SECOND ASSIGNMENT

DUE FRIDAY OCTOBER 7

- (1) Suppose that $E \xrightarrow{p} B$ is a fibration of unbased spaces with B path connected. For $b \in B$, let $F_b = p^{-1}(b)$. Prove that F_{b_1} is homotopy equivalent to F_{b_2} for all $b_1, b_2 \in B$.
- (2) Prove that there are homeomorphisms $\Sigma C_f \cong C_{\Sigma f} \cong C_{-\Sigma f}$, where C_f here denotes the reduced mapping cone.
- (3) If $p: E \to B$ is a fibration and B is contractible, prove that there is a homotopy equivalence $\phi: E \to B \times F$ such that the following diagram commutes

(see 4.3.18 - Aguilar et al. for a hint.)

- (4) (a) Compute π_*S^1 .
 - (b) Use the Hopf fibration $S^1 \to S^3 \to S^2$ to compute $\pi_3 S^2$.
 - (c) Compute $\pi_* \mathbb{C}P^{\infty}$. (Hint: there are fiber bundles $S^{2n+1} \to \mathbb{C}P^n$ with fiber S^1 . Can you write $\mathbb{C}P^{\infty}$ as the based space in a fiber bundle?).