, with Rγπι → Rπ ×S Sγ, then we take Rαγεπι over
Rγπι×Sγ

Sγαε such that for every fixed π, γ, and ι, {Rαγεπι → Rγπι} is a covering family.
We use the characterization of f(w → x) coming from the Rαγεπι. Let us suppose
f(w → u) is constructed using rγπι → rπ and rγπι → sγ. Now choose rαγεπι → rγπι

over Rαγεπι → Rγπι, and let rαγεπι → sαγε be the unique morphism over Rαγεπι → Sαγε

whose composite with sαγε → sγ is equal to the composite rαγεπι → rγπι → sγ. We have

rαγεπι

wwooo
''OOO

rγπι

yyttt ''OO
OO

O
sαγε

wwooo
oo

%%JJ
J

rπ sγ tα

which, upon applying b, commutes with w → u → x, and upon applying f0, commutes
with z → v → y, so the latter is equal to f(w → x). It follows immediately from
the construction that f(1x) = 1y. When x = b(t) we have f0(b(t)) in Y, with maps
f0(tα) → f0(b(t)) such that both composites f0(tαβ) → f0(b(t)) are equal. Hence there
is a unique isomorphism f0(b(t)) → y compatible with the morphisms from the f0(tα).
If u = b(s) and we have a morphism u → x equal to b applied to some s → t, then
the composite v ∼→ f0(b(s)) → f0(b(t))

∼→ y satisfies the criterion which characterizes
f(u→ x). Hence we have a natural isomorphism f0 ◦ b⇒ f .

We now show that the functor between HOM categories is fully faithful. Let f
and g be morphisms X → Y, and let f0 = f ◦ b and g0 = g ◦ b. Given a natural
isomorphism f0 ⇒ g0 we need to show it is produced by a unique natural isomorphism
f ⇒ g. Let b(tα) → x be as in the hypothesis. If we set y = f(x) and z = g(x)
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then the given natural isomorphism yields morphisms f0(tα) → g0(tα) → z. With
tαβ → tα and tαβ → tβ such that the composite morphisms to x are equal, we have
the composite f0(tαβ) → f0(tα) → z equal to f0(tαβ) → g0(tαβ) → z, which is equal to
f0(tαβ) → f0(tβ) → z. So, by Axiom 1, restated as in Remark 4.4, there is a uniquely
determined isomorphism y → z. Naturality is the condition that v → y → z is equal
to v → w → z, where u → x is a morphism over some S → T , and v = f(u) and
w = g(u). We introduce Sαγε and sαγε as above; notice that the image v → y of u→ x
under f has the property that the composite f0(sαγε) → f0(sγ) → v → y is equal to
the composite f0(sαγε) → f0(tα) → y, and that a similar assertion holds with g0 in
place of f0 and w → z in place of v → y. To verify naturality, it suffices by Axiom 1
to verify that the composite f0(sαγε) → f0(sγ) → v → y → z is equal to the composite
f0(sαγε) → f0(sγ) → v → w → z, for every α, γ, and ε This is now a routine diagram
chase, using the naturality of f0 ⇒ g0 and the fact that the morphism y → z, resp.
v → w, is characterized by its fitting in a commutative diagram with f0(tα) → g0(tα),
resp. with f0(sγ) → g0(sγ). �

Exercise 4.4. Supply the details to the argument that the morphism v → y (image
of u→ x under f) is unchanged by refinement.

Proposition 4.14. Let R ⇉ U be a groupoid scheme with quasi-affine relative
diagonal (s, t) : R → U × U . Then the morphism b : [R ⇉ U ]pre → [R ⇉ U ] defined in
(1) and (2) is a stackification.

