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1. CorLiMITS CONTINUED

As for homology, there is a Mayer-Vietoris theorem for generalized cohomologies:

Theorem 1.1. (Mayer-Vietoris for Cohomology) Let E* : CWTop pairs®? — Ab. Let (X; A, B) be
a CW-triad and i denote the various inclusions. Let C = AN B.

Then there is a long exact sequence

4 (i*,1%)
e

oo B O) S EF(X) E*(A) & E*(B) 227 E*(C) — ...

where & is the composit:
EC) T BY(ALC) e BY(X,B) = BY(X)
Let X = J;2, X; for j; : X; € Xit1. Recall that for E, : Toppairs — Ab a generalized homology
theory, then the natural map
colim F, (X;) — F.(X)

is an isomorphism.
Now, let E* : Toppairs®” — Ab be a generalized cohomology theory. The natural map now goes
in the other direction and the colimit is replaced by an inverse limit:

E*(X) — lim E*(X;).
1
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This map is not in general an isomorphism. Rather, we have

Theorem 1.2. There are natural exact sequences

0 — lim'E71(X;) - EY(X) — lim BY(X;) — 0.

Let’s explain what this lim '-term means. An equalizer, is the limit of a diagram:
A—ZB
g

Let A be a category with products and equilizers. For f; 11 : A;y1 — A; a inverse system, lim A; is

the coequilizer:

ITid
I1fi
In abelian groups, these diagrams can be rewritten as an exact sequence
oo [e.e]
(1) 0—limA; » [[4 > [[4i = lim'4; -0
i=1 i=1

for s;11 : Aix1 — A; given by s;11(a) = a — fiy1(a) and s = []s;. As suggests, the map s is

not necessarily surjective and lim ! measures that failure.

Remark 1.3. For N the poset 0 — 1 — 2 — ..., the functor lim : AbN” — Ab is a left exact

functor and lim! is the first right derived functor. In contrast, colim : AbN — Ab is exact.

Proof. This is similar to the proof for the colimits, but the lack of exactness gives it an extra twist.

As before, Let
(o)
telX; = | J X x [i,i+ 1]

i=0
and divide it as (telX;; A, B) such that
AL}UX?Lfl BL>UX21 C:AHBL)UXZ
i>1 i>0 i>0

are weak equivalences. Construct a commutative diagram using Mayer-Vietoris such that the
bottom row is the .
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. —= E*(telX;) — E*(A) @ E*(B) E*(C) B (telX;) — ...

o o) (o) \L/ﬁ

C— E*(X) —— Tl B*(X3) [Tiso B*(Xi) EY(X) — ...

o) o)

[iso Bx(Xi) lim ' E*(X;) — 0

Recall that if

fi— 1 fi+1 fi+2

) Ai— 1 Ai f Az‘+1 Ai+2 Ai+3

is exact, then there is an exact sequence

. -t . i+1 .
0 — coker(f*1) EINy é——) ker(f2) =0

where ?Z and f“ are the universal maps induced by f* and f*! respectively.

Hence, since lim E*(X;) is the kernel of the middle arrow, we have a surjection
E*(X) — lim E*(X;)

is a surjection. Further, lim ! E*(X;) is the cokernel of the middle arrow. Therefore, by the exactness

of the sequence, it is the kernel of the map
E*Y(X) — lim E*T(X;) — 0.

Hence, gluing these facts together proves the claim. O

2. CONSEQUENCES OF THE KUNNETH AND UNIVERSAL COEFFICIENT THEOREM FOR SPACES
Theorem 2.1. Let R be a PID. Let X be a free chain complex of R—modules.

(a) (Kiinneth Theorem) Let'Y be any chain complex of R-modules. Then there is a short exact

sequence

0= P Hy(X)@rHy(Y) > Ho(X @rY) > P Torf(Hy(X), Hy(Y)) — 0.
ptg=n p+g=n—1

This sequence s split but the splitting is not natural.
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(b) Let' Y be any cochain complex of R—modules. Then there is a short exact sequence

0= [ Exth(Hy(X),H(Y))— H"(Homp(X,Y)) = [[ Homp(H,(X),HI(Y)) 0.
p+g=n—1 ptq=n

This sequence is split but the splitting is not natural.

Corollary 2.2 (Universal Coefficient Theorems). Let R be a PID. Let X a free chain complex of
R-modules and M be any R—module.

(a) There is a not naturally split short exact sequence
0— Hy(X)®r M % H,(X ®p M) — Torl*(H,_1(X), M) = 0.

The map « is defined by
a[z] @ m) = [z @ m)]

where z € X is a representative for [x].

(b) There is a not naturally split short exact sequence
0 — Bxth(H,_1(X), M) — H"(Homg(X, M)) % Hompg(H,(X), M) — 0.

The map « is defined by

where f € Hom(X, M) is a representative for [f] and x € X is a representative for [z].
Exercise 2.3. Go over the proof of (b), the universal coefficient theorem for cohomology.
Recall that for X and Y CW-complexes, there is an isomorphism
Ci(X;R)®r Ci(Y;R) — Cu(X X Y R).
Further, C,(X; R) is always a chain complex of free R—modules. Therefore,
H.(X xY;R) = Ho(Ci(X; R) ®r Ci(Y; R)).
Hence, the Kiinneth can be restated as

0= P Hy(X;R)@ Hy(Y;R) = Hy(X xY;R) > P Torf(Hy(X; R), Hy(Y; R)) = 0.
pt+q=n p+g=n—1
Corollary 2.4 (Kiinneth Isomorphism). If k is a field, then for any space X and Y, there is a
natural isomorphism

P Hy(X:k) @ Hy(Yik) = Hy(X x Y3k),
p+g=n
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ie., Ho(X; k) @ H (Y; k)2H (X x Y5 k).

Proof. H.(Z; k) is free as a k—module for any space Z. Hence, all the Tor'f terms vanish. The map

on chains inducing the isomorphism is natural in both X and Y, hence this so is the induced map

on cohomology. O



	1. Colimits Continued
	2. Consequences of the Künneth and Universal Coefficient Theorem for spaces

