
FIRST ASSIGNMENT

DUE MONDAY, SEPTEMBER 19

(1) Let E ⊂ X × X be an equivalence relation on a set X. Construct the set of equivalence

classes as colimit in the category Sets.

Solution. Let X = {[x] | x ∈ X} be the set of equivalence classes and q : X → X be the

quotient. Let p1, p2 : E → X be the two projections. We show that

E
p1 //p2
// X

q
// X

is a coequilizer diagram. Then Y is isomorphic to the set of equivalence classes. A map

X → Z satisfies f(p1(x, y)) = f(p2(x, y)) if and only if f(x) = f(y) if (x, y) ∈ E. Define

f ′ : X → Z by f ′([x]) = f(y) for any choice of y ∈ [x]. This is well defined since y ∈ [x]

implies that (x, y) ∈ E so f(x) = f(y). Further, f ′(q(x)) = f ′([x]) = f(x) so f ′ ◦ q = f . Let

f ′′ : X → Z be any other map such that f ′′ ◦ q = f . Then, for [x] ∈ X, f ′′([x]) = f(q(x)) =

f ′([x]) so f ′ = f ′′ and the hence f ′ is unique defined. Therefore, X

(2) Let

A //

��

B //

��

C

��
X // Y // Z

be a commutative diagram.

(a) Prove that if the two inner squares are pushouts, then so is the outer rectangle. That

is, suppose that both Y = B tA X and Z = C tB Y . Prove that Z = C tA X.

Solution. Given maps X →W and C →W making

A //

��

B //

��

C

��

��

X //

**

Y // Z

W
1
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commute, since the left hand square is a pull back, we get a unique map Y →W

A //

��

B //

��

C

��

��

X //

**

Y //

''

Z

W

making the diagram commute. Now, since the right hand square is a pull-back, we

obtain a unique map Z →W

A //

��

B //

��

C

��

��

X //

**

Y //

''

Z

  
W

making the diagram commute. Therefore, Z has the required universal property.

(b) What about if Y = B tA X and Z = C tA X, then is Z = C tB Y ? And what if

Z = C tB Y and Z = C tA X, is Y = B tA X?

Solution. If Y = B tA X and Z = C tA X, then Z = C tB Y . Indeed, suppose that

we have maps

A //

��

B //

��

C

��

��

X // Y //

''

Z

W

making the right hand diagram commute. Then the composites A → X → Y → W

and A→ B → C → W agree, and since the outer rectangle is a pushout, we obtain a
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unique map Z →W

A //

��

B //

��

C

��

��

X // Y //

f ''

Z

  
W

such that X → Y → W is equal to X → Y → Z → W and C → W is equal to

C → Z → W . We need to prove that Y → Z → W is equal to Y → W . However,

both these maps fulfill the universal property for the diagram

A //

��

B

��

��
X //

''

Y

W

for the maps B → C → W and X → Y
f−→ W = X → Y → Z → W . Since Y is the

pushout, the two maps must be equal.

On the other hand, if Z = C tB Y and Z = C tAX, then it is not necessarily the case

that Y = B tA X. An counter-example in sets is given by

{1} //

��

{1, 2} //

��

{1}

��
{1} // {1} // {1}

where the maps are the inclusions when there is a choice.

(3) In the following problem, let Sn−1 → Dn be the inclusion of the boundary, X∨X → X×X
be the map (id×∗)∨(∗×id) and X∨X → X be the fold map id∨ id. For a based topological

space X, let J2(X) = (X ×X)/((x, ∗) ∼ (∗, x)). That is, J2(X) is the push-out

X ∨X //

��

X

��
X ×X // J2(X).
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Further, you may use the fact that D2n ∼= I2n ∼= Dn × Dn and other such standard

homeomorphisms without proof.

(a) Describe Sn×Sn as a CW-complex obtained from Sn∨Sn by attaching a single 2n–cell.

Exhibit this as a pushout.

Solution. We first look at the more general situation where we have A ⊂ X and

B ⊂ Y with quotient maps both denoted by q : X → X/A and q : Y → Y/B. We

prove that

X ×B ∪A× Y

��

(q×∗)∨(∗×q)
// X/A ∨ Y/B

(1×∗)∨(∗×1)
�� F

��

X × Y
q×q

//

G --

X/A× Y/B

%%
Z

is a pushout. Suppose we are given maps F : X × Y → Z and G : X/A ∨ Y/B → Z

making the diagram commute. Define

H : X/A× Y/B → Z

by

H(x, y) = G(x, y).