Proof. We use Proposition 4.13. By the definition of [R ⇉ U ], every object is
locally isomorphic to an object in the image of b. So, it remains only to show that b is
fully faithful. Morphisms in [R ⇉ U ]pre from g′ : T ′ → U to g : T → U over f : T ′ → T
are morphisms γ : T ′ → R satisfying s ◦ γ = g′ and t ◦ γ = g ◦ f . In [R ⇉ U ], the
morphisms over f from b(g′) to b(g) are morphisms of the form

(f ◦ pr1, δ) : T ′ ×U R→ T ×U R

where δ is required to satisfy s◦δ = g◦f ◦pr1 (obvious condition to have target T×UR),
t◦δ = t◦pr2 (condition (i) to be a morphism), and m(δ×1R) = δ ◦ (1T ′ ×m) (condition
(ii) to be a morphism). The functor b sends γ to (f ◦ pr1, m((i ◦ γ)× 1R)). We define a
map the other way sending (f ◦pr1, δ) to i◦ δ ◦ (1T ′, e◦ g′). Composing the two maps in
one order we have γ mapping to i◦m(i◦γ, e◦g′), which is equal to γ. In the other order,
(f ◦ pr1, δ) is sent to the map T ′ ×U R → T ×U R which, on the first factor is f ◦ pr1

and on the second factor is m((δ ◦ (1T ′, e ◦ g′)) × 1R) = δ ◦ (pr1, m((e ◦ g′) × 1R)) = δ.
Hence b is fully faithful. �

Proposition 4.15. Let X0 be a CFG/S. Let X and X′ be stackifications of X, by
b : X0 → X and b′ : X0 → X′. Then there exists an isomorphism f : X → X′ and a
2-isomorphism f ◦ b ⇒ b′. If g : X → X′ is another isomorphism, with g ◦ b ⇒ b′,
then there exists a unique 2-isomorphism f ⇒ g such that the composite 2-isomorphism
f ◦ b⇒ g ◦ b⇒ g′ is equal to the given 2-isomorphism f ◦ b ⇒ b′.

Proof. Taking Y to be X′ in Definition 4.12, we have an equivalence of categories
HOM(X,X′) → HOM(X0,X

′) induced by composition with b. In particular, there exists
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a morphism f : X → X′ and a 2-isomorphism f ◦ b⇒ b′. Similarly, there is a morphism
f ′ : X′ → X and a 2-isomorphism f ′ ◦ b′ ⇒ b. Taking Y to be X in Definition 4.12,
now, means that HOM(X,X) → HOM(X0,X) is an equivalence of categories. The
objects f ′ ◦ f and 1X of HOM(X,X) map to isomorphic objects of HOM(X0,X), since
f ′ ◦ f ◦ b is 2-isomorphic to f ′ ◦ b′, which in turn is 2-isomorphic to b. So there exists
a 2-isomorphism f ′ ◦ f ⇒ 1X. Similarly, there exists a 2-isomorphism f ◦ f ′ ⇒ 1X′.
This implies that f is an isomorphism (see the remark at the end of Section 2.3). If
g : X → X′ is another morphism, with an 2-isomorphism g ◦ b⇒ b′, then composing the
2-isomorphisms we have f ◦ b⇒ g ◦ b, and this composite 2-isomorphism must, by full
faithfulness of composition with b, come from a unique 2-isomorphism f ⇒ g. �

Corollary 4.16. Let b : X0 → X be a stackification. Let f0 : X0 → Y be a mor-
phism to a stack Y, and let f : X → Y be a morphism, such that f ◦ b is 2-isomorphic
to f0. If f0 is fully faithful (as a functor) and satisfies the property that every object x
of Y over T in S admits morphisms f0(tα) → x over Tα → T in Y for some covering
family {Tα → T}, then f is an isomorphism.

Remark 4.17. Stackification is a sort of analogue of sheafification. Sheafification
transforms a presheaf into a sheaf, which is characterized by a universal property up
to canonical isomorphism. The universal property of Definition 4.12 characterizes the
stackification — not up to an isomorphism of categories (this would be to strong) —
rather up to an isomorphism of CFGs which is unique up to a canonical 2-isomorphism.
That is the content of Proposition 4.15.

