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These notes are based on

• Algebraic Topology from a Homotopical Viewpoint , M. Aguilar, S. Gitler, C. Prieto

• A Concise Course in Algebraic Topology , J. Peter May

• More Concise Algebraic Topology , J. Peter May and Kate Ponto

• Algebraic Topology , A. Hatcher

Notation.

• Map(X,Y ): continuous functions from X to Y with the compact-open topology

• [X,Y ]: homotopy classes of unbased maps from X to Y .

• Map∗(X,Y ): continuous base point preserving functions from X to Y with the subspace

topology

• [X,Y ]∗: based homotopy classes of based maps from X to Y

• PX = Map∗(I,X): paths in X starting at the base-point.

• ΩX = Map∗(S
1, X): based loops in X.

• X ∧Y = (X × Y )/(∗ × Y ∪X × ∗) : the smash product of X and Y

• ΣX = X ∧S1: the reduced suspension of X

• SX = X × I/(X × {0, 1}): the unreduced suspension of X

Remark 0.1. We will assume that the spaces X and Y are nice enough. This can mean locally

compact and Hausdorff, or a more general notion of compactly generated. For such spaces, we have

π0 Map(X,Y ) = [X,Y ]

and

π0 Map∗(X,Y ) = [X,Y ]∗
1

http://link.springer.com.colorado.idm.oclc.org/book/10.1007/b97586
http://www.math.uchicago.edu/~may/CONCISE/ConciseRevised.pdf
http://www.math.uchicago.edu/~may/TEAK/KateBookFinal.pdf
https://www.math.cornell.edu/~hatcher/AT/AT.pdf
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1. H–Spaces

Recall that a topological group is a topological space G with a continuous multiplication

µ : G×G→ G

giving G the structure of a group, such that the map

i : G→ G

sending x→ x−1 is continuous.

Example 1.1. • S1 viewed as the units in the complex numbers

• R with addition

• R∗ with multiplication

• Various matrix groups, GLn(R), SO(n), etc.

Exercise 1.2. If G is a topological group with base point the identity e, then the map

Map∗(X,G)×Map∗(X,G)→ Map∗(X,G)

which sends f and g to

(fg)(x) = f(x)g(x)

makes Map∗(X,G) into a group, which is abelian if G is abelian. The unit is the constant map at

the identity of G.

Further, the mapping into G gives a functor

Map∗(−, G) : Top∗ → TopGr∗.

That is,

• If X → Y is continuous, then Map∗(Y,G)→ Map∗(X,G) is a group homomorphism.

Further,

• If g : G → H is a continuous homomorphism of topological groups, then Map∗(X,G) →
Map∗(X,H) is a group homomorphism and this is natural in X. That is, Map∗(−, g) is a

natural transformation.

Similarly, this induces a group structure on [X,G]∗ with the same properties.

Question 1.3. For what space W is

[−,W ]∗ : Top∗ → Gr?
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Note that if [−,W ]∗ is a functor to groups, then [∗,W ]∗ maps to the group with one element. The

map X → ∗ then induces a group homomorphism [∗,W ]∗ → [X,W ]∗ which necessarily picks out

the unit. Therefore,

(1) The constant map at the base point e : X →W , e(x) = ∗ is the identity.

(2) Every based continuous maps X → Y induce group homomorphisms f∗ : [Y,W ]∗ →
[X,W ]∗.

Similarly, when is [Q,−]∗ a functor to Gr?

Definition 1.4. An H-space W is a pointed topological space and a continuous map

µ : W ×W →W

such that the map e : W →W , e(w) = ∗ is a unit up to homotopy. That is

W
(e,id)−−−→W ×W µ−→W

and

W
(id,e)−−−→W ×W µ−→W

are homotopic to the identity.

(1) W is homotopy associative if the following diagram commutes up to homotopy

W ×W ×W
(µ,id)

//

(id,µ)
��

W ×W

µ

��
W ×W

µ
// W.

(2) A map j : W →W gives inverses to W up to homotopy if

W
(id,j)−−−→W ×W µ−→W

and

W
(j,id)−−−→W ×W µ−→W

are null-homotopic.

(3) W is homotopy commutative if the following diagram commutes up to homotopy

W ×W s //

µ
&&

W ×W

µ

��
W

where s(w1, w2) = (w2, w1).
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(4) If W satisfies (1) and (2), it is called an H-group and it is a homotopy abelian if it satisfies

(3).

(5) A homomorphism of H–spaces is a based map h : W → W ′ which makes the following

diagram commute up to homotopy:

W ×W
µ

//

h
��

W

h
��

W ′ ×W ′
µ

// W ′

Example 1.5. • Any topological group is an H–space.

• CP∞ is an H–space. Recall that CP∞ =
⋃
nCPn. Let x = [a0 : a1 : . . . : an] ∈ CPn and

y = [b0 : b1 : . . . : bm] ∈ CPm be two points. The coefficients of

(a0 + . . .+ anz
n)(b0 + . . .+ bmz

m)

determine a point µ(x, y) ∈ CPm+n. The map µ gives CP∞ the structure of an H–space.

Here is an interesting post by John Baez on this topic.

Some answer to a question: Although this description of the multiplication on

CP∞ does not have inverses, CP∞ ' K(Z, 2) and up to homotopy, K(Z, 2) has

a unique H–space structures. Indeed, K(Z, 2) ' K(Z, 2) and, up to homotopy,

maps K(Z×Z, 2)→ K(Z, 2) are determined by group homomorphisms Z×Z→ Z.

