FIRST ASSIGNMENT

DUE MONDAY, SEPTEMBER 19

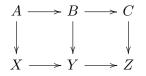
(1) Let $E \subset X \times X$ be an equivalence relation on a set X. Construct the set of equivalence classes as colimit in the category Sets.

Solution. Let $\overline{X} = \{[x] \mid x \in X\}$ be the set of equivalence classes and $q: X \to \overline{X}$ be the quotient. Let $p_1, p_2: E \to X$ be the two projections. We show that

$$E \xrightarrow[p_2]{p_1} X \xrightarrow{q} \overline{X}$$

is a coequilizer diagram. Then Y is isomorphic to the set of equivalence classes. A map $X \to Z$ satisfies $f(p_1(x,y)) = f(p_2(x,y))$ if and only if f(x) = f(y) if $(x,y) \in E$. Define $f': \overline{X} \to Z$ by f'([x]) = f(y) for any choice of $y \in [x]$. This is well defined since $y \in [x]$ implies that $(x, y) \in E$ so f(x) = f(y). Further, f'(q(x)) = f'([x]) = f(x) so $f' \circ q = f$. Let $f'': \overline{X} \to Z$ be any other map such that $f'' \circ q = f$. Then, for $[x] \in \overline{X}$, f''([x]) = f(q(x)) = f'([x]) so f' = f'' and the hence f' is unique defined. Therefore, \overline{X}

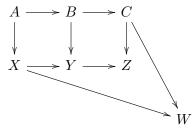
(2) Let



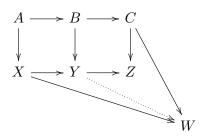
be a commutative diagram.

(a) Prove that if the two inner squares are pushouts, then so is the outer rectangle. That is, suppose that both $Y = B \sqcup_A X$ and $Z = C \sqcup_B Y$. Prove that $Z = C \sqcup_A X$.

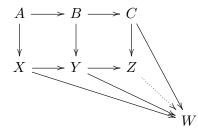
Solution. Given maps $X \to W$ and $C \to W$ making



commute, since the left hand square is a pull back, we get a unique map $Y \to W$



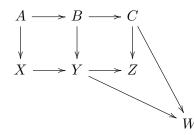
making the diagram commute. Now, since the right hand square is a pull-back, we obtain a unique map $Z \to W$



making the diagram commute. Therefore, Z has the required universal property.

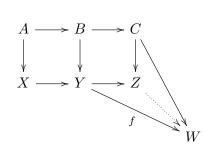
(b) What about if $Y = B \sqcup_A X$ and $Z = C \sqcup_A X$, then is $Z = C \sqcup_B Y$? And what if $Z = C \sqcup_B Y$ and $Z = C \sqcup_A X$, is $Y = B \sqcup_A X$?

Solution. If $Y = B \sqcup_A X$ and $Z = C \sqcup_A X$, then $Z = C \sqcup_B Y$. Indeed, suppose that we have maps

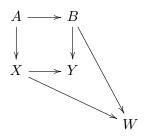


making the right hand diagram commute. Then the composites $A \to X \to Y \to W$ and $A \to B \to C \to W$ agree, and since the outer rectangle is a pushout, we obtain a

unique map $Z \to W$



such that $X \to Y \to W$ is equal to $X \to Y \to Z \to W$ and $C \to W$ is equal to $C \to Z \to W$. We need to prove that $Y \to Z \to W$ is equal to $Y \to W$. However, both these maps fulfill the universal property for the diagram



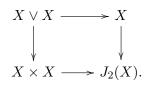
for the maps $B \to C \to W$ and $X \to Y \xrightarrow{f} W = X \to Y \to Z \to W$. Since Y is the pushout, the two maps must be equal.