An important application of the stackification property is a sort of functoriality,
namely that a morphism of groupoid schemes from R′ ⇉ U ′ to R ⇉ U determines
a morphism of stacks of torsors [R′ ⇉ U ′] → [R ⇉ U ] (at least, up to canonical 2-
isomorphism). In the previous chapter, we saw how to obtain a morphism of prestacks
[R′ ⇉ U ′]pre → [R ⇉ U ]pre (in fact, Example 3.14 tells us precisely that the morphisms
of prestacks correspond to morphisms of groupoid schemes, and that 2-morphisms be-
tween these morphisms correspond to maps U ′ → R). To get a morphism of stacks,
however, requires additional discussion.

Let (φ,Φ) be a morphism of groupoid schemes from R′ ⇉ U ′ to R ⇉ U . We first
remark that we do not directly get a morphism of stacks of torsors, in general. Indeed,
for a groupoid of the form G ⇉ Λ the associated stack is equivalent to BG; morphisms
of such groupoids are group homomorphisms, and we have seen that the passage from
a group homomorphism to a morphism of stacks requires a descent-based construction
(Example 2.9(2) and Remark 2.17). This is also why the best we can do is to get a
morphism of stacks that is defined up to canonical 2-isomorphism.

The construction of the morphism of stacks corresponding to a morphism of
groupoid schemes appears in the proof of the next proposition. Here is an informal
summary. A trivial (R′ ⇉ U ′)-groupoid over T (corresponding to some T → U) is
sent to a trivial (R ⇉ U)-groupoid: we compose with the given U ′ → U and then
form the associated trivial torsor as displayed in (1). A general (R′ ⇉ U ′)-torsor is
locally trivial; we can choose a trivalizing (étale) cover T ′ → T and associate a descent
datum (the trivial torsor corresponding to T ′ → U ′ with a gluing map given by some
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T ′ ×T T
′ → R′). Applying the given maps Φ and φ we obtain similar data with respect

to R and U . This corresponds to descent data for an (R ⇉ U)-torsor. By effective
descent for (R ⇉ U)-torsors we obtain an (R ⇉ U)-torsor (defined up to canonical
isomorphism) over T . (It is a good exercise to correlate this informal description with
the formal proof of the proposition, which is phrased using the language of stacks and
stackification.)

Proposition 4.18. Let (φ,Φ) be a morphism of groupoid schemes from R′ ⇉ U ′

to R ⇉ U . Assume that both the source and target groupoid schemes have the property
that the relative diagonals are quasi-affine. Then there is an induced morphism of stacks

[R′
⇉ U ′] → [R ⇉ U ],

defined up to canonical 2-isomorphism.

Proof. Composing the corresponding morphism of prestacks [R′ ⇉ U ′]pre → [R ⇉

U ]pre with the stackification morphism of R ⇉ U , we have a morphism

(3) [R′
⇉ U ′]pre → [R ⇉ U ].

By the universal property of the stackification of R′ ⇉ U ′, there is a morphism [R′ ⇉

U ′] → [R ⇉ U ] whose composite with the stackification [R′ ⇉ U ′]pre → [R′ ⇉ U ′] is
2-isomorphic to the morphism (3). The resulting morphism is unique up to canonical
2-isomorphism. �

We conclude this section with a pair of results that complete the dictionary between
stacks as categories and their groupoid presentations. If we start with a stack X and
obtain from it, by Proposition 3.5, a groupoid scheme R ⇉ U , then we have the
following criterion to have X ∼= [R ⇉ U ].

Proposition 4.19. Let X be a stack, U a scheme, and u an object of XU , and
SymX(u, u) ∼= R an isomorphism, for some scheme R. Let R ⇉ U be the associated
symmetry groupoid, and assume that its relative diagonal R → U×U is quasi-affine. If,
for every object t of X (over a scheme T ) there exists a covering family {ϕi : Ti → T},
such that ϕ∗

i t admits a morphism in X to u, for every i, then we have X ∼= [R ⇉ U ].