Asking that K(Z, 2) ×K(Z, 2) → K(Z, 2) be unital up to homotopy means that

it is induced by the addition + : Z × Z → Z. In fact, this gives K(Z, 2) the

structure of an H–group. Also, CP∞ ' BU(1) and, for an abelian group G, BG

is a topological group. Therefore, CP∞ is homotopy equivalent to a topological

group.

• Let X be a based space. Then ΩX is an H–group with multiplication

ΩX × ΩX
µ−→ ΩX

given by

µ(α, β)(t) =

α(2t) 0 ≤ t ≤ 1/2

β(2t− 1) 1/2 ≤ t ≤ 1.

Let

j : ΩX → ΩX

be defined by

j(α)(t) = α(1− t).

http://math.ucr.edu/home/baez/calgary/BG.html 
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This makes ΩX into an H–group: the proof is very similar to that of checking that π1X is

a group.

Let g : X → Y be a map of based topological spaces. Then

Ωg : ΩX → ΩY

is defined by α 7→ g ◦ α is a homomorphism of H–groups.

In fact, CP∞ itself is a loop space.

• The James construction on a based space X is an H–space:

J(X) =
∐
k≥0

Xk/(x1, . . . , xi−1, ∗, xi+1, . . . , xk) ∼ (x1, . . . , xi−1, xi+1, . . . , xk)

with

µ((x1, . . . , xk), (y1, . . . , yk′)) = (x1, . . . , xk, y1, . . . , yk′).

For X a connected CW-complex, J(X) ' ΩΣX.

• S7 as the units in the octonions O is an H-space but not an H–group.

Here is a remarkable result:

Theorem 1.6 (John Hubbuck, On homotopy commutative H–spaces). Let X be a non contractible,

connected,finite complex which is a homotopy commutative H-space, then X has the homotopy type

of a torus.

Theorem 1.7. [−,W ]∗ is a functor to the category of groups in the sense of Question 1.3 if and

only if W is an H-group. If W is homotopy abelian, then [−,W ]∗ is a functor to abelian groups.

Further, if h : W → W ′ is a homomorphism of H–groups, then [−,W ]∗ → [−,W ′]∗ is a natural

transformation.

Proof. Suppose that [X,W ]∗ is a group for every X. The projections p1, p2 : W×W →W represent

classes [p1] and [p2] in [W ×W,W ]∗. Let µ be any map that represents the homotopy class of the

product [p1][p2] ∈ [W ×W,W ]∗. Let i represent [id]−1 ∈ [W,W ]∗. These maps will give W the

structure of an H–group.

We check associativity and leave the other verifications as exercises. Let p1, p2 : W ×W → W

and q1, q2, q3 : W ×W ×W →W and let i1, i2 : W →W ×W be the inclusions i1(w) = (w, ∗) and

i2(w) = (∗, w). Consider,

f(w1, w2, w3) = µ(µ(w1, w2), w3).

http://www.sciencedirect.com/science/article/pii/0040938369900044
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Then

f(w1, w2, w3) ' [p1 ◦ (µ× id)][p2 ◦ (µ× id)]

' [p1 ◦ (µ× id)][q3]

However, p1 ◦ (µ× id) : W ×W ×W →W ×W is homotopic to

W ×W ×W q1×q2×id−−−−−−→W ×W ×W µ×id−−−→W ×W p1−→W

which is equal to

W ×W ×W q1×q2−−−→W ×W µ−→W

So

f(w1, w2, w3) ' [p1 ◦ (µ× id)][q3]

' ([µ ◦ (q1 × q2)])[q3]

' ([p1 ◦ (q1 × q2)][p2 ◦ (q1 × q2)])[q3]

' ([q1][q2])[q3].

Now, we use the associativity of the group operation and reverse engineer. �

2. H–cospaces

Definition 2.1. A pointed topological space Q is an H–cospace if it has a map

ν : Q→ Q ∨Q

for which e : Q→ Q, e(q) = ∗ is a counit up to homotopy. That is

Q
ν−→ Q ∨Q (id,e)−−−→ Q

and

Q
ν−→ Q ∨Q (e,id)−−−→ Q

are homotopic to the identity.

There is a corresponding notion of homotopy co-associative, and of homotopy co-inverses τ :

Q→ Q, of H–cogroup, and homotopy co-commutative H–cogroup. A co-group homomorphism is
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a continuous map k : Q→ Q′ which makes the following diagram commute:

Q

k
��

ν′ // Q ∨Q

k∨k
��

Q′
ν // Q ∨Q

Theorem 2.2. [Q,−]∗ : Top∗ → Gr a functor to Gr if and only if Q is an H–cogroup. Further, if

k : Q→ Q′ is a homomorphism of H–cogroups, then [Q′, ]∗ → [Q, ]∗ is a natural transformation.

Proof. If Q is an H-cogroup, then

ν : Q→ Q ∨Q

induces maps

[Q ∨Q,X]∗ → [Q,X]∗

However, [Q ∨Q,X]∗ ∼= [Q,X]∗ × [Q,X]∗. This gives the group multiplication.

If [Q,−]∗ is a functor to groups, letting i1, i2 : Q → Q ∨ Q be the inclusions at the base point,

the comultiplication ν is any map homotopic to [i1][i2] in [Q,Q ∨Q]∗. �
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