
FROM SINGULAR HOMOLOGY TO SIMPLICIAL SETS

Any errors discovered in the reading should be forwarded to the author who will deal with
them promptly.

1. Intuition

Fact 1.1. 0 2 N.
Throughout these notes, denote by CGHaus the category of compactly generated Hausdorff

spaces, and by Top we denote the category of spaces.

Definition 1.2. Let N� := {�1} [ N. The set N� is naturally an object of Ord, the
category of partially ordered sets:

{�1! 0! 1! 2! · · · } .
For each n 2 N� we define the real n-simplex by

|4n| :=
(�

(x0, . . . , xn) 2 Rn+1
�0

��Pn
i=0 xi = 1

 
n � 0

? n = �1

topologized by the obvious inclusion |4n| ⇢ Rn+1.

For most n, the sets
HomCGHaus

���4n�1�� , |4n|
�

and
HomCGHaus

���4n+1
�� , |4n|

�

Figure 1. The real 2-simplex |42|
1
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Figure 2. The commuting of di’s.

are quite large. In particular, they’ve at least the cardinality of |4n|. There are however
some morphisms in those Hom-sets which are easy to write down.

Definition 1.3. For n 2 N� and 0  i  n, we define morphisms of CGHaus, di and si, by
the following rule.

|4n�1| di
// |4n| |4n+1|si

oo

(x0, x1, . . . , xn�1)
�

// (x0, x1, . . . , xi�1, 0, xi, . . . , xn�1)

(x0, x1, . . . , xi + xi+1, xi+2, . . . , xn) (x0, x1, . . . , xn)
�

oo

Remark 1.4. We consider a pair of diagrams in CGHaus. Observe:

|41|
d2

&&

(1, 0)
✏

''

|40|
d1

&&

d1
88

|42| (1)
2

88

�

&&

(1, 0, 0) .

|41|

d1
88

(1, 0)
/

77

In a more geometric vein we envision this commutative square as in Figure 2.
Observe:

|40|
d0

&&

(1) ⌘

((

|41|
d0

&&

s0
88

|41| (x0, x1)
-

66

⌘

((

(0, 1) .

|42|

s1
88

(0, x0, x1)
-

66

Again, in a more geometric vein, we envision this commutative square as in Figure 3.
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Figure 3. The commuting of di’s and sj’s.

A trivial exercise:

Exercise 1.5. For each n 2 N�, provide a cellular decomposition for the space |4n|, and
do so in such manner that the maps sj and di are cellular.

An exercise to be completed at least once in your life. You may also wait for the second
instance of this exercise later on.

Exercise 1.6. Verify that for n 2 N� and i, j such that the compositions involved are
defined, the morphisms di and sj obey the following relations, called the co-simplicial
identities. 8

>>>>><

>>>>>:

djdi = didj�1 if i < j

sjdi = disj�1 if i < j

sjdj = 1 = sjdj+1

sjdi = di�1sj if i > j + 1

sjsi = sisj+1 if i  j

Definition 1.7. For each n � 0, and for each 0  i  n, let di, called a face map, to be
the map

HomCW (|4n| , X) // HomCW (|4n�1| , X)

f �
// f � di.

We define

Sing (X) :=

(
Hom (|4�1| , X) Hom (|40| , X)

d0
oo Hom (|41| , X)d1

oo

d0
oo

· · ·
oo

oo

oo

)
,

and we consider this entity as a diagram in Set calling it the singular set of X. We define
the object

S• (X) 2 Ob
⇣
AbGrp(N�)op

⌘
,
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Figure 4. Fix X 2 Ob (CGHaus), and fix f : |42| �! X and consider the
procession above, from a diagram in CGHaus to a diagram in Set.

by

S• (X) := · · · ZHom (|4n�1| , X) ZHom (|4n| , X) · · ·
Pn

i=0(�1)
�1di

oo ,

and refer to it as the singular chain complex.