Then, for any a ∈ A,

H(a, y) = G(a, y) = F (y)

and for any b ∈ B,

H(x, b) = G(x, b) = F (x)

so this is well-defined. It is also continuous since for any open U ⊂ Z,

H−1(U) = (q × q)(G−1(U))

Further, this map is uniquely defined since q × q is surjective.
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Now, consider (X,A) = (Y,B) = (Dn, ∂Dn). The previous construction gives a

pushout

Dn × ∂Dn ∪ ∂Dn ×Dn //

��

Dn/∂Dn ∨Dn/∂Dn

��
Dn ×Dn // Dn/∂Dn ×Dn/∂Dn.

Identifying ∂(Dn×Dn) = Dn× ∂Dn ∪ ∂Dn×Dn, Dn/∂Dn ∼= Sn and Dn×Dn ∼= D2n

proves the claim.

(b) Use your construction in (a) to give J2(S
n) the structure of a CW -complex with one

n–cell and one 2n–cell.

Solution. Consider the following commutative diagram, where the right hand square

is the pushout defining J2(S
n) and the left hand square is the pushout of part (a).

∂D2n //

��

Sn ∨ Sn //

��

Sn

��
D2n // Sn × Sn // J2(S

n).

By 2(a), the outer square is a pushout diagram, which proves the claim.

(c) Show that Sn is an H-space if and only if the attaching map of the 2n-cell of J2(S
n)

is null-homotopic.

Solution. First, note that if Sn × Sn µ−→ Sn gives Sn the structure of an H–space,

then there are homotopies H ′ : Sn × I → Sn from µ ◦ (1 × ∗) to the identity and

H ′′ : Sn × I → Sn from µ ◦ (∗ × 1) to the identity. Letting

H : (Sn ∨ Sn)× I → Sn

be given by H ′(x, t) if x is in the left factor and H ′′(x, t) if it is in the right factor, we

obtain a homotopy from µ ◦ ((1× ∗) ∨ (∗ × 1)) to the fold map ∇ : Sn ∨ Sn → Sn.

Therefore, if Sn is an H–space, then

∂D2n → Sn ∨ Sn ∇−→ Sn

is homotopic to

∂D2n → Sn ∨ Sn (1×∗)∨(∗×1)−−−−−−−−→ Sn × Sn → Sn.(1)
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However, since

∂D2n → Sn ∨ Sn (1×∗)∨(∗×1)−−−−−−−−→ Sn × Sn

is equal to

∂D2n → D2n → Sn × Sn,

(1) extends to D2n, and therefore is null-homotopic.

Conversely, suppose that

∂D2n → Sn ∨ Sn ∇−→ Sn

is null-homotopic. Then it extends to a map D2n → Sn making the following diagram

commute

∂D2n

��

// Sn ∨ Sn

��

// Sn

D2n

44

// Sn × Sn

;;

Since the square is a pushout, we get a lift Sn × Sn → Sn. Further, by the commuta-

tivity of the right triangle, this gives Sn the structure of an H–space.

(4) Let X be 1–connected (i.e., π0X = π1X = 0). Recall that for a covering map p : E → B

of based spaces, given a base point preserving map f : X → B, there exists a unique base

point preserving lift f̃ : X → E such that pf̃ = f .

(a) Prove that πnp : πnE → πnB is an isomorphism for n ≥ 2.

Solution. Note that for n ≥ 2, Sn and Sn×I are both 1–connected. We need to prove

that πnp is injective and surjective. Since any map f : Sn → B lifts uniquely to a map

f ′ : Sn → E such that p ◦ f ′ = f , πnp is surjective. Let f, g : Sn → E be such that

[p ◦ f ] = [p ◦ g]. Let h : Sn× I → B be a homotopy between p ◦ f and p ◦ g. Then there

exists a unique lift H : Sn × I → E such that p ◦H = h. In particular, p ◦H|0 = p ◦ f
and p ◦H|1 = p ◦ g. Therefore, since H|0 lifts p ◦ f but so does f , we have H|0 = f

and similarly, H|1 = g. Therefore, f ∼ g and [f ] = [g] so that πnp is injective.

(b) Compute πkRPn in terms of πkS
n. What about πkRP∞?

Solution. If n = 1, RP 1 ∼= S1 so πkS
1 = πkRPn. Suppose that n ≥ 2. Then let

p : Sn → RPn be the antipodal map which is the quotient of Sn by the equivalence

relation −x ∼ x. This is a covering space. In fact, since Sn is simply connected, it is
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the universal cover of Sn. Since |p−1(∗)| = 2, π1RPn is Z/2. For n ≥ 2, the previous

problem implies that πkRPn ∼= πkS
n.

Recall that RP∞ = ∪nRPn. Define S∞ = ∪∞n=1S
n with the union topology. Let

p : S∞ → RP∞ defined by the union of the map p : Sn → RPn. Then p : S∞ → RP∞

is a covering map. As before, π1RP∞ ∼= Z/2. Note that S∞ is contractible, so

πkRP∞ = 0 for n ≥ 2.


