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1. COFIBRATIONS AND THE HEP

Definition 1.1 (Homotopy Extension Property). Let C be a class of topological spaces. A map
i: A — X has the C-HEP if, for every Y € C, the following extension problem has a solution

A AxT

In other words, you can extend the homotopy on f|4 to one on f. This can also be phrased in

terms of the following extension problem:
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If C is the collection of all topological spaces, we say that ¢ : A — X has the HEP and call i a

coftbration.

Lemma 1.2. Let J = [0,1]. The following maps have the HEP:
1


http://link.springer.com.colorado.idm.oclc.org/book/10.1007/b97586
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(a) ig: X — X x J
(b) ip: X - CX

(¢) Then the map j : X — My which sends x to (x,0) in My, where for X EN Y, My is the pushout

X 2o xxJ.

|

Y —— M;

Proof.

(a-b) We need to show that there are extensions to

X x 1

and

The idea is to stretch the cylinder or the cone through the homotopy. This can be done
using the homotopy

" F(m.t).0) = fla,1—(1-t1+s) (1-t1+s) <1
H(,(1-t)1+s)—1) 1-t)(1+s)>1
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(c) For

the extension is defined exactly as in the previous problem. We let

_ 2 l-(1-t)1+s) (1-D1+s) <1
Floenr(@),8) = 11700+ (A-0(+9) <
H(z,(1-t)(1+s)—1) (1—-t)(1+s)>1

and

Hlyx1(y,s) = f(y, 1)

Remark 1.3. Let’s experiment with the homotopy of the previous proof.

et=0: (1-t)(1+s)=(1+s)>1foralls,so

H((z,0),s) = H(x,s)

t=1/4: then (1—t)(1+s) =2(1+s) < 1ifand only if s < £, so

- 1 ) flz,t(1-3s) s<
H(:n,%(?)s—l)) 5>
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t=1/2: then (1 —t)(1+s)=2%(1+s) <1 forall ssince 0 <s<1,so0

H((z, 3),5) = fla 5 (1~ 5)
e t=3/4: then (1 —t)(1+s)=1(1+s) <1foralls,so
A((r,2), ) = fla, 33~ 9))

o t=1:then (1—-¢)(1+s)=0<1foralls, so

H((z,1),5) = f(x,1)
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FIGURE 1. The extension H described in .

Corollary 1.4. The inclusion S"~' — D™ is a cofibration.

Proof. Indeed, D"~ ! = CS"—1, 0

Proposition 1.5 (Universal Test Diagram). Consider A Y X and let M; be the mapping cylinder
defined by the pushout

A0 AxT
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Theni: A — X is a cofibration if and only if there exists r making the following diagram commute:

A" AxT

Proof. Suppose that i : X — A is a cofibration, then this is just the HEP. Now suppose that r

exists. Consider another diagram

Since M; is a pushout, there is a factorization

%0

A
i X x1
R
X J
Then H = H' o r is the desired extension. O

Corollary 1.6. If A C X, then i : A — X is a cofibration if and only if X x I is a retract of
M;=Xx{0}UAXI.

Proof. The map r : X x I — M; has the property that M; — X x I — M, is the identity, so it is a

retract. 0

Corollary 1.7. A cofibration i : A — X is an injection. Further, if X is Hausdorff, i(A) is closed
mn X.
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Proof. Let J and and r be as above. Then
J(a,1) =r(i(a),1).

Since J|4x 41} is the identity on A, this implies that i(a) # i(a’) if a # @'.

Since A — X is a cofibration, so is i(A) — X. Hence, X x I retracts onto X x {0} Ui(A) x I.
For a Hausdorff space, the image of a retract is closed, so X x {0} Ui(A) x I is a closed subspace
of X x I. Therefore, intersecting with X x {1}, we conclude that A x {1} is closed in X x {1} so
that A is closed in X. O

Exercise 1.8. Let X = {0,1} with the trivial topology. Let A = {0}. Show that the inclusion

A — X is a cofibration whose image is not closed.
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FIGURE 2. Another depiction of .
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