Exercise 1.8. Two formal exercises:

• Prove the constructions Sing (X) and S• (X) to be functorial.
• Observe that the co-simplicial identities pass contravariantly to another set of iden-

tities, the simplicial identities, and as a consequence find that the singular chain
complex is indeed a chain complex.
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Proposition 1.9. The composition

CGHaus•
HSing

•
//

forget

..

Ch (AbGrp)

CGHaus
S•
// Ch (AbGrp) H•

II

is a reduced homology theory on CGHaus•.

Proof. See Hatcher, May, or Goerss & Jardine. ⇤
Were we to restrict ourselves to those spaces which are CW, then we’ve the following

corollary.

Corollary 1.10. We’ve a natural isomorphism of chains of abelian groups,

HSing

• (X)
⇠! HCW

• (X) .

What about the data we had assembled right before Sing (X), what kind of thing was it?
• a diagram in CGHaus or equivalently a subcategory of CGHaus; or
• a diagram in CGHaus/X or equivalently a subcategory of CGHaus/X.

Definition 1.11. Let |4| # X be the category such that:
Ob (|4| # X) = {|4n|! X : CGHaus|n 2 N�}

and

Hom|4|#X

0

B@
|4n|

✏✏

X

,

|4m|

✏✏

X

1

CA =

8
><

>:

|4n|

  

✓
// |4m|

}}

X

�������
✓ = dik · · · di1sj` · · · sj1

9
>=

>;
.

Let F : |4| # X �! CGHaus be the forgetful functor (|4n|! X) 7�! |4n|.

Remark 1.12. Observe that F (|4| # X) is a diagram in CGHaus, and more, since for each
|4n| appearing in that diagram we’ve maps |4n|! X which commute with the morphisms
of the diagram, we get a map

lim
�!

F (|4|#X)

|4n| �! X.

It must also be noted that if X is pointed, then this colimit is naturally pointed by the
0-simplex corresponding to the point |40| = • �! X.

Lemma 1.13. The induced map
lim
�!

F (|4|#X)

|4n| �! X

is a weak homotopy equivalence.

Proof. It suffices to prove that for each n 2 N, and all X 2 Ob (CGHaus) that the induced
morphism of groups

⇡n

0

@ lim
�!

F (|4|#X)

|4n|

1

A �! ⇡n (X)
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is an isomorphism, and for that lesser criterion a proof of bijectivity will suffice.
Injectivity: suppose

Sn �! lim
�!

F (|4|#X)

|4n|

to generate a homotopy class of spheres in that colimit which passes to the trivial class in
X. We may thus assemble the following commutative diagram.

Sn
//

✏✏

lim
�!

F (|4|#X)

|4•|

✏✏

|4n+1|

""

77

Dn+1

,,

⇠ 77

Sn ^ I+
nullhomotopy

//

⇠
66

X

The first isomorphism is from a common characterization of a nullhomotopy, the second
isomorphism is evident; the indicated lift is the canonical inclusion of |4n+1| into the colimit
corresponding to the morphism |4n+1| �! X. Then since |4n+1| is contractible, so too the
image of Sn in the colimit. Indeed [Sn �! X] = [•] and the induced morphism of homotopy
groups is injective.

Surjectivity: suppose Sn �! X to be some morphism of CGHaus. Then we may assemble
the following diagram.

lim
�!

F (|4|#X)

|4•|

✏✏

@ |4n+1|

##

77

@Dn+1

,,

⇠ 66

Sn
//

⇠
77

X

In this diagram the isomorphisms are evident and the lift is gotten by the universal property
of the colimit on the sub-diagram of F (|4| # X) corresponding to the n + 2 faces @ |4n+1|
in X. Thus the induced morphism of homotopy groups is surjective. ⇤

2. Formalism

We have already observed that S• (X) may be thought of either as a diagram in AbGrp or
as a functor (N�)op �! AbGrp, i.e. an object of the functor category AbGrp(N�)op . Until this
point we’ve thought of Sing (X) only as a diagram in Set, but as with S• we may envision
this diagram as a functor, with as of yet unnamed source.
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Definition 2.1. Let4�, called the augmented simplex category, be the full subcategory
of Ord subtended by the objects

Ob (4�) :=
(
[n] :=

(
{0 < 1 < · · · < n} n � 0

? n = �1

)
.

