MATH 6280 - CLASS 5

Contents

1.	$H ext{-} ext{Spaces}$	2
2.	H-cospaces	6

These notes are based on

- Algebraic Topology from a Homotopical Viewpoint, M. Aguilar, S. Gitler, C. Prieto
- A Concise Course in Algebraic Topology, J. Peter May
- More Concise Algebraic Topology, J. Peter May and Kate Ponto
- Algebraic Topology, A. Hatcher

Notation.

- Map(X, Y): continuous functions from X to Y with the compact-open topology
- [X, Y]: homotopy classes of unbased maps from X to Y.
- $\operatorname{Map}_*(X, Y)$: continuous base point preserving functions from X to Y with the subspace topology
- $[X, Y]_*$: based homotopy classes of based maps from X to Y
- $PX = Map_*(I, X)$: paths in X starting at the base-point.
- $\Omega X = \operatorname{Map}_*(S^1, X)$: based loops in X.
- $X \wedge Y = (X \times Y)/(* \times Y \cup X \times *)$: the smash product of X and Y
- $\Sigma X = X \wedge S^1$: the reduced suspension of X
- $SX = X \times I/(X \times \{0, 1\})$: the unreduced suspension of X

Remark 0.1. We will assume that the spaces X and Y are nice enough. This can mean locally compact and Hausdorff, or a more general notion of compactly generated. For such spaces, we have

$$\pi_0 \operatorname{Map}(X, Y) = [X, Y]$$

and

$$\pi_0 \operatorname{Map}_*(X, Y) = [X, Y]_*$$

1. H-Spaces

Recall that a topological group is a topological space G with a continuous multiplication

 $\mu: G \times G \to G$

giving G the structure of a group, such that the map

 $i:G\to G$

sending $x \to x^{-1}$ is continuous.

Example 1.1. • S^1 viewed as the units in the complex numbers

- \mathbb{R} with addition
- \mathbb{R}^* with multiplication
- Various matrix groups, $GL_n(\mathbb{R})$, SO(n), etc.

Exercise 1.2. If G is a topological group with base point the identity e, then the map

$$\operatorname{Map}_*(X,G) \times \operatorname{Map}_*(X,G) \to \operatorname{Map}_*(X,G)$$

which sends f and g to

$$(fg)(x) = f(x)g(x)$$

makes $\operatorname{Map}_*(X, G)$ into a group, which is abelian if G is abelian. The unit is the constant map at the identity of G.

Further, the mapping into G gives a functor

$$\operatorname{Map}_{*}(-, G) : \operatorname{Top}_{*} \to \operatorname{Top}\operatorname{Gr}_{*}.$$

That is,

• If $X \to Y$ is continuous, then $\operatorname{Map}_*(Y, G) \to \operatorname{Map}_*(X, G)$ is a group homomorphism.

Further,

If g : G → H is a continuous homomorphism of topological groups, then Map_{*}(X, G) → Map_{*}(X, H) is a group homomorphism and this is natural in X. That is, Map_{*}(-,g) is a natural transformation.

Similarly, this induces a group structure on $[X, G]_*$ with the same properties.

Question 1.3. For what space W is

$$[-, W]_* : \operatorname{Top}_* \to \operatorname{Gr}?$$

Note that if $[-, W]_*$ is a functor to groups, then $[*, W]_*$ maps to the group with one element. The map $X \to *$ then induces a group homomorphism $[*, W]_* \to [X, W]_*$ which necessarily picks out the unit. Therefore,

- (1) The constant map at the base point $e: X \to W$, e(x) = * is the identity.
- (2) Every based continuous maps $X \to Y$ induce group homomorphisms $f^* : [Y, W]_* \to [X, W]_*$.

Similarly, when is $[Q, -]_*$ a functor to Gr?

Definition 1.4. An *H*-space *W* is a pointed topological space and a continuous map

$$\mu: W \times W \to W$$

such that the map $e: W \to W$, e(w) = * is a unit up to homotopy. That is

$$W \xrightarrow{(e, \mathrm{id})} W \times W \xrightarrow{\mu} W$$

and

$$W \xrightarrow{(\mathrm{id},e)} W \times W \xrightarrow{\mu} W$$

are homotopic to the identity.