Proof. There is an evident morphism

F0 : [R ⇉ U ]pre → X,

that we obtain as follows. We have U → X, corresponding to the object u of X and
associating, to any scheme S with morphism to g : S → U , a chosen pullback g∗u of
u. Let S ′ be another scheme, with f : S ′ → S and g′ : S ′ → U . There is a pullback
morphism (g ◦ f)∗u → g∗u (the unique morphism, over f , whose composite with the
chosen g∗u→ u is the chosen (g ◦f)∗u→ u). If γ : S ′ → R is a morphism in [R ⇉ U ]pre

over f (from the object g′ to the object g), then we apply the given isomorphism

(4) R → U ×X U

and obtain the pair of objects (of U) s ◦ γ (which is g′) and t ◦ γ (which is g ◦ f) and an
isomorphism g′∗u→ (g ◦ f)∗u in X (over 1S′). We declare F0(γ) to be the composite

g′∗u→ (g ◦ f)∗u → g∗u
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with the pullback morphism.
In fact, composing with the pullback morphism gives a bijection between morphisms

in X over f from g′∗u to g∗u and morphisms in XS′ from g′∗u to (g ◦ f)∗u. Since (4)
is an isomorphism of CFGs, these correspond bijectively with morphisms of schemes
S ′ → R whose composite with s is g′ and whose composite with t is g ◦ f . These are
precisely the morphisms in [R ⇉ U ]pre, and hence F0 is fully faithful, as a functor.

The remaining hypothesis guarantees that F0 satisfies the conditions of Corollary
4.16. Hence if F : [R ⇉ U ] → X denotes an associated morphism of stacks (by the
stackification property), then it follows that F is an isomorphism. �

Proposition 4.20. Let R ⇉ U be a groupoid scheme with quasi-affine relative
diagonal, and let X := [R ⇉ U ] be the associated stack of torsors. Denote by u the
object of [R ⇉ U ] over U given by the (R ⇉ U)-groupoid s : R → U of Example 4.7.
(This is the trivial (R ⇉ U)-groupoid associated with the identity morphism 1U .) Then
we have an isomorphism SymX(u, u) ∼= R, and the groupoid scheme that we recover
from this isomorphism by Prop 3.5 is precisely the given groupoid R ⇉ U .

Proof. Notice that the morphism U → [R ⇉ U ] that is associated with u factors
through [R ⇉ U ]pre. Since the stackification morphism [R ⇉ U ]pre → [R ⇉ U ] is
a fully faithful functor, it follows that the category SymX(u, u) is identified (by an
isomorphism of categories) with the fiber product

U ×[R⇉U ]pre U.

Now an object of this fiber product (over a scheme T ) consists of a pair of morphisms
h, h′ : T → U and a morphism r : T → R whose composite with s is h and whose
composite with t is h′. The morphisms h and h′ are completely determined by r, so
we see that U ×[R⇉U ]pre U ∼= R. It is also clear from this description that groupoid we
obtain by applying Prop 3.5 has structure maps s, t : R→ U .

It remains only to check that the other maps of the groupoid structure that we
obtain agree with the given ones. We do this for the multiplication map, leaving the
others for the reader to check. Consider morphisms h, h′, h′′ : T → U and r, r′ : T → R,
satisfying

s ◦ r = h, t ◦ r = h′ = s ◦ r′, t ◦ r′ = h′′

(an object of U ×[R⇉U ]pre U ×[R⇉U ]pre U ∼= R t×s R). The multiplication map arising
from Proposition 3.5 produces the composite (in [R ⇉ U ]pre) of r and r′. Looking at
the description in Definition 3.11, the composite is the map m(r, r′) : T → R. So the
pair of composable arrows r and r′ are sent to m(r, r′), hence the multiplication map
of the resulting groupoid structure is m : R t×s R → R. �

5. Stack realizations of groupoid constructions

We saw some examples of concrete constructions that can be made with algebraic
groupoids in Section 3.3. Now we can show that each construction has a consequence
for the associated stacks of torsors.