On the other hand, if $Z = C \sqcup_B Y$ and $Z = C \sqcup_A X$, then it is not necessarily the case that $Y = B \sqcup_A X$. An counter-example in sets is given by

$$\begin{array}{c} \{1\} \longrightarrow \{1,2\} \longrightarrow \{1\} \\ \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \\ \{1\} \longrightarrow \{1\} \longrightarrow \{1\} \longrightarrow \{1\} \end{array}$$

where the maps are the inclusions when there is a choice.

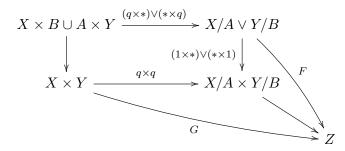
(3) In the following problem, let $S^{n-1} \to D^n$ be the inclusion of the boundary, $X \lor X \to X \times X$ be the map $(id \times *) \lor (* \times id)$ and $X \lor X \to X$ be the fold map $id \lor id$. For a based topological space X, let $J_2(X) = (X \times X)/((x, *) \sim (*, x))$. That is, $J_2(X)$ is the push-out



Further, you may use the fact that $D^{2n} \cong I^{2n} \cong D^n \times D^n$ and other such standard homeomorphisms without proof.

(a) Describe $S^n \times S^n$ as a CW-complex obtained from $S^n \vee S^n$ by attaching a single 2n-cell. Exhibit this as a pushout.

Solution. We first look at the more general situation where we have $A \subset X$ and $B \subset Y$ with quotient maps both denoted by $q: X \to X/A$ and $q: Y \to Y/B$. We prove that



is a pushout. Suppose we are given maps $F: X \times Y \to Z$ and $G: X/A \vee Y/B \to Z$ making the diagram commute. Define

$$H: X/A \times Y/B \to Z$$

by

$$H(\overline{x},\overline{y}) = G(x,y).$$

Then, for any $a \in A$,

$$H(\overline{a},\overline{y}) = G(a,y) = F(\overline{y})$$

and for any $b \in B$,

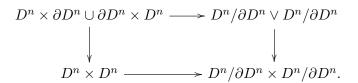
$$H(\overline{x}, \overline{b}) = G(x, b) = F(\overline{x})$$

so this is well-defined. It is also continuous since for any open $U \subset Z$,

$$H^{-1}(U) = (q \times q)(G^{-1}(U))$$

Further, this map is uniquely defined since $q \times q$ is surjective.

Now, consider $(X, A) = (Y, B) = (D^n, \partial D^n)$. The previous construction gives a pushout



Identifying $\partial(D^n \times D^n) = D^n \times \partial D^n \cup \partial D^n \times D^n$, $D^n / \partial D^n \cong S^n$ and $D^n \times D^n \cong D^{2n}$ proves the claim.

(b) Use your construction in (a) to give $J_2(S^n)$ the structure of a *CW*-complex with one n-cell and one 2n-cell.

Solution. Consider the following commutative diagram, where the right hand square is the pushout defining $J_2(S^n)$ and the left hand square is the pushout of part (a).

By 2(a), the outer square is a pushout diagram, which proves the claim.

(c) Show that S^n is an *H*-space if and only if the attaching map of the 2*n*-cell of $J_2(S^n)$ is null-homotopic.

Solution. First, note that if $S^n \times S^n \xrightarrow{\mu} S^n$ gives S^n the structure of an *H*-space, then there are homotopies $H' : S^n \times I \to S^n$ from $\mu \circ (1 \times *)$ to the identity and $H'' : S^n \times I \to S^n$ from $\mu \circ (* \times 1)$ to the identity. Letting

$$H: (S^n \vee S^n) \times I \to S^n$$

be given by H'(x,t) if x is in the left factor and H''(x,t) if it is in the right factor, we obtain a homotopy from $\mu \circ ((1 \times *) \lor (* \times 1))$ to the fold map $\nabla : S^n \lor S^n \to S^n$. Therefore, if S^n is an H-space, then

$$\partial D^{2n} \to S^n \vee S^n \xrightarrow{\nabla} S^n$$

is homotopic to

(1)
$$\partial D^{2n} \to S^n \lor S^n \xrightarrow{(1 \times *) \lor (* \times 1)} S^n \times S^n \to S^n.$$

