MATH 6280 - CLASS 38

CONTENTS

1. Dold-Thom Theorem

These notes are based on

- Algebraic Topology from a Homotopical Viewpoint, M. Aguilar, S. Gitler, C. Prieto
- A Concise Course in Algebraic Topology, J. Peter May
- More Concise Algebraic Topology, J. Peter May and Kate Ponto
- Algebraic Topology, A. Hatcher

1. DOLD-THOM THEOREM

Let's have fun a prove a cool theorem today.

Definition 1.1. Let X be a based space with base point *. The n'th symmetric product $SP_n(X)$ is define as the quotient of X^n by the action of the symmetric group:

$$SP^n(X) = X^n / \Sigma_n$$

That is, $(x_1, \ldots, x_n) \sim (x_{\sigma(1)}, \ldots, x_{\sigma(n)})$ for every $\sigma \in \Sigma_n$. There are inclusions

$$\operatorname{SP}^{n}(X) \to \operatorname{SP}^{n+1}(X), \quad (x_1, \dots, x_n) \mapsto (*, x_1, \dots, x_n)$$

and

$$\operatorname{SP}(X) = \bigcup \operatorname{SP}^n(X).$$

This is a based space with base point the equivalence class [*]. Finally, it comes with a natural map $X \to SP(X)$.

Remark 1.2. SP(X) has the union topology, but you have to be careful about the topology you put on the factors $SP^n(X)$ (One must use the compactly-generated topology). One can also give a CW-structure to SP(X).

Claim 1.3. $SP(S^2) \cong \mathbb{C}P^{\infty}$

1

Proof. Let $S^2 = \mathbb{C} \cup \{\infty\}$. Points of $SP^n(S^2)$ are in bijection with unordered tuples a_1, \ldots, a_n where $a_i \in \mathbb{C} \cup \{\infty\}$. The non-infty terms can be viewed as the roots of a non-zero complex polynomial of degree less than or equal to n (omit the factors $(z - \infty)$ and let (∞, \ldots, ∞) represents 1). The coefficients of the polynomial give a point $[\alpha_0 : \ldots : \alpha_n] \in \mathbb{C}P^n$ and $SP^n(S^2) \cong \mathbb{C}P^n$.

Exercise 1.4. $SP(-) : Top_* \to Top_*$ is a functor. Further, given a homotopy $h : X \times I \to Y$ between f, g, we get a homotopy $h : SP(X) \times I \to SP(Y)$ so that $SP(f) \simeq SP(g)$. Therefore, if $X \simeq Y$, then $SP(X) \simeq SP(Y)$ and if $X \simeq *$, then $SP(X) \simeq SP(*) \simeq *$.

Claim 1.5. $S^1 \to SP(S^1)$ is a homotopy equivalence.

Proof. Let $S^1 = \mathbb{C} - \{0, \infty\}$. Then as before, $SP^n(S^1)$ are those polynomials that have roots a_1, \ldots, a_n with $a_i \neq 0, \infty$. So they are polynomials of degree exactly n with non-zero constant term. So we can think of these as the points $[\alpha_0 : \ldots : \alpha_n]$ in $\mathbb{C}P^n$ such that $\alpha_0, \alpha_n \neq 0$. Scaling so that $\alpha_0 = 1$, this is equivalent to tuples in $\mathbb{C}^{n-1} \times (\mathbb{C} \setminus \{0\}) \simeq S^1$. So each $S^1 \to SP^n(S^1)$ are homotopy equivalences, hence $S^1 \to SP(S^1)$ is a weak homotopy equivalence. \Box

Theorem 1.6 (Dold-Thom). For X path connected, $\pi_n \operatorname{SP}(X) \cong \widetilde{H}_n(X; \mathbb{Z})$. For

 $\pi_{*+1} \operatorname{SP}(\Sigma(-)) : \operatorname{CWTop}_* \to \operatorname{Ab}$

is a reduced homology theory which satisfies the dimension axiom.

Remark 1.7. It follows from the Dold-Thom theorem that $SP(S^n) \cong K(\mathbb{Z}, n)$. Similarly, $SP(M(G, n)) \cong K(G, n)$. This turns out to be a definition for $K(\mathbb{Z}, n)$ which is fairly convenient to generalize.

