MATH 6280 - CLASS 35

Contents

1. Remarks on Künneth continued 1
2. Universal Coefficients 2
3. Cup products 3
4. Reduced cup products 4

These notes are based on

- Algebraic Topology from a Homotopical Viewpoint, M. Aguilar, S. Gitler, C. Prieto
- A Concise Course in Algebraic Topology, J. Peter May
- More Concise Algebraic Topology, J. Peter May and Kate Ponto
- Algebraic Topology, A. Hatcher

1. Remarks on Künneth continued

Recall from last time:

Corollary 1.1 (Künneth Isomorphism). If k is a field, then for any space X and Y, there is a natural isomorphism

$$
\bigoplus_{p+q=n} H_{p}(X ; k) \otimes H_{q}(Y ; k) \stackrel{\cong}{\leftrightarrows} H_{n}(X \times Y ; k),
$$

i.e., $H_{*}(X ; k) \otimes H_{*}(Y ; k) \cong H_{*}(X \times Y ; k)$.

Proof. $H_{*}(Z ; k)$ is free as a k-module for any space Z. Hence, all the Tor ${ }_{1}^{k}$ terms vanish. The map on chains inducing the isomorphism is natural in both X and Y, hence this so is the induced map on cohomology.

Exercise 1.2. Let X and Y be based spaces. Prove that there is a map

$$
\widetilde{H}_{*}(X ; R) \otimes \widetilde{H}_{*}(Y ; R) \rightarrow \widetilde{H}_{n}(X \wedge Y ; R)
$$

which is an isomorphism when is a field.

Culture Moment. A cohomology theory with the property that $\widetilde{E}_{*}(X)$ is free over $\widetilde{E}_{*}\left(S^{0}\right)$ for any X is called a field. One can show that such theories satisfy the Künneth isomorphism. However, fields are rather rare. Of course, $\widetilde{H}^{*}(-; k)$ for any field k are fields. Another example is mod- p K-theory. For each prime p, there are certain reduced homology theories $K(n)_{*}(-)$ for each integer n, called the Morava K-theories, such that all other fields are direct sums and shifts of the $\widetilde{H}^{*}(-; k)$ and the $K(n)_{*}(-)$.

Now, note that there is a map of chain complexes

$$
\operatorname{Hom}\left(C_{*}(X), R\right) \otimes \operatorname{Hom}\left(C_{*}(Y), R\right) \rightarrow \operatorname{Hom}\left(C_{*}(X) \otimes C_{*}(Y), R\right) \cong C^{*}(X \times Y ; R)
$$

where

$$
\left(\phi \otimes \phi^{\prime}\right)\left(x \otimes x^{\prime}\right)=\phi(x) \phi^{\prime}\left(x^{\prime}\right)
$$

As long as X has finitely many cells in each degree, this is an isomorphism. Then, we can apply the Künneth theorem:

Theorem 1.3. Let X be a $C W$-complex with finitely many cells in each degree and R be a PID. Then there is an exact sequence

$$
0 \rightarrow \bigoplus_{p+q=n} H^{p}(X ; R) \otimes H^{q}(Y ; R) \rightarrow H^{n}(X \times Y ; R) \rightarrow \bigoplus_{p+q=n+1} \operatorname{Tor}_{1}^{R}\left(H^{p}(X ; R), H^{q}(Y ; R)\right) \rightarrow 0
$$

2. Universal Coefficients

Now, let's see what the Universal Coefficient Theorem for cohomology gives us. Again, $C_{*}(X ; R)$ is always a chain complex of free R-modules, hence applying the result to this chain complex, we get

$$
0 \rightarrow \operatorname{Ext}_{R}^{1}\left(H_{n-1}(X), M\right) \rightarrow H^{n}(X ; M) \xrightarrow{\alpha} \operatorname{Hom}_{R}\left(H_{n}(X), M\right) \rightarrow 0
$$

which relates homology and cohomology. In particular, if we take $R=M=\mathbb{Z}$, then

$$
0 \rightarrow \operatorname{Ext}\left(H_{n-1}(X), \mathbb{Z}\right) \rightarrow H^{n}(X) \xrightarrow{\alpha} \operatorname{Hom}\left(H_{n}(X), \mathbb{Z}\right) \rightarrow 0
$$

If X has finitely many cells in each degree, then $H_{n-1}(X)$ is a finitely generated abelian group. Hence, for each n,

$$
H_{n}(X) \cong \operatorname{free}\left(H_{n}(X)\right) \oplus \operatorname{torsion}\left(H_{n}(X)\right)
$$

Further, (exercise!)

$$
\operatorname{Ext}\left(H_{n-1}(X), \mathbb{Z}\right) \cong \operatorname{torsion}\left(H_{n-1}(X)\right) \quad \text { and } \quad \operatorname{Hom}\left(H_{n}(X), \mathbb{Z}\right) \cong \operatorname{free}\left(H_{n}(X)\right)
$$

Using the splitting, we get a non-natural isomorphism

$$
H^{n}(X) \cong \operatorname{torsion}\left(H_{n-1}(X)\right) \oplus \operatorname{free}\left(H_{n}(X)\right)
$$

So, in this case, the homology determines the cohomology.
Next, consider the case when $R=k$ for a field k.
Corollary 2.1. Let k be a field, then there is a natural isomorphism

$$
H^{n}(X ; k) \xlongequal{\leftrightarrows}\left(H_{n}(X ; k)\right)^{*}
$$

where for a vector space $V, V^{*}=\operatorname{Hom}_{k}(V, k)$ denotes the dual.
Proof. $H_{n-1}(X ; k)$ is free as a k-module hence the Ext-term vanishes.

