MATH 6280 - CLASS 9

Contents

1.	Cofibrations and the HEP - Continued	1
2.	Quotients by contractible subspaces	3
3.	Barratt-Puppe Sequence	5
4.	Replacing $f: X \to Y$ by a cofibration	6
5.	Neighborhood Deformation Retracts	7
6.	Homotopy Fiber	7

These notes are based on

- Algebraic Topology from a Homotopical Viewpoint, M. Aguilar, S. Gitler, C. Prieto
- A Concise Course in Algebraic Topology, J. Peter May
- More Concise Algebraic Topology, J. Peter May and Kate Ponto
- Algebraic Topology, A. Hatcher

1. Cofibrations and the HEP - Continued

Proposition 1.1. The pushout of a cofibration is cofibration. That is, for $A \xrightarrow{i} X$ a cofibration and $f: A \to Y$ be a map, then $Y \xrightarrow{j} X \cup_f Y$ defined by

is a cofibration.

Proof. Observe that

$$(Y \cup_f X) \times I \cong (Y \times I) \cup_{f \times \mathrm{id}} (X \times I).$$

Indeed, given a commutative diagram

For each $t \in I$, there is a map h_t making the following diagram commute:

Then $H(p,t) = h_t(p)$ is the universal arrow.

Then using the HEP for $A \to X$ (*) followed by the universal property of the pushout $(Y \cup_f X) \times I$ (*), we get

Corollary 1.2. Let $X \xrightarrow{f} Y \xrightarrow{i} C_f$ be a cofiber sequence. Then $Y \xrightarrow{i} C_f$ and $CY \to C_i$ are cofibrations.

Proof. This follows from the fact that $X \to CX$ is a cofibration and that

 $\begin{array}{ccc} X \longrightarrow CX \\ \downarrow & & \downarrow \\ \end{array}$

and

are pushouts.

2. QUOTIENTS BY CONTRACTIBLE SUBSPACES

Definition 2.1. A contracting homotopy is a map $H: X \times I \to X$ such that $H_0 = id_X$ and $H_1 = *$.

Proposition 2.2. Suppose that $A \subset X$ and $* \in A$. Suppose that there exists a map $H : X \times I \to X$ such that

- $H|_{X \times \{0\}} = \operatorname{id}_X$
- $H|_{A \times I}$ has image in A and is a contracting homotopy for A.

Then $X \xrightarrow{q} X/A$ is a homotopy equivalence.

Proof. We need to find a map $p: X/A \to X$ and homotopies $p \circ q \simeq \mathrm{id}_X$ and $q \circ p \simeq \mathrm{id}_{X/A}$. The proof of the continuity of the maps we construct is below.

The map $q: X \to X/A$ has a set theoretic section given by

$$s(\overline{x}) = \begin{cases} x & x \notin A \\ * & x \in A. \end{cases}$$
$$X \xrightarrow{q} X/A \xrightarrow{s} X \\ \searrow p & \bigvee_{X}^{H|_{X \times \{1\}}} X$$

Note that $p \circ q = H|_{X \times \{1\}}$. So, H is a homotopy between id_X and $p \circ q = H|_{X \times \{1\}}$. Define G as

Then, $G(\overline{x}, 0) = \overline{x}$ and

$$G(\overline{x},1) = q \circ (H|_{X \times \{1\}} \circ s) = q \circ p.$$

So G is a homotopy between $id_{X/A}$ and $q \circ p$. Continuity of p: 3

For $U \subset X$ open,

$$q^{-1}(p^{-1}(U)) = (p \circ q)^{-1}(U) = (H|_{X \times \{1\}})^{-1}(U)$$

is open in X by the continuity of $H|_{X \times \{1\}}$, hence $(p^{-1}(U))$ is open in X/A and p is continuous.

Continuity of G

Note that if $U \subset X$ and $U \cap A = \emptyset$ or $A \subset U$, then $s^{-1}(U)$ is open in X/A since $q^{-1}(s^{-1}(U)) = U$ in this case.

For $\overline{U} \subset X/A$ open, let $U = q^{-1}(\overline{U})$. Then $A \subset U$ or $A \cap U = \emptyset$. Suppose that $A \subset U$. Then $A \times I \subset H^{-1}(U)$ and $(q \times \mathrm{id})^{-1}(s \times \mathrm{id})^{-1}H^{-1}(U) = H^{-1}(U)$, so that $(s \times \mathrm{id})^{-1}H^{-1}(U)$ is open. If $A \cap U = \emptyset$, then since $H_{A \times I}$ has image in A, $H^{-1}(U) \cap A \times I = \emptyset$. Again, we have $(q \times \mathrm{id})^{-1}(s \times \mathrm{id})^{-1}H^{-1}(U) = H^{-1}(U)$.

Proposition 2.3. Let $A \subseteq X$ subspace, with A contractible. Suppose that the inclusion $i : A \to X$ is a cofibration. Then $X \to X/A$ is a homotopy equivalence.

Proof. Choose a contraction $h : A \times I \to A$. Composing h with the inclusion of A into X, we get a map $H : A \times X \to X$ such that the following digram commutes:

Since $A \to X$ is a cofibration, we can extend H to a map $\widetilde{H} : X \times I \to X$ as indicated in the diagram. Then \widetilde{H} satisfies

- $\widetilde{H}: X \times \{0\} \to X$ is the identity.
- $\widetilde{H}(A \times I) = H(A \times I) = h(A \times I) \subset A$
- $\widetilde{H}(A \times \{1\}) = *$

which are the conditions of Proposition 2.2. Hence $X \to X/A$ is a homotopy equivalence.

Example 2.4. Let $A = S^1 \setminus \{(1,0)\}$ and consider the inclusion $A \to S^1$. Then $S^1/A \cong T$ where the topology on $T = \{a, b\}$ with open sets $\emptyset, \{a\}, \{a, b\}$. However, this is not a homotopy equivalence. In fact, T is contractible. Let $H: T \times I \to T$ be given by

$$H(x,s) = \begin{cases} a & (x,s) \neq (b,0) \\ b & (x,s) = (b,0). \end{cases}$$

Then $H^{-1}{a} = ({a} \times I) \cup (T \times (0, 1])$ which is open, so H is continuous and gives a contraction of T onto ${a}$.

Definition 2.5. A based space X is well pointed if $* \to X$ is a cofibration.

Exercise 2.6. Let $SX = (X \times I)/(X \times \{0\} \cup X \times \{1\})$ and $\Sigma X = (X \times I)/(X \times \{0\} \cup X \times \{1\} \cup * \times I)$ Prove that if X is well-pointed, the natural map $SX \to \Sigma X$ is a homotopy equivalence.