MATH 6280 - CLASS 8

Contents

1. Cofibrations and the HEP

These notes are based on

- Algebraic Topology from a Homotopical Viewpoint, M. Aguilar, S. Gitler, C. Prieto
- A Concise Course in Algebraic Topology, J. Peter May
- More Concise Algebraic Topology, J. Peter May and Kate Ponto
- Algebraic Topology, A. Hatcher

1. Cofibrations and the HEP

Definition 1.1 (Homotopy Extension Property). Let \mathcal{C} be a class of topological spaces. A map $i: A \to X$ has the \mathcal{C} -HEP if, for every $Y \in \mathcal{C}$, the following extension problem has a solution

In other words, you can extend the homotopy on $f|_A$ to one on f. This can also be phrased in terms of the following extension problem:

If C is the collection of all topological spaces, we say that $i : A \to X$ has the HEP and call i a *cofibration*.

Lemma 1.2. Let J = [0, 1]. The following maps have the HEP:

1

- (a) $i_0: X \to X \times J$
- (b) $i_0: X \to CX$
- (c) Then the map $j: X \to M_f$ which sends x to (x, 0) in M_f , where for $X \xrightarrow{f} Y$, M_f is the pushout

Proof.

(a-b) We need to show that there are extensions to

and

The idea is to stretch the cylinder or the cone through the homotopy. This can be done using the homotopy

(1)
$$\widetilde{H}((x,t),s) = \begin{cases} f(x,1-(1-t)(1+s)) & (1-t)(1+s) \le 1\\ H(x,(1-t)(1+s)-1) & (1-t)(1+s) \ge 1 \end{cases}$$

 $\mathbf{2}$

(c) For

the extension is defined exactly as in the previous problem. We let

$$\widetilde{H}|_{(X \times I) \times I}((x,t),s) = \begin{cases} f(x,1-(1-t)(1+s)) & (1-t)(1+s) \le 1\\ H(x,(1-t)(1+s)-1) & (1-t)(1+s) \ge 1 \end{cases}$$

and

$$\tilde{H}|_{Y \times I}(y,s) = f(y,1)$$

Remark 1.3. Let's experiment with the homotopy of the previous proof.

• t = 0: $(1 - t)(1 + s) = (1 + s) \ge 1$ for all s, so

$$H((x,0),s) = H(x,s)$$

 $\widetilde{H}((x,0),s) = H(x,s)$ • t = 1/4: then $(1-t)(1+s) = \frac{3}{4}(1+s) \le 1$ if and only if $s \le \frac{1}{3}$, so

$$\widetilde{H}((x,\frac{1}{4}),s) = \begin{cases} f(x,\frac{1}{4}(1-3s)) & s \le \frac{1}{3} \\ H(x,\frac{1}{4}(3s-1)) & s \ge \frac{1}{3} \end{cases}$$

• t = 1/2: then $(1 - t)(1 + s) = \frac{1}{2}(1 + s) \le 1$ for all s since $0 \le s \le 1$, so

$$\widetilde{H}((x,\frac{1}{2}),s) = f(x,\frac{1}{2}(1-s))$$

• t = 3/4: then $(1 - t)(1 + s) = \frac{1}{4}(1 + s) \le 1$ for all s, so

$$\widetilde{H}((x,\frac{3}{4}),s) = f(x,\frac{1}{4}(3-s))$$

• t = 1: then $(1 - t)(1 + s) = 0 \le 1$ for all s, so

$$H((x,1),s) = f(x,1)$$

FIGURE 1. The extension \widetilde{H} described in (1).

Corollary 1.4. The inclusion $S^{n-1} \to D^n$ is a cofibration.

Proof. Indeed, $D^{n-1} \cong CS^{n-1}$.

Proposition 1.5 (Universal Test Diagram). Consider $A \xrightarrow{i} X$ and let M_i be the mapping cylinder defined by the pushout

Then $i: A \to X$ is a cofibration if and only if there exists r making the following diagram commute:

Proof. Suppose that $i: X \to A$ is a cofibration, then this is just the HEP. Now suppose that r exists. Consider another diagram

Since M_i is a pushout, there is a factorization

Then $\widetilde{H} = H' \circ r$ is the desired extension.

Corollary 1.6. If $A \subset X$, then $i : A \to X$ is a cofibration if and only if $X \times I$ is a retract of $M_i = X \times \{0\} \cup A \times I$.

Proof. The map $r: X \times I \to M_i$ has the property that $M_i \to X \times I \to M_i$ is the identity, so it is a retract.

Corollary 1.7. A cofibration $i : A \to X$ is an injection. Further, if X is Hausdorff, i(A) is closed in X.

Proof. Let J and and r be as above. Then

$$J(a, 1) = r(i(a), 1).$$

Since $J|_{A \times \{1\}}$ is the identity on A, this implies that $i(a) \neq i(a')$ if $a \neq a'$.

Since $A \to X$ is a cofibration, so is $i(A) \to X$. Hence, $X \times I$ retracts onto $X \times \{0\} \cup i(A) \times I$. For a Hausdorff space, the image of a retract is closed, so $X \times \{0\} \cup i(A) \times I$ is a closed subspace of $X \times I$. Therefore, intersecting with $X \times \{1\}$, we conclude that $A \times \{1\}$ is closed in $X \times \{1\}$ so that A is closed in X.

Exercise 1.8. Let $X = \{0, 1\}$ with the trivial topology. Let $A = \{0\}$. Show that the inclusion $A \to X$ is a cofibration whose image is not closed.

FIGURE 2. Another depiction of (1).