All groupoid schemes in this section are assumed to have quasi-affine relative diag-
onal.
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Example 4.21. Given groupoid schemes R ⇉ U , R′ ⇉ U ′, and R′′ ⇉ U ′′, and
morphisms of groupoid schemes (R′ ⇉ U ′) → (R ⇉ U) and (R′′ ⇉ U ′′) → (R ⇉ U),
then we have

[R′
⇉ U ′] ×[R⇉U ] [R

′′
⇉ U ′′] ∼= [R′ ×U R×U R

′′
⇉ U ′ ×U R×U U

′′].

Indeed, we have a morphism from the fiber product of the associated prestacks to
[R′ ⇉ U ′] ×[R⇉U ] [R′′ ⇉ U ′′] (by the universal property of the fiber product). This is
readily seen to be fully faithful. Moreover any object of [R′ ⇉ U ′] ×[R⇉U ] [R′′ ⇉ U ′′]
becomes, after étale pullback, isomorphic to an object in the image of this morphism.
So the criterion of Proposition 4.13 is satisfied. Combining the isomorphism of Example
3.13 with Proposition 4.15, we get the desired isomorphism of stacks.

Example 4.22. Given groupoid schemes R′ ⇉ U ′ andR ⇉ U , we try to describe the
category HOM([R′ ⇉ U ′], [R ⇉ U ]). We know that a morphism of groupoid schemes
determines (up to canonical 2-isomorphism) a morphism [R′ ⇉ U ′] → [R ⇉ U ]. Notice
that there can be morphisms between the stacks, not corresponding directly to any

morphism of groupoid scheme. Suppose, however, that (φ,Φ) and (φ̃, Φ̃) are morphisms
of groupoid schemes, with respective corresponding morphisms

f, f̃ : [R′
⇉ U ′] → [R ⇉ U ].

Then the 2-isomorphisms f ⇒ f̃ will be in canonical bijection with the morphisms of
schemes γ : U ′ → R satisfying s ◦ γ = φ, t ◦ γ = φ̃, and m(γ ◦ s, Φ̃) = m(Φ, γ ◦ t).

To justify this, we notice that composition with the stackification morphism of
[R ⇉ U ]pre is a fully faithful functor

HOM([R′
⇉ U ′]pre, [R ⇉ U ]pre) → HOM([R′

⇉ U ′]pre, [R ⇉ U ]).

The category on the right is equivalent to the category HOM([R′ ⇉ U ′], [R ⇉ U ]) by
the stackification property. So there is a fully faithful functor

HOM([R′
⇉ U ′]pre, [R ⇉ U ]pre) → HOM([R′

⇉ U ′], [R ⇉ U ]).

That means that we can appeal to Example 3.14, where the morphisms in the HOM-
category of prestacks are described in terms of morphisms of schemes U ′ → R.

Remark 4.23. For the sake of simplicity, the discussions of groupoids have focused
only on groupoid schemes and morphisms of groupoid schemes. However, groupoid
schemes are part of a richer structure, namely a 2-category, where the 2-morphisms
from (φ,Φ) to (φ̃, Φ̃) are precisely the morphisms of schemes γ : U ′ → R satisfying

