
Homotopy Excision Theorem. Let (X;A,B) be an excisive triad and let ∗ ∈ C =
A∩B. If (A,C) is m− 1 connected and (B,C) is n− 1 connected for m ≥ 2 and n ≥ 1,
then the inclusion (A,C) ↪→ (X,B) induces an n+m− 2 equivalence.

Our proof will follow the one given by J. P. May in A Concise Course in Algebraic
Topology.

Proof. Define the qth homotopy group of the triad (X;A,B) as classes of maps

(Iq; Iq−2 × {1} × I, Iq−1 × {1}, Jq−2 × I ∪ Iq−1 × {0})→ (X;A,B, ∗).

Here Jq−2 = ∂Iq−2 × I ∪ Iq−2 × {0}, so the last member of the tedrad constitutes the
remaining faces of Iq. The following is then an exact sequence.

· · · → πq+1(X;A,B)→ πq(A,C)→ πq(X,B)→ πq(X;A,B)→ · · ·

Exactness at (A,C) can be seen in the following picture.
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The right face coming from the cube is equivalent to the existence of a homotopy in
(X,B) from the right face to the constant map on the left face.

The two pictures below show the two inclusions for exactness at (X,B).
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Viewing the first map from (A,C) as a map in (X;A,B) (since C ⊂ B on the front
face and ∗ ∈ A on the right face), the null-homotopy is given by the arrow (note the
interior of the cube maps to A). In the second picture, assuming the existence of the
null-homotopy represented by the straight arrow gives the cube. The top face is then
the preimage of the front face, and they are homotopic by the curved arrow.

Finally, the nontrivial inclusion to show exactness at (X;A,B) can be seen in the fol-
lowing picture.

B

* *

C
*A

*

*
* *

*



The assumption that the face labeled A is null-homotopic in (A,C) gives the right cube.
Since C ⊂ B the entire prism maps into (X,B). It is homotopic to the left cube by the
arrow.

May notes in his proof that the sequence can be viewed as the long exact sequence of the
pair P (A,C) ⊂ P (X,B) = {γ : I → X : γ(0) = ∗, γ(1) ∈ B} given the compact-open
topology with the constant map as a base point. If one is comfortable with the picture
below, then it can replace the arguments of all four pictures above.
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In any case the claim of our theorem can be rewritten as πq(X;A,B) = 0 for 2 ≤ q ≤
m + n − 2. By taking a CW approximation of our triad and using the fact that Iq

is compact, we may assume without loss of generality that (A,C) and (B,C) are finite
relative CW complexes. Moreover, we may further reduce to the case where A = C∪Dm

and B = C ∪ Dn. Indeed, if the claim is true in this case then when B is built from
C with more than one cell we can take an intermediary complex C ⊂ B′ ⊂ B. Setting
X ′ = A∪C B′ the inclusion map factors as (A,C) ↪→ (X ′, B′) ↪→ (X,B), and both maps
induce isomorphisms by induction. For induction on the size of A we again take an
intermediary complex C ⊂ A′ ⊂ A and set X ′ = A′∪CB. Then the long exact sequences
for the triples (A,A′, C) and (X,X ′, B) give us the following commutative diagram.

πq+1(A,A
′) πq(A

′, C) πq(A,C) πq(A,A
′) πq−1(A

′, C)

πq+1(X,X
′) πq(X

′, B) πq(X,B) πq(X,X
′) πq−1(X

′, B)

Applying the Five Lemma for 2 ≤ q < m+n− 2 and the Four Lemma for q = m+n− 2
completes the inductive step. So we have reduced to the case A = C ∪ Dm and
B = C ∪Dn.

Let Dm
r and Dn

r denote the open discs of radius r contained in the closed unit discs at-
tached to C. Take points x ∈ Dm

1/2 and y ∈ Dn
1/2 and consider the following relationships

among triads.

(X − {y};X − {y}, X − {x, y}) ⊂ (X;X − {y}, X − {x}) ' (X;A,B)

The homotopy equivalence is given by retracting the punctured discs radially to their
boundaries. Since the first triad has no nontrivial homotopy groups. A proof of this
(though with different names of faces) can be seen in the first picture of our proof
by allowing the right face to map to all of X rather than just A; use the arrow as
the null-homotopy. So we will be done if we can homotope an arbitrary map into
(X;A,B) to a map into (X − {y};X − {y}, X − {x, y}) with a homotopy that remains