- (1) Dimension
- (2) Exactness
- (3) Suspension
- (4) Additivity

Definition 1.8. A map $p: E \to B$ is a quasi-fibration if for every $b \in B$ and $e \in F_p = p^{-1}(b)$,

$$p_*: \pi_*(E, F_b, e) \xrightarrow{\cong} \pi_*(B).$$

Note that it is exactly for quasi-fibrations that we get a long exact sequence

$$\dots \to \pi_*(F_b, e) \to \pi_*(E, e) \to \pi_*(B, b) \to \pi_{*-1}(F_b, e) \to \dots$$

The key to proving the theorem is the following proposition:

Proposition 1.9. Let (A, X) be a based CW-pair with A path-connected and $p: X \to X/A$. Then

$$\operatorname{SP}(p) : \operatorname{SP}(X) \to \operatorname{SP}(X/A)$$

is a quasi-fibration whose fiber at every point is homotopy equivalent to SP(A).

If X is path connected, from $X \to CX \to \Sigma X$ and the induced long exact sequence on $SP(X) \to SP(CX) \to SP(\Sigma X)$, we get a natural isomorphism

$$\pi_{n+1}(\operatorname{SP}(\Sigma X)) \xrightarrow{\cong} \pi_n(\operatorname{SP}(X))$$

giving us the suspension axiom, and similarly, we also get exactness.

The dimension axiom comes from noting that $SP^n(S^0)$ is a discrete set with n + 1 elements. So $\pi_0(SP(S^0))$ is a countable set which obtains the structure of an abelian group the isomorphisms

$$\pi_1(\operatorname{SP}(S^1)) \cong \pi_2(\operatorname{SP}(S^2)) \cong \pi_2(\mathbb{C}P^\infty) \cong \mathbb{Z}.$$

For additivity, one needs the following proposition.

Proposition 1.10. Let $X = \operatorname{colim} X_{\lambda}$ be a filtered colimit where the X_{λ} are closed, respectively open subspaces of X containing the base point, then so is $\operatorname{SP}(X_{\lambda}) \to \operatorname{SP}(X)$ and $\operatorname{colim} \operatorname{SP}(X_{\lambda}) \to \operatorname{SP}(X)$ is a weak equivalence.

Proof Sketch. Since $X_{\lambda}^n \to X^n$ is closed, resp. open, this passes to the quotients $SP^n(X_{\lambda}) \to SP^n(X)$. Since SP(X) has the union topology and $SP(X_{\lambda}) \cap SP^n(X) = SP^n(X_{\lambda})$, it follows that $SP(X_{\lambda}) \to SP(X)$ are closed, resp. open, inclusions. It's obvious that $colim SP(X_{\lambda}) \to SP(X)$ is a continuous bijection, but to finish the proof, one has to look at the topology on SP(X) and conclude that the inverse is continuous on compact sets.

Corollary 1.11. If $X = \bigvee_{\lambda \in \Lambda} X_{\lambda}$, then $\pi_* \operatorname{SP}(X) \cong \bigoplus_{\lambda} \pi_* \operatorname{SP}(X_{\lambda})$.

Proof. First, we get it for $X_1 \vee X_2$. There's a long exact sequence

$$\ldots \to \pi_* \operatorname{SP}(X_1) \to \pi_* \operatorname{SP}(X_1 \lor X_2) \to \pi_* \operatorname{SP}(X_2) \to \ldots$$

and the map $\pi_* \operatorname{SP}(X_1 \vee X_2) \to \pi_* \operatorname{SP}(X_2)$ has a splitting. So, the long exact splits as

$$\pi_* \operatorname{SP}(X_1 \lor X_2) \cong \pi_*(\operatorname{SP}(X_1)) \oplus \pi_*(\operatorname{SP}(X_2)).$$

By induction, this gives it for finite wedges.

Now, we consider the filtered system $\Gamma \subset \Lambda$, Γ finite. Then $X = \operatorname{colim}_{\Gamma \subset \Lambda} \bigvee_{\lambda \in \Gamma} X_{\lambda}$. Then

$$\pi_* \operatorname{SP}(X) \cong \operatorname{colim} \pi_*(\operatorname{SP}(X_\lambda)) \cong \operatorname{colim}_{\Gamma \subset \Lambda} \bigoplus_{\lambda \in \Gamma} \pi_* \operatorname{SP}(X_\lambda) \cong \bigoplus_{\lambda \in \Lambda} \pi_* \operatorname{SP}(X_\lambda)$$

Remark 1.12. It follows from this that

$$\operatorname{SP}(X \lor Y) \to \operatorname{SP}(X) \times \operatorname{SP}(Y)$$

is a weak homotopy equivalence.

Remark 1.13. With the right topologies, SP(X) is a topological monoid where

$$\operatorname{SP}(X) \times \operatorname{SP}(X) \to \operatorname{SP}(X)$$

is given as maps $\mathrm{SP}^n(X)\times \mathrm{SP}^m(X)\to \mathrm{SP}^{n+m}(X)$ by

$$((x_1,\ldots,x_n),(y_1,\ldots,y_m))\mapsto (x_1,\ldots,x_n,y_1,\ldots,y_m).$$