s ◦ γ = φ, tγ = φ̃, and m(γ ◦ s, Φ̃) = m(Φ, γ ◦ t). We do not need this extra level of
formalism (which involves composition operations involving 2-morphisms, and a host
of axioms); the interested reader can find a discussion of 2-categories in Appendix B,
where the 2-category of groupoid schemes (more generally, S-groupoids for general S)
is introduced in Exercise B.25. Comparing with Example 3.14, in fact, the 2-category of
groupoid schemes is faithfully represented by the CFGs [R ⇉ U ]pre. (CFGs, with their
morphisms and 2-morphisms, also form a 2-category, and the 2-category of S-groupoids
is 2-equivalent to a full sub-2-category of CFGs/S.)
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Example 4.24. Let a groupoid scheme R ⇉ U be given. If R′ ⇉ U ′ is a groupoid
scheme with morphism of groupoid schemes (φ,Φ) to R ⇉ U satisfying Condition
1.3(i)–(ii) (this means R′ is isomorphic to R×U×U (U ′ × U ′) and U ′ ×U R→ U admits
sections étale locally) then we claim that the corresponding

f : [R′
⇉ U ′] → [R ⇉ U ]

is an isomorphism. If we follow the steps of the previous example, we see that we take
f0 to be the composite [R′ ⇉ U ′]pre → [R ⇉ U ]pre → [R ⇉ U ] and then f arises from f0

by the stackification property for [R′ ⇉ U ′]. As a functor, f0 is fully faithful, since it is a
composite of fully faithful functors. If we can show that every (R ⇉ U)-torsor becomes,
after pullback to an étale cover, isomorphic to something in the image of f0, then it
will follow by Corollary 4.16 that f is an isomorphism. An (R ⇉ U)-torsor is locally
trivial, hence locally isomorphic to the image of an object of [R ⇉ U ]pre. This in turn
is locally isomorphic to the image of an object of [R′ ⇉ U ′]pre. For this last step, start
with T → U . By Condition 1.3(ii), we have a covering map T ′ := U ′ ×U R×U T → T .
There are morphisms s̄, t̄ : T ′ → U corresponding to the maps s, t respectively from the
middle factor R. They are isomorphic objects of [R ⇉ U ]pre over T ′. The latter is the
pullback of the given object over T , while the former is in the image of the morphism
[R′ ⇉ U ′]pre → [R ⇉ U ]pre.

In particular, for X a scheme we have [X ⇉ X] ∼= X (easy), so if U → X is a
covering map and R = U ×X U then [R ⇉ U ] ∼= X.

Remark 4.25. It is possible to take a different point of view on the stackification
of [R ⇉ U ]pre. As we observed, a typical descent datum would give rise to morphism of
groupoid schemes from a banal groupoid T ′′ ⇉ T ′ to R ⇉ U . So we can consider the
category where an object over T is a banal groupoid over an arbitrary covering map
f : T ′ → T , together with a morphism of groupoid schemes from T ′′ ⇉ T ′ to R ⇉ U .
Thinking of T as represented by the groupoid scheme T ⇉ T , and using the notion
of equivalence of groupoid schemes of Condition 1.3(i)–(ii), we could declare that a
morphism of groupoid schemes, in a new and fancier sense, from R′ ⇉ U ′ to R ⇉ U
will consist of a pair of (traditional) morphisms of groupoid schemes

R′

�� ��

R′′

�� ��

oo // R

�� ��

U ′ U ′′oo // U

in which the left-hand morphism is an equivalence of groupoids. To make this work,
we really must be working in the 2-category of groupoid schemes. Further, we would
require a technique called localization in a 2-category. The resulting structure will be
one in which the category of morphisms from T ⇉ T to R ⇉ U is equivalent to the
fiber [R ⇉ U ]T of our category of (R ⇉ U)-torsors. This is a way to give sense to
the claim that one finds, e.g. in [89], that [R ⇉ U ]T will be a sort of direct limit over
covering maps T ′ → T of the category of morphisms of groupoid schemes from T ′′ ⇉ T ′

to R ⇉ U . More generally, the category of morphisms from R′ ⇉ U ′ to R ⇉ U , after



Answers to Exercises 81

localization, will be equivalent to our category HOM([R′ ⇉ U ′], [R ⇉ U ]). (All these
statements are subject to some additional hypothesis on the groupoid schemes, which
amounts to saying that they are the groupoid schemes of algebraic stacks.)

