MATH 6280 - CLASS 6

CONTENTS

1.	H-cospaces	1
2.	Higher Homotopy Groups	4
3.	Homotopy cofiber	4

These notes are based on

- Algebraic Topology from a Homotopical Viewpoint, M. Aguilar, S. Gitler, C. Prieto
- A Concise Course in Algebraic Topology, J. Peter May
- More Concise Algebraic Topology, J. Peter May and Kate Ponto
- Algebraic Topology, A. Hatcher

1. H-cospaces

Definition 1.1. A pointed topological space Q is an H-cospace if it has a map

$$\nu: Q \to Q \lor Q$$

for which $e:Q \to Q, e(q) = *$ is a counit up to homotopy. That is

$$Q \xrightarrow{\nu} Q \lor Q \xrightarrow{(\mathrm{id},e)} Q$$

and

$$Q \xrightarrow{\nu} Q \lor Q \xrightarrow{(e, \mathrm{id})} Q$$

are homotopic to the identity.

There is a corresponding notion of homotopy co-associative, and of homotopy co-inverses τ : $Q \to Q$, of *H*-cogroup, and homotopy co-commutative *H*-cogroup. A co-group homomorphism is a continuous map $k : Q \to Q'$ which makes the following diagram commute:

Theorem 1.2. $[Q, -]_* : \operatorname{Top}_* \to \operatorname{Gr}$ a functor to Gr if and only if Q is an H-cogroup. Further, if $k: Q \to Q'$ is a homomorphism of H-cogroups, then $[Q',]_* \to [Q,]_*$ is a natural transformation.

Proof. If Q is an H-cogroup, then

$$\nu:Q\to Q\vee Q$$

induces maps

$$[Q \lor Q, X]_* \to [Q, X]_*$$

However, $[Q \lor Q, X]_* \cong [Q, X]_* \times [Q, X]_*$. This gives the group multiplication.

If $[Q, -]_*$ is a functor to groups, letting $i_1, i_2 : Q \to Q \lor Q$ be the inclusions at the base point, the comultiplication ν is any map homotopic to $[i_1][i_2]$ in $[Q, Q \lor Q]_*$.

Example 1.3. Let $\nu : \Sigma X \to \Sigma X \lor \Sigma X$ be defined by the pinch map:

$$\nu(x \wedge t) = \begin{cases} (x \wedge 2t, *) & 0 \le t \le 1/2\\ (*, x \wedge (2t - 1)) & 1/2 \le t \le 1. \end{cases}$$

The inverse can be defined by

 $\tau(x \wedge t) = x \wedge (1 - t).$

Given any map $f: X \to Y$, we get a group homomorphism

$$\Sigma f: \Sigma X \to \Sigma Y$$

defined by

$$\Sigma(f)(x \wedge t) = f(x) \wedge t.$$

Recall:

Proposition 1.4. There is a natural homeomorphism

$$\operatorname{Map}_*(\Sigma X, Y) \cong \operatorname{Map}_*(X, \Omega Y)$$

such that

$$f \mapsto f(x)(t) = f(x \wedge t)$$

Exercise 1.5. Check that this induces a group isomorphism

$$[\Sigma X, Y]_* \to [X, \Omega Y]_*$$

which is natural in both X and Y.

Lemma 1.6 (Eckman-Hilton argument). Let X be a set and let $*, \otimes : X \times X \to X$ be two unital binary operations with the same unit $e \in X$. Suppose that

$$(a \otimes b) * (c \otimes d) = (a * c) \otimes (b * d)$$

Then $* = \otimes$ and the operation is both commutative and associative.

Proof. Exercise.

Proposition 1.7. If Q is an H-cogroup and W is an H-group, then the two group structures on $[Q, W]_*$ are equal and this is in fact an abelian group.

Proof. Let [a], [b], [c] and [d] be elements of $[Q, W]_*$ with representatives a, b, c, d. Let

$$[a] \ast [b] = [\mu \circ (a \times b)]$$

that is, the composite

$$Q \xrightarrow{a \times b} W \times W \xrightarrow{\mu} W$$

Let

$$[a] \otimes [b] = [(a \lor b) \circ \nu]$$

that is, the composite

$$Q \xrightarrow{\nu} Q \lor Q \xrightarrow{a \lor b} W .$$

We must show that

$$([a] \otimes [b]) * ([c] \otimes [d]) = ([a] * [c]) \otimes ([b] * [d]).$$

It's enough to show that

$$(\mu \circ (a \times b) \lor \mu \circ (c \times d)) \circ \nu = \mu \circ ((a \lor c) \circ \nu \times (b \lor d) \circ \nu)$$

However,

$$(\mu \circ (a \times b) \lor \mu \circ (c \times d)) \circ \nu = \mu \circ ((a \times b) \lor (c \times d)) \circ \nu$$

and

$$\mu \circ ((a \lor c) \circ \nu \times (b \lor d) \circ \nu) = \mu \circ ((a \lor c) \times (b \lor d)) \circ \nu.$$

However, the maps

$$(a\times b)\vee (c\times d):Q\vee Q\to W\times W$$

and

$$(a \lor c) \times (b \lor d) : Q \lor Q \to W \times W$$

are equal (this is easy to check on elements).

3

2. Higher Homotopy Groups

Exercise 2.1. • There are homeomorphisms $S^n \cong S^1 \wedge S^{n-1}$

Definition 2.2. The *n*'th homotopy group of X is

$$\pi_n X = [S^n, X]_*$$
$$\cong [S^{n-1}, \Omega X],$$
$$\cong \dots,$$
$$\cong [S^0, \Omega^n X]_*$$

where $\Omega^n X = \underbrace{\Omega \Omega \dots \Omega X}_n$.

Corollary 2.3. If n = 1, $\pi_1 X$ is a group. If $n \ge 2$, then $\pi_n X$ is an abelian group.

Exercise 2.4. Let X_{α} be a collection of based path connected spaces. Then $\pi_n(\prod_{\alpha} X_{\alpha}) \cong \prod_{\alpha} \pi_n X_{\alpha}$.

Definition 2.5. • A space X is *n*-connected if $\pi_k X = 0$ for $k \leq n$.

• A map $f : X \to Y$ is *n*-connected or an *n*-equivalence if $\pi_k f$ is an isomorphism for k < nand onto for k = n.

3. Homotopy cofiber

In the category of abelian groups, one can take kernels and cokernels. They satisfy certain universal properties:

and

There are analogous constructions in the homotopy category of topological spaces, where a map being zero is replaced by a map being null-homotopic. These are called the homotopy cofibers and fibers.