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• More Concise Algebraic Topology , J. Peter May and Kate Ponto

• Algebraic Topology , A. Hatcher

1. Dold-Thom Theorem

Let’s have fun a prove a cool theorem today.

Definition 1.1. Let X be a based space with base point ∗. The n’th symmetric product SPn(X)

is define as the quotient of Xn by the action of the symmetric group:

SPn(X) = Xn/Σn.

That is, (x1, . . . , xn) ∼ (xσ(1), . . . , xσ(n)) for every σ ∈ Σn. There are inclusions

SPn(X)→ SPn+1(X), (x1, . . . , xn) 7→ (∗, x1, . . . , xn)

and

SP(X) =
⋃

SPn(X).

This is a based space with base point the equivalence class [∗]. Finally, it comes with a natural

map X → SP(X).

Remark 1.2. SP(X) has the union topology, but you have to be careful about the topology you

put on the factors SPn(X) (One must use the compactly-generated topology). One can also give a

CW-structure to SP(X).

Claim 1.3. SP(S2) ∼= CP∞
1
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Proof. Let S2 = C∪{∞}. Points of SPn(S2) are in bijection with unordered tuples a1, . . . , an where

ai ∈ C ∪ {∞}. The non-infty terms can be viewed as the roots of a non-zero complex polynomial

of degree less than or equal to n (omit the factors (z −∞) and let (∞, . . . ,∞) represents 1). The

coefficients of the polynomial give a point [α0 : . . . : αn] ∈ CPn and SPn(S2) ∼= CPn. �

Exercise 1.4. SP(−) : Top∗ → Top∗ is a functor. Further, given a homotopy h : X × I → Y

between f, g, we get a homotopy h : SP(X) × I → SP(Y ) so that SP(f) ' SP(g). Therefore, if

X ' Y , then SP(X) ' SP(Y ) and if X ' ∗, then SP(X) ' SP(∗) ' ∗.

Claim 1.5. S1 → SP(S1) is a homotopy equivalence.

Proof. Let S1 = C − {0,∞}. Then as before, SPn(S1) are those polynomials that have roots

a1, . . . , an with ai 6= 0,∞. So they are polynomials of degree exactly n with non-zero constant

term. So we can think of these as the points [α0 : . . . : αn] in CPn such that α0, αn 6= 0. Scaling

so that α0 = 1, this is equivalent to tuples in Cn−1 × (C\{0}) ' S1. So each S1 → SPn(S1)

are homotopy equivalences, hence S1 → SP(S1) is a weak homotopy equivalence. Since both are

CW-complexes, is is a homotopy equivalence. �

Theorem 1.6 (Dold-Thom). For X path connected, πn SP(X) ∼= H̃n(X;Z). For

π∗+1 SP(Σ(−)) : CWTop∗ → Ab

is a reduced homology theory which satisfies the dimension axiom.

Remark 1.7. It follows from the Dold-Thom theorem that SP(Sn) ∼= K(Z, n). Similarly, SP(M(G,n)) ∼=
K(G,n). This turns out to be a definition for K(Z, n) which is fairly convenient to generalize.

(1) Dimension

(2) Exactness

(3) Suspension

(4) Additivity

Definition 1.8. A map p : E → B is a quasi-fibration if for every b ∈ B and e ∈ Fp = p−1(b),

p∗ : π∗(E,Fb, e)
∼=−→ π∗(B).

Note that it is exactly for quasi-fibrations that we get a long exact sequence

. . .→ π∗(Fb, e)→ π∗(E, e)→ π∗(B, b)→ π∗−1(Fb, e)→ . . . .

The key to proving the theorem is the following proposition:
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Proposition 1.9. Let (A,X) be a based CW-pair with A path-connected and p : X → X/A. Then

SP(p) : SP(X)→ SP(X/A)

is a quasi-fibration whose fiber at every point is homotopy equivalent to SP(A).

If X is path connected, from X → CX → ΣX and the induced long exact sequence on SP(X)→
SP(CX)→ SP(ΣX), we get a natural isomorphism

πn+1(SP(ΣX))
∼=−→ πn(SP(X))

giving us the suspension axiom, and similarly, we also get exactness.

The dimension axiom comes from noting that SPn(S0) is a discrete set with n+ 1 elements. So

π0(SP(S0)) is a countable set which obtains the structure of an abelian group the isomorphisms

π1(SP(S1)) ∼= π2(SP(S2)) ∼= π2(CP∞) ∼= Z.

For additivity, one needs the following proposition.

Proposition 1.10. Let X = colimXλ be a filtered colimit where the Xλ are closed, respectively open

subspaces of X containing the base point, then so is SP(Xλ)→ SP(X) and colim SP(Xλ)→ SP(X)

is a weak equivalence.

Proof Sketch. Since Xn
λ → Xn is closed, resp. open, this passes to the quotients SPn(Xλ) →

SPn(X). Since SP(X) has the union topology and SP(Xλ) ∩ SPn(X) = SPn(Xλ), it follows that

SP(Xλ) → SP(X) are closed, resp. open, inclusions. It’s obvious that colim SP(Xλ) → SP(X)

is a continuous bijection, but to finish the proof, one has to look at the topology on SP(X) and

conclude that the inverse is continuous on compact sets. �

Corollary 1.11. If X =
∨
λ∈ΛXλ, then π∗ SP(X) ∼=

⊕
λ π∗ SP(Xλ).

Proof. First, we get it for X1 ∨X2. There’s a long exact sequence

. . .→ π∗ SP(X1)→ π∗ SP(X1 ∨X2)→ π∗ SP(X2)→ . . .

and the map π∗ SP(X1 ∨X2)→ π∗ SP(X2) has a splitting. So, the long exact splits as

π∗ SP(X1 ∨X2) ∼= π∗(SP(X1))⊕ π∗(SP(X2)).

By induction, this gives it for finite wedges.

Now, we consider the filtered system Γ ⊂ Λ, Γ finite. Then X = colimΓ⊂Λ
∨
λ∈ΓXλ. Then

π∗ SP(X) ∼= colimπ∗(SP(Xλ)) ∼= colimΓ⊂Λ

⊕
λ∈Γ

π∗ SP(Xλ) ∼=
⊕
λ∈Λ

π∗ SP(Xλ)
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Remark 1.12. It follows from this that

SP(X ∨ Y )→ SP(X)× SP(Y )

is a weak homotopy equivalence.

Remark 1.13. With the right topologies, SP(X) is a topological monoid where

SP(X)× SP(X)→ SP(X)

is given as maps SPn(X)× SPm(X)→ SPn+m(X) by

((x1, . . . , xn), (y1, . . . , ym)) 7→ (x1, . . . , xn, y1, . . . , ym).
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