(1) W is homotopy associative if the following diagram commutes up to homotopy

$$W \times W \times W \xrightarrow{(\mu, \mathrm{id})} W \times W$$

$$\downarrow^{(\mathrm{id}, \mu)} \qquad \qquad \downarrow^{\mu}$$

$$W \times W \xrightarrow{\mu} W.$$

(2) A map $j: W \to W$ gives inverses to W up to homotopy if

$$W \xrightarrow{(\mathrm{id},j)} W \times W \xrightarrow{\mu} W$$

and

$$W \xrightarrow{(j,\mathrm{id})} W \times W \xrightarrow{\mu} W$$

are null-homotopic.

(3) W is homotopy commutative if the following diagram commutes up to homotopy

where $s(w_1, w_2) = (w_2, w_1)$.

- (4) If W satisfies (1) and (2), it is called an H-group and it is a homotopy abelian if it satisfies (3).
- (5) A homomorphism of *H*-spaces is a based map $h: W \to W'$ which makes the following diagram commute up to homotopy:

$$\begin{array}{ccc} W \times W & \xrightarrow{\mu} & W \\ & & & \downarrow h & & \downarrow h \\ W' \times W' & \xrightarrow{\mu} & W' \end{array}$$

Example 1.5. • Any topological group is an *H*-space.

• $\mathbb{C}P^{\infty}$ is an *H*-space. Recall that $\mathbb{C}P^{\infty} = \bigcup_{n} \mathbb{C}P^{n}$. Let $x = [a_{0} : a_{1} : \ldots : a_{n}] \in \mathbb{C}P^{n}$ and $y = [b_{0} : b_{1} : \ldots : b_{m}] \in \mathbb{C}P^{m}$ be two points. The coefficients of

$$(a_0 + \ldots + a_n z^n)(b_0 + \ldots + b_m z^m)$$

determine a point $\mu(x, y) \in \mathbb{C}P^{m+n}$. The map μ gives $\mathbb{C}P^{\infty}$ the structure of an *H*-space. Here is an interesting post by John Baez on this topic.

Some answer to a question: Although this description of the multiplication on $\mathbb{C}P^{\infty}$ does not have inverses, $\mathbb{C}P^{\infty} \simeq K(\mathbb{Z}, 2)$ and up to homotopy, $K(\mathbb{Z}, 2)$ has a unique H-space structures. Indeed, $K(\mathbb{Z}, 2) \simeq K(\mathbb{Z}, 2)$ and, up to homotopy, maps $K(\mathbb{Z} \times \mathbb{Z}, 2) \to K(\mathbb{Z}, 2)$ are determined by group homomorphisms $\mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$. Asking that $K(\mathbb{Z}, 2) \times K(\mathbb{Z}, 2) \to K(\mathbb{Z}, 2)$ be unital up to homotopy means that it is induced by the addition $+ : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$. In fact, this gives $K(\mathbb{Z}, 2)$ the structure of an H-group. Also, $\mathbb{C}P^{\infty} \simeq BU(1)$ and, for an abelian group G, BG is a topological group.

• Let X be a based space. Then ΩX is an H-group with multiplication

$$\Omega X \times \Omega X \xrightarrow{\mu} \Omega X$$

given by

$$\mu(\alpha, \beta)(t) = \begin{cases} \alpha(2t) & 0 \le t \le 1/2 \\ \beta(2t-1) & 1/2 \le t \le 1. \end{cases}$$

Let

 $j: \Omega X \to \Omega X$

be defined by

 $j(\alpha)(t) = \alpha(1-t).$

This makes ΩX into an *H*-group: the proof is very similar to that of checking that $\pi_1 X$ is a group.

Let $g: X \to Y$ be a map of based topological spaces. Then

$$\Omega q: \Omega X \to \Omega Y$$

is defined by $\alpha \mapsto g \circ \alpha$ is a homomorphism of *H*-groups.

In fact, $\mathbb{C}P^{\infty}$ itself is a loop space.

• The James construction on a based space X is an H-space:

$$J(X) = \prod_{k \ge 0} X^k / (x_1, \dots, x_{i-1}, *, x_{i+1}, \dots, x_k) \sim (x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_k)$$

with

$$\mu((x_1, \dots, x_k), (y_1, \dots, y_{k'})) = (x_1, \dots, x_k, y_1, \dots, y_{k'})$$

For X a connected CW-complex, $J(X) \simeq \Omega \Sigma X$.

• S^7 as the units in the octonions \mathbb{O} is an *H*-space but not an *H*-group.

Here is a remarkable result:

Theorem 1.6 (John Hubbuck, On homotopy commutative H-spaces). Let X be a non contractible, connected, finite complex which is a homotopy commutative H-space, then X has the homotopy type of a torus.