However, since

$$\partial D^{2n} \to S^n \vee S^n \xrightarrow{(1 \times *) \vee (* \times 1)} S^n \times S^n$$

is equal to

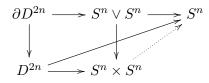
$$\partial D^{2n} \to D^{2n} \to S^n \times S^n,$$

(1) extends to D^{2n} , and therefore is null-homotopic.

Conversely, suppose that

$$\partial D^{2n} \to S^n \vee S^n \xrightarrow{\nabla} S^n$$

is null-homotopic. Then it extends to a map $D^{2n} \to S^n$ making the following diagram commute



Since the square is a pushout, we get a lift $S^n \times S^n \to S^n$. Further, by the commutativity of the right triangle, this gives S^n the structure of an *H*-space.

- (4) Let X be 1-connected (i.e., $\pi_0 X = \pi_1 X = 0$). Recall that for a covering map $p : E \to B$ of based spaces, given a base point preserving map $f : X \to B$, there exists a unique base point preserving lift $\tilde{f} : X \to E$ such that $p\tilde{f} = f$.
 - (a) Prove that $\pi_n p: \pi_n E \to \pi_n B$ is an isomorphism for $n \ge 2$.

Solution. Note that for $n \ge 2$, S^n and $S^n \times I$ are both 1-connected. We need to prove that $\pi_n p$ is injective and surjective. Since any map $f: S^n \to B$ lifts uniquely to a map $f': S^n \to E$ such that $p \circ f' = f$, $\pi_n p$ is surjective. Let $f, g: S^n \to E$ be such that $[p \circ f] = [p \circ g]$. Let $h: S^n \times I \to B$ be a homotopy between $p \circ f$ and $p \circ g$. Then there exists a unique lift $H: S^n \times I \to E$ such that $p \circ H = h$. In particular, $p \circ H|_0 = p \circ f$ and $p \circ H|_1 = p \circ g$. Therefore, since $H|_0$ lifts $p \circ f$ but so does f, we have $H|_0 = f$ and similarly, $H|_1 = g$. Therefore, $f \sim g$ and [f] = [g] so that $\pi_n p$ is injective.

(b) Compute $\pi_k \mathbb{R}P^n$ in terms of $\pi_k S^n$. What about $\pi_k \mathbb{R}P^{\infty}$?

Solution. If n = 1, $\mathbb{R}P^1 \cong S^1$ so $\pi_k S^1 = \pi_k \mathbb{R}P^n$. Suppose that $n \ge 2$. Then let $p: S^n \to \mathbb{R}P^n$ be the antipodal map which is the quotient of S^n by the equivalence relation $-x \sim x$. This is a covering space. In fact, since S^n is simply connected, it is

the universal cover of S^n . Since $|p^{-1}(*)| = 2$, $\pi_1 \mathbb{R}P^n$ is $\mathbb{Z}/2$. For $n \ge 2$, the previous problem implies that $\pi_k \mathbb{R}P^n \cong \pi_k S^n$.

Recall that $\mathbb{R}P^{\infty} = \bigcup_n \mathbb{R}P^n$. Define $S^{\infty} = \bigcup_{n=1}^{\infty} S^n$ with the union topology. Let $p: S^{\infty} \to \mathbb{R}P^{\infty}$ defined by the union of the map $p: S^n \to \mathbb{R}P^n$. Then $p: S^{\infty} \to \mathbb{R}P^{\infty}$ is a covering map. As before, $\pi_1 \mathbb{R}P^{\infty} \cong \mathbb{Z}/2$. Note that S^{∞} is contractible, so $\pi_k \mathbb{R}P^{\infty} = 0$ for $n \ge 2$.