## MATH 6280 - CLASS 4

## CONTENTS

| 1. | Limits and Colimits continued                  | 1 |
|----|------------------------------------------------|---|
| 2. | Some constructions as push-outs and pull-backs | 4 |

**Example 0.1.** Consider the natural numbers as a poset as follows:  $a \leq b$  if a|b. We can turn this into a category by letting the objects be natural numbers and the Hom(a, b) be nonempty if  $a \leq b$  and empty otherwise. Then the  $a \times b = \gcd(a, b)$  and  $a \sqcup b = \operatorname{lcm}(a, b)$ .

## 1. Limits and Colimits continued

**Example 1.1** (Limit: inverse limit). Consider a diagram

 $\dots \longrightarrow X_{n+1} \longrightarrow X_n \longrightarrow \dots \longrightarrow X_1 \longrightarrow X_0$ 

The inverse limit  $\lim_{n \to \infty} X_n$  is an object in  $\mathcal{C}$  with compatible maps  $\varprojlim_n X_n \to X_i$  for each i and



• In Sets, Top, Gr, Ab

$$\lim_{n} X_{n} = \{(\dots, x_{2}, x_{1}, x_{0}) \mid i_{n}(x_{n}) = x_{n-1}\} \subseteq \prod_{n} X_{n}.$$

Example 1.2 (Colimit: direct limit). Consider a diagram

$$X_0 \longrightarrow X_1 \longrightarrow \ldots \longrightarrow X_n \longrightarrow X_{n+1} \longrightarrow \ldots$$

The direct limit  $\operatorname{colim}_n X = \varinjlim_n X_n$  is an object in  $\mathcal{C}$  with compatible maps  $X_i \to \varinjlim_n X_n$  for each i and



• In Sets, Top,

$$\varinjlim_{n} X_{n} = \left(\coprod_{n} X_{n}\right) / (x \sim i_{n+1}(x))$$

**Exercise 1.3.** Describe the colimit of the following direct systems in the category of abelian groups.

٠

$$\mathbb{Z} \xrightarrow{p} \mathbb{Z} \xrightarrow{p} \mathbb{Z} \to \ldots \to \mathbb{Z} \xrightarrow{p} \mathbb{Z} \to \ldots$$

٠

$$\mathbb{Z}/p \xrightarrow{p} \mathbb{Z}/p^2 \xrightarrow{p} \mathbb{Z}/p^3 \to \ldots \to \mathbb{Z}/p^n \xrightarrow{p} \mathbb{Z}/p^{n+1} \to \ldots$$

**Definition 1.4.** • Let  $\mathcal{I}$  be a small category. An  $\mathcal{I}$ -shaped diagram in a category  $\mathcal{C}$  is a functor  $D : \mathcal{I} \to \mathcal{C}$ . These form a category with morphisms natural transformations of functors. The category of  $\mathcal{I}$ -shaped diagrams is sometimes denoted  $\mathcal{C}^{\mathcal{I}}$  or  $\mathcal{I}[\mathcal{C}]$ .

- Given an objection X of  $\mathcal{C}$ , we can always from the constant diagram  $\underline{X} : \mathcal{I} \to \mathcal{C}$  which sends all objects to X and morphisms to  $\mathrm{id}_X$ .
- A map  $X \to D$  from an object X to a diagram D is a natural transformation  $\underline{X} \to D$ . This is called a *cone*.
- A map  $D \to X$  from an diagram  $D \in C^{\mathcal{I}}$  to an object  $X \in C$  is a natural transformation  $D \to \underline{X}$ . This is called a *co-cone*.
- The *limit* of D is an object  $\lim_{\mathcal{I}} D \in \mathcal{C}$  and a map  $\lim_{\mathcal{I}} D \to D$  such that, given any  $X \in \mathcal{C}$  and map  $X \to D$ , there is a unique map  $X \to \lim_{\mathcal{I}} D$  making the following diagram commute:



In other words,  $\lim_{\mathcal{I}} D$  is a terminal object in the category of cones.

• The *colimit* of D is an object  $\operatorname{colim}_{\mathcal{I}} D \in \mathcal{C}$  and a map  $D \to \operatorname{colim}_{\mathcal{I}} D$  such that, given any  $X \in \mathcal{C}$  and map  $D \to X$ , there is a unique map  $\operatorname{colim}_{\mathcal{I}} D \to X$  making the following diagram commute:



In other words,  $\operatorname{colim}_{\mathcal{I}} D$  is an initial object in the category of co-cones.

**Example 1.5.** • The product is the limit of the diagram category

\* \*

• The coproduct is the colimit of the diagram category

\* \*

• The pull-back is the limit of the diagram category

• The inverse limit is the limit of the diagram category

• The push-out is the colimit of the diagram category

 $\ldots \longrightarrow * \longrightarrow * \longrightarrow \cdots \longrightarrow * \longrightarrow *$ 

↓ ↓

• The direct limit is the colimit of the diagram category

 $* \longrightarrow * \longrightarrow \dots \longrightarrow * \longrightarrow * \longrightarrow \dots$ 

**Exercise 1.6.** Let C = Ab. Describe the limit and the colimit of a diagram with shape:

\* ===> \*

(These are called equalizers and coequalizers respectively.)

## 2. Some constructions as push-outs and pull-backs

**Construction.** (1) Let  $CX = (X \times I)/(X \times \{0\})$ . This can also be described as follows. Let  $i_0: X \to X \times I$  be the map  $i_0(x) = (x, 0)$ . The pushout of



is called the cone on X and denoted CX. Let  $i: X \to CX$  be the map  $i_1: X \to X \times I$ ,  $i_1(x) = (x, 1)$  followed by the quotient  $X \times I \to CX$ .

(2) Let SX = CX/i(X). This can also be described by the following pushout diagram



Exercise 2.1. Describe the pushout of

$$\begin{array}{c} S^1 \longrightarrow * \\ \downarrow \\ \ast \end{array}$$

Conclude that the pushout construction is not homotopy invariant.