Answers to Exercises

4.1. The CFG in (a) is a stack; we can apply descent for projective morphisms
taking as relatively ample invertible sheaf the relative anticanonical sheaf a smooth
family of genus 0 curves. Any finite morphism is affine, so (b) is a stack. In (c)
the prestack axiom would say that two families of elliptic curves which are locally
isomorphic must be isomorphic; the existence of isotrivial families of elliptic curves
means that this CFG is not even a prestack. The CFG in (d) is a prestack by the usual
argument, descent for morphisms to a target scheme, but it is not a stack: a conic over
a non-algebraically closed field (of characteristic 6= 2) with no rational points is not the
projectivization of a vector bundle, but it becomes isomorphic to P1 after a quadratic
field extension.

4.2. We refer to the diagrams of Axiom (2) for groupoid scheme, which are cartesian
by Exercise 3.1(d). According to the left-hand diagram, R t×sR is identified, by (pr1, m),
with the fiber product of s : R → U with itself. Hence pr1, m : R t×s R ⇉ R is a banal
groupoid for s. The multiplication map m′ : (R t×s R) m×pr1 (R t×s R) → R t×s R of
the algebraic groupoid structure is the unique map satisfying pr1 ◦m

′ = pr1 ◦ pr1 and
m ◦m′ = m ◦ pr2, and this must send ((α, β), (m(α, β), γ)) to (α,m(β, γ)). To see that
(t, pr2) is a morphism of groupoid schemes, we must check the compatibility conditions,
e.g., m(pr2×pr2) = pr2◦m

′ since both composites send ((α, β), (m(α, β), γ)) to m(β, γ).
Finally, this is a square morphism: the relevant cartesian diagrams are the obvious one
with R t×sR as the fiber product of t and s, and the right-hand diagram of Axiom (2).

4.3. Since g ◦ φ ◦ s = g ◦ φt, there is a unique Φ: R → X ′′ such that p ◦ Φ =
φ ◦ s and q ◦ Φ = φ ◦ t. The remaining identities required of a morphism of groupoid
schemes are identities of morphisms to X ′′, and it suffices to verify such an identity
after composing with p and with q. For instance, we require m′ ◦ (Φ × Φ) = Φ ◦ m,
where m′ denotes the multiplication map of the groupoid scheme X ′′ ⇉ X ′, and this
holds since p ◦m′ ◦ (Φ × Φ) = p ◦ Φ ◦ pr1 = φ ◦ s ◦ pr1 = φ ◦ s ◦m = p ◦ Φ ◦m, and
similarly q ◦m′ ◦ (Φ × Φ) = q ◦ Φ ◦m.

4.4. Let sαγελ → sαγε be a morphism over Sαγελ → Sαγε, so that the composite
sαγελ → sαγε → sγ lies over Sαγελ → Sγ . Let sαγε → tα be the morphism that is
stipulated in the proof of the proposition, i.e., such that b(sαγε) → b(tα) → x is equal
to the composite b(sαγε) → b(sγ) → u → x. Now the composite b(sαγελ) → b(sαγε) →
b(tα) → x is equal to the composite b(sαγελ) → b(sαγε) → b(sγ) → u → x. So, in the
construction applied to the refined cover, we must take as morphism over Sαγελ → Tα the
composite sαγελ → sαγε → tα. The proposition produces v → y such that the composite
f0(sαγε) → f0(sγ) → v → y is equal to f0(sαγε) → f0(tα) → y. So the composite
f0(sαγελ) → f0(sαγε) → f0(sγ) → v → y is equal to f0(sαγελ) → f0(sαγε) → f0(tα) → y,
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and thus the same morphism v → y is the unique morphism dictated by Axiom 1 for
the refined cover.