Lemma 2.2. The category 4� is generated by two types of morphisms:

[n� 1]
di

// [n] [n+ 1]
si

oo

0 �
// 0 0�oo

1 �
// 1 1�oo

...
...

...

i� 1 �
// i� 1 i� 1�

oo

i ⇡
,,

i i�oo

... i+ 1 i+ 1⇡

ll

n� 1 ⌫

++

... i+ 2⌫

kk

n
...

n+ 1⇡

ll

and these morphism satisfy the co-simplicial identities.

Proof. Exercise. ⇤
Definition 2.3. There are two important variations on4�. Let4 be the full subcategory of
4� subtended by the objects [n] for n 2 N, and call this the simplex category. Denote by
4+the wide subcategory of4 wherein morphisms are generated only by the di, and call it the
semi-simplex category. Denote likewise by (4�)+ the wide subcategory of 4� wherein
morphisms are generated by only by the di, and call this the augmented semi-simplex
category.

A functor
(4�)op �! Set

is called an augmented simplicial set. A functor
4op �! Set

is called a simplicial set. A functor
�
4+

�op �! Set

is called a semi-simplicial set. Lastly, a functor
�
4+
�
�op �! Set

is called an augmented semi-simplicial set.

Remark 2.4. The profusion of categories here may seem unnecessary, but there are certain
advantages. Our implicit use of 4� until now, as oppose to 4 is precisely why we get
a reduced homology theory, as opposed to a homology theory. Similarly, it will be seen
that generalization of the construction lim

�!
F (|4|#X)

|4•|, did not depend on keeping track of
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those maps sj between simplices, so the categories 4+
�and 4+ will do just as well for that

construction in some ways. This is not to say that the maps sj are irrelevant in general, in
fact they are essential for products as will be seen later.

We’ve already seen one instance of such an object, Sing (X), but there are of course
others. Perhaps the most important for our purposes amongst these simplicial sets are the
representable pre-sheaves.

4n := Hom (_, [n])

Exercise 2.5. Prove that the assignment

|_| : 4 // CGHaus

4n �
// |4n|

is functorial.

We constructed the pre-sheaves Sing (X) from diagrams in CGHaus, and what’s more, we
proved that the colimits over those diagrams are weakly equivalent to the original spaces X.
We will now discover how, in fact, every simplicial set corresponds to a diagram in a similar
way, and how those diagrams can be used to beget spaces in such a way that we recover the
construction performed with Sing (X).

Towards the extraction from an arbitrary pre-sheaf the correct diagram the following
famous lemma suggests the way.

Lemma 2.6 (the Yoneda Lemma). Let C be a small category. Letting, for each X 2 Ob (C ),
hX := HomC (_, X), then for each Y 2 Ob

�
SetC

op�
, we’ve an isomorphism of sets

Hom bC (hX , Y )
⇠! Y (X)

which is moreover natural in both X and Y .

Corollary 2.7 (the Yoneda Embedding). The functor C �! SetC
op
: X 7�! hX is a full

and faithful embedding.

Definition 2.8. Given a pre-sheaf X : 4op �! Set, define the category 4 # X to be the
category given by setting

Ob (4 # X) :=
�
4n �! X : Set4

op��n 2 N
 
,

and

Hom4#X

0

B@
4n

✏✏

X

,

4m

✏✏

X

1

CA :=

8
><

>:

4n

��

✓
// 4m

��

X

9
>=

>;
,

with the obvious composition law.

Exercise 2.9. Prove the assignment

Set4
op

// Cat

X �
// 4 # X

to be functorial.
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Just as we did earlier, we may choose to let F be the obvious functor (4n ! X) 7�! 4n,
whence F (4 # X) is a diagram in Set4

op
. What’s more however, it is not merely a diagram

in Set4
op

but in fact a diagram therein contained in the image of 4 under the Yoneda
embedding.