Theorem 1.7. $[-,W]_*$ is a functor to the category of groups in the sense of Question 1.3 if and only if W is an H-group. If W is homotopy abelian, then $[-,W]_*$ is a functor to abelian groups. Further, if $h: W \to W'$ is a homomorphism of H-groups, then $[-,W]_* \to [-,W']_*$ is a natural transformation.

Proof. Suppose that $[X, W]_*$ is a group for every X. The projections $p_1, p_2 : W \times W \to W$ represent classes $[p_1]$ and $[p_2]$ in $[W \times W, W]_*$. Let μ be any map that represents the homotopy class of the product $[p_1][p_2] \in [W \times W, W]_*$. Let *i* represent $[\mathrm{id}]^{-1} \in [W, W]_*$. These maps will give W the structure of an H-group.

We check associativity and leave the other verifications as exercises. Let $p_1, p_2 : W \times W \to W$ and $q_1, q_2, q_3 : W \times W \times W \to W$ and let $i_1, i_2 : W \to W \times W$ be the inclusions $i_1(w) = (w, *)$ and $i_2(w) = (*, w)$. Consider,

$$f(w_1, w_2, w_3) = \mu(\mu(w_1, w_2), w_3).$$

Then

$$f(w_1, w_2, w_3) \simeq [p_1 \circ (\mu \times \mathrm{id})][p_2 \circ (\mu \times \mathrm{id})]$$
$$\simeq [p_1 \circ (\mu \times \mathrm{id})][q_3]$$

However, $p_1 \circ (\mu \times id) : W \times W \times W \to W \times W$ is homotopic to

$$W \times W \times W \xrightarrow{q_1 \times q_2 \times \mathrm{id}} W \times W \times W \xrightarrow{\mu \times \mathrm{id}} W \times W \xrightarrow{p_1} W$$

which is equal to

$$W \times W \times W \xrightarrow{q_1 \times q_2} W \times W \xrightarrow{\mu} W$$

 So

$$f(w_1, w_2, w_3) \simeq [p_1 \circ (\mu \times \mathrm{id})][q_3]$$
$$\simeq ([\mu \circ (q_1 \times q_2)])[q_3]$$
$$\simeq ([p_1 \circ (q_1 \times q_2)][p_2 \circ (q_1 \times q_2)])[q_3]$$
$$\simeq ([q_1][q_2])[q_3].$$

Now, we use the associativity of the group operation and reverse engineer.

2. H-cospaces

Definition 2.1. A pointed topological space Q is an H-cospace if it has a map

$$\nu:Q\to Q\vee Q$$

for which $e:Q \to Q, e(q) = *$ is a counit up to homotopy. That is

$$Q \xrightarrow{\nu} Q \lor Q \xrightarrow{(\mathrm{id},e)} Q$$

and

$$Q \xrightarrow{\nu} Q \lor Q \xrightarrow{(e, \mathrm{id})} Q$$

are homotopic to the identity.

There is a corresponding notion of homotopy co-associative, and of homotopy co-inverses τ : $Q \rightarrow Q$, of *H*-cogroup, and homotopy co-commutative *H*-cogroup. A co-group homomorphism is

 $\mathbf{6}$

a continuous map $k:Q\to Q'$ which makes the following diagram commute:

$$\begin{array}{ccc} Q & \stackrel{\nu'}{\longrightarrow} & Q \lor Q \\ & \downarrow_k & & \downarrow_{k \lor k} \\ Q' & \stackrel{\nu}{\longrightarrow} & Q \lor Q \end{array}$$

Theorem 2.2. $[Q, -]_* : \operatorname{Top}_* \to \operatorname{Gr}$ a functor to Gr if and only if Q is an H-cogroup. Further, if $k: Q \to Q'$ is a homomorphism of H-cogroups, then $[Q',]_* \to [Q,]_*$ is a natural transformation.

Proof. If Q is an H-cogroup, then

$$\nu:Q\to Q\vee Q$$

induces maps

$$[Q \lor Q, X]_* \to [Q, X]_*$$

However, $[Q \lor Q, X]_* \cong [Q, X]_* \times [Q, X]_*$. This gives the group multiplication.

If $[Q, -]_*$ is a functor to groups, letting $i_1, i_2 : Q \to Q \lor Q$ be the inclusions at the base point, the comultiplication ν is any map homotopic to $[i_1][i_2]$ in $[Q, Q \lor Q]_*$.