3. Cup products

Suppose that X and X^{\prime} are CW complexes and A and A^{\prime} are abelian groups. Then

$$
C^{*}\left(X \times X^{\prime} ; A \otimes A^{\prime}\right) \cong \operatorname{Hom}\left(C_{*}(X) \otimes C_{*}\left(X^{\prime}\right), A \otimes A^{\prime}\right) .
$$

Further, there is a map of chain complexes

$$
\operatorname{Hom}\left(C_{*}(X), A\right) \otimes \operatorname{Hom}\left(C_{*}\left(X^{\prime}\right), A^{\prime}\right) \rightarrow \operatorname{Hom}\left(C_{*}(X) \otimes C_{*}\left(X^{\prime}\right), A \otimes A^{\prime}\right) \cong C^{*}\left(X \times X^{\prime} ; A \otimes A^{\prime}\right)
$$

where

$$
\left(\phi \otimes \phi^{\prime}\right)\left(x \otimes x^{\prime}\right)=\phi(x) \otimes \phi^{\prime}\left(x^{\prime}\right) .
$$

Further, if we have a map of abelian groups $A \otimes A^{\prime} \rightarrow B$ and a map $Y \rightarrow X \times X^{\prime}$, we get maps

$$
\operatorname{Hom}\left(C_{*}(X), A\right) \otimes \operatorname{Hom}\left(C_{*}\left(X^{\prime}\right), A^{\prime}\right) \rightarrow C^{*}\left(X \times X^{\prime} ; A \otimes A^{\prime}\right) \rightarrow C^{*}\left(X \times X^{\prime} ; B\right) \rightarrow C^{*}(Y ; B)
$$

This induces a maps on cohomology:

$$
H^{*}(X ; A) \otimes H^{*}\left(X^{\prime} ; A^{\prime}\right) \rightarrow H^{*}\left(X \times X^{\prime} ; A \otimes A^{\prime}\right) \rightarrow H^{*}\left(X \times X^{\prime} ; B\right) \rightarrow H^{*}(Y ; B) .
$$

Now, if $X=X^{\prime}$ and $R=A=A^{\prime}=B$ a ring with the map $R \otimes R \rightarrow R$ given by multiplication and a map $\Delta: X \rightarrow X \times X$ given by the diagonal, so we get a map

$$
\smile: H^{*}(X ; R) \otimes H^{*}(X ; R) \rightarrow H^{*}(X ; R)
$$

called the cup product and written as

$$
x y=x \smile y
$$

where for $x \in H^{p}$ and $y \in H^{q}$, we have that $x \smile y \in H^{p+q}$.

Let $X \rightarrow *$ be the unique map. Then this gives a map $R \cong H^{*}(* ; R) \rightarrow H^{*}(X ; R)$. We let $1 \in H^{*}(X ; R)$ be the image of $1 \in R$. Then the cup product is unital, associative and graded commutative:

$$
x y=(-1)^{\operatorname{deg} x \operatorname{deg} y} y x,
$$

making $H^{*}(X ; R)$ into a graded commutative ring. The cup product is also natural. If

$$
f: X \rightarrow Y
$$

then $f(x y)=f(x) f(y)$.
Remark 3.1. Note that Δ is not a cellular map, so to compute the cup product, one must first approximate it by a cellular map and this can be a pain.

Remark 3.2. The map

$$
H^{*}(X ; A) \otimes H^{*}\left(X^{\prime} ; A^{\prime}\right) \rightarrow H^{*}\left(X \times X^{\prime} ; A \otimes A^{\prime}\right)
$$

is called the external product.
Exercise 3.3. When the Künneth map $H^{*}(X ; R) \otimes H^{*}(Y ; R) \rightarrow H^{*}(X \times Y ; R)$ is a map of rings.
Example 3.4. - $H^{*}\left(S^{n} ; \mathbb{Z}\right)=\mathbb{Z}[x] / x^{2}$ for $|x|=n$

- $H^{*}\left(\mathbb{C} P^{\infty} ; \mathbb{Z}\right)=\mathbb{Z}[x],|x|=2$
- $H^{*}\left(\mathbb{R} P^{\infty} ; \mathbb{Z}\right)=\mathbb{Z}[x] /(2 x),|x|=2$
- $H^{*}\left(\mathbb{R} P^{\infty} ; \mathbb{Z} / 2\right)=\mathbb{Z} / 2[x],|x|=2$

4. Reduced cup products

Now, consider reduced cohomology $\widetilde{H}(X ; R)$.
Claim 4.1. $\widetilde{C}(X ; R) \otimes_{R} \widetilde{C}(Y ; R) \cong \widetilde{C}(X \wedge Y ; R)$.
Further, there is a diagonal

$$
\widetilde{\Delta}: X \xrightarrow{\Delta} X \times X \rightarrow X \wedge X
$$

Therefore, we get a reduced cup product:

$$
\smile: \widetilde{H}(X ; R) \otimes \widetilde{H}(X ; R) \rightarrow \widetilde{H}(X ; R) .
$$