in (X;X − {y}, X − {x}). To that end, let f represent some element of πq(X;A,B).
The homotopy we will produce consists of deforming Iq across some time coordinate and
composing with f . The idea behind how we will manipulate the cube is illustrated in the
following pictures of f in which π denotes the projection onto the first q−1 coordinates.
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If the points in f−1(y) were removed from the cube then of course applying f to what
remains would map into X−{y} as desired. Removing points, however, does not consti-
tute a continuous deformation of the cube. The next best thing is to push these points
to a location where it is known that f maps nothing to y, like the back face as shown
in the first picture. If we only drag f−1(y) back then by continuity other points will be
left in its place defeating the purpose of dragging it. To avoid this, we push the entire
prism π−1(π(f−1(y))) from the front face straight to the back. This is a continuous de-
formation of the cube that leaves nothing in f−1(y). The reason this argument doesn’t
complete the proof is that there is an additional requirement on the front face - it must
always avoid x. As we push the prism in the second picture from front to back we are
indenting a slice of the front face and pulling it through the interior of cube, and we
need to know that this slice avoids things that map to x since we require that the front
face maps into X − {x}. So the following picture depicts the desired situation where
the proof would essentially be complete. The projections of f−1(x) and f−1(y) onto the
front face are disjoint so that the red slice may be pushed back without every passing
through the blue.
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Our goal is to check that the requirement m + n ≥ q + 2 makes the codomain large
enough to guarantee the existence of a pair of points with the property shown in
the picture above. We start by letting Ur = f−1(Dm

r ∪ Dn
r ). By the Whitney Ap-

proximation Theorem, there is a homotopy h between f |U3/4
and some smooth map

f ′ : U3/4 → Dm
3/4 ∪ Dn

3/4. Taking a partition of unity {ρ, ρ′} subordinate to the cover

{Iq − U1/2, U3/4} allows us to define a map g = ρf + ρ′f ′ where addition and scalar
multiplication on Dm

3/4 ∪ Dn
3/4 is done via smooth charts as usual. Then g is smooth

on U1/2 and the map (x, t) 7→ ρ(x)f(x) + ρ′(x)h(x, t) shows that it is homotopic to f .
Moreover, since f(Iq−2×{1}×I) ⊂ A and f(Iq−1×{1}) ⊂ B, by taking f ′ close to f we
may assume that g(Iq−2 × {1} × I) ∩Dn

1/2 = ∅ and g(Iq−1 × {1}) ∩Dm
1/2 = ∅. This way

g will still represent an element of πq(X;X−{y}, X−{x}) for any x ∈ Dm
1/2 and y ∈ Dn

1/2.



As an open subset of the smooth manifold I2q, the set V = g−1(Dm
1/2) × g−1(Dn

1/2) is

a smooth submanifold. Consider the set W = {(v, v′) ∈ V |π(v) = π(v′)}. This is the
zero set of the smooth submersion (v, v′) 7→ (v1 − v′1, ..., vq−1 − v′q−1), so it is a smooth
submanifold of codimension q − 1. This means that g × g : W → Dm

1/2 × Dn
1/2 is a

smooth map between manifolds of dimension q + 1 and m + n. Since we are assuming
q + 1 < m + n, it cannot be surjective so take some (x, y) 6∈ im(g × g). We have found
our points satisfying π(g−1(x)) ∩ π(g−1(y)) = ∅ as desired. Now, since we also have
g(∂Iq−1 × I) ∩ Dn

1/2 = ∅ and y ∈ Dn
1/2, by Uryssohn’s Lemma for disjoint closed sets

there is a map µ : Iq−1 → I satisfying

µ(π(g−1(x)) ∪ ∂Iq−1) = 0 and µ(π(g−1(y))) = 1.

So finally we define the desired homotopy H : Iq+1 → X by Ht(r, s) = g(r, s − stµ(r)).
Then H0 = g and it must be that H1 avoids y since otherwise y = H1(r, s) = g(r, s(1−
µ(r))) = g(r, 0) = ∗ is a contradiction. It remains only to check that Ht is a map into
(X;X−{y}, X−{x}) for all t. On ∂Iq−1×I and Iq−1×{0} we have µ(r) = 0 and t = 0,
respectively, so Ht = g here. The last face is Iq−1 × {1} whose image under Ht cannot
contain x since otherwise x = Ht(r, 1) = g(r, 1 − tµ(r)) = g(r, 1) 6∈ Dm

1/2 which is again
a contradiction. This completes the proof. Comparing the formula for the homotopy to
previous pictures, we can see that r, the first q−1 coordinates of Iq, is left unchanged by
our manipulation of the cube, so no points are being moved left, right, up, or down. The
requirement µ(π(g−1(x))) = 0 makes sure that nothing in the front face that would pass
through g−1(x) is pushed back as t moves from 0 to 1. The requirement µ(π(g−1(y))) = 1
makes sure that everything that would map to y is pushed all the way to the back face
by the time t = 1.