Corollary 2.10. For any X 2 Ob
�
Set4

op�
we’ve an isomorphism lim

�!
F (4#X)

4• ⇠! X which is

natural in X.

Definition 2.11. We define the geometric realization of a simplicial set by

|_| : b4 // CGHaus

X �
// |X| := lim

�!
F (4#X)

|4•| .

where the colimit lim
�!

F (4#X)

|4•| is the colimit over the diagram in CGHaus gotten by applying

|_| : 4n 7�! |4n| to the diagram F (4 # X) in Set4
op
.

Remark 2.12. We use the same notation as we did for 4n 7�! |4n| as this new functor
extends the prior use in a way which admits formalization1. More, it must be noted that
the way in which we extend this functor preserves colimits. In particular note that for any
X 2 Ob

�
Set4

op�
we’ve ������

lim
�!

F (4#X)

4•

������
⇠ |X| = lim

�!
F (4#X)

|4•| .

Exercise 2.13. Suppose I to be a small category and suppose

I // Top

i � // Xi

to be a diagram in Top. Prove that the space
`

i2Ob(I) Xi/⇠

where Xi 3 x ⇠ y 2 Xj if and only if there exists a chain

Xi X1 Xj

x X0

^^ ??

x1 · · ·

__

@@

y

x0
�

__

>

>>

· · ·
>

??

�

``

of objects X0, X1, . . . , morphisms in the diagram, and elements as above, enjoys the universal
property of lim

�!
Xi.

1

In fact it is a Kan extension along the Yoneda embedding.
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Remark 2.14. You should convince yourself that |Sing (X)| got this way is the same space
as lim

�!
|4|#X

|4•| which we’ve already proved weakly equivalent to X.

Using what you proved in the previous exercise, observe that for a simplicial set X, the
space |X| is isomorphic to the space

`
X(0)|40|`X(1)|41|`X(2)|42|···/⇠

where the relation ⇠ is generated by
��4n�1�� 3 x ⇠ di (x) 2 |4n| .

Exercise 2.15. Convince yourself that what we’ve proven in this exercise is enough to verify
that geometric realization is concerned only with the morphisms coming from 4+ or 4+

�,
i.e. prove that given any X 2 Ob

⇣
Set4

op
�

⌘
, that

lim
�!

F (4+#X)

|4•| ⇠! lim
�!

F(4+
�#X)

|4•| ⇠! lim
�!

F (4#X)

|4•| ⇠! lim
�!

F (4�#X)

|4•| .

Remark 2.16. Degeneracies however are extremely important for agreement of our geometric
notion of the product on spaces, with the categorical notion on simplicial sets. See homework
4 problem 4.

As is suggested by our development of them in parallel, there is a formal relationship
between the functors |_| and Sing.

Proposition 2.17. The functors

Set4
op

|_|

99

? CGHaus

Sing

uu

.

comprise an adjunction.

Indeed, the proof of the adjunction will now seem trivial. In fact, the motivation for the
tack we have taken through this material was precisely to make this so 2.

2

in all truthfulness, it has also been to suggest a way that the Yoneda lemma, all too often seen merely

as abstract formalism, admits a natural geometric interpretation.
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Proof. Let X 2 Ob
�
Set4

op�
and let Y 2 Ob (CGHaus). Then observe that

HomCGHaus (|X| , Y )
⇠! HomCGHaus

0

@ lim
�!

F (4#X)

|4•| , Y

1

A

⇠! lim
 �

F (4#X)

HomCGHaus (|4•| , Y )

= lim
 �

F (4#X)

HomCGHaus (4•, Sing (Y ))

⇠! HomSet4
op

0

@ lim
�!

F (4#X)

4•, Sing (Y )

1

A

where the first isomorphism was observed after the definition of the geometric realization,
the second is the universal property, the equality is by definition, and the last isomorphism
is again by universal property. ⇤


