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1. Colimits Continued

As for homology, there is a Mayer-Vietoris theorem for generalized cohomologies:

Theorem 1.1. (Mayer-Vietoris for Cohomology) Let E∗ : CWTop pairsop → Ab. Let (X;A,B) be

a CW-triad and i denote the various inclusions. Let C = A ∩B.

Then there is a long exact sequence

. . .→ E∗−1(C)
δ−→ E∗(X)

(i∗,i∗)−−−−→ E∗(A)⊕ E∗(B)
i∗⊕−i∗−−−−→ E∗(C)→ . . .

where δ is the composit:

E∗−1(C)
∂ // E∗(A,C)

exc.

∼= // E∗(X,B)
i∗ // E∗(X)

Let X =
⋃∞
i=iXi for ji : Xi ⊆ Xi+1. Recall that for E∗ : Toppairs→ Ab a generalized homology

theory, then the natural map

colimE∗(Xi)→ E∗(X)

is an isomorphism.

Now, let E∗ : Toppairsop → Ab be a generalized cohomology theory. The natural map now goes

in the other direction and the colimit is replaced by an inverse limit:

E∗(X)→ limE∗(Xi).
1

http://link.springer.com.colorado.idm.oclc.org/book/10.1007/b97586
http://www.math.uchicago.edu/~may/CONCISE/ConciseRevised.pdf
http://www.math.uchicago.edu/~may/TEAK/KateBookFinal.pdf
https://www.math.cornell.edu/~hatcher/AT/AT.pdf
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This map is not in general an isomorphism. Rather, we have

Theorem 1.2. There are natural exact sequences

0→ lim 1Eq−1(Xi)→ Eq(X)→ limEq(Xi)→ 0.

Let’s explain what this lim 1-term means. An equalizer, is the limit of a diagram:

A
g
//

f
//
B

Let A be a category with products and equilizers. For fi+1 : Ai+1 → Ai a inverse system, limAi is

the coequilizer:

limAi //
∏
Ai ∏

fi

//

∏
id
// ∏

Ai

In abelian groups, these diagrams can be rewritten as an exact sequence

(1) 0→ limAi →
∞∏
i=1

Ai
s−→
∞∏
i=1

Ai → lim 1Ai → 0

for si+1 : Ai+1 → Ai given by si+1(a) = a − fi+1(a) and s =
∏
si. As (1) suggests, the map s is

not necessarily surjective and lim 1 measures that failure.

Remark 1.3. For N the poset 0 → 1 → 2 → . . ., the functor lim : AbNop → Ab is a left exact

functor and lim 1 is the first right derived functor. In contrast, colim : AbN → Ab is exact.

Proof. This is similar to the proof for the colimits, but the lack of exactness gives it an extra twist.

As before, Let

telXi =

∞⋃
i=0

Xi × [i, i+ 1]

and divide it as (telXi;A,B) such that

A
r−→

⋃
i≥1

X2i−1 B
r−→

⋃
i≥0

X2i C = A ∩B r−→
⋃
i≥0

Xi

are weak equivalences. Construct a commutative diagram using Mayer-Vietoris such that the

bottom row is the (1).
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. . . // E∗(telXi)

∼=
��

// E∗(A)⊕ E∗(B)

∼=
��

// E∗(C)

∼=
��

// E∗+1(telXi)

∼=
��

// . . .

. . . // E∗(X)

��

//
∏
i≥0E

∗(Xi) //

∼=
��

∏
i≥0E

∗(Xi) //

∼=
��

E∗+1(X) // . . .

0 // limE∗(Xi) //
∏
i≥0E∗(Xi) //

∏
i≥0E∗(Xi) // lim 1E∗(Xi) // 0

Recall that if

. . . // Ai−1
f i−1

// Ai
f i
// Ai+1

f i+1

// Ai+2
f i+2

// Ai+3 // . . .

is exact, then there is an exact sequence

0→ coker(f i−1)
f
i

−→ Ai+1
f i+1

−−−→ ker(f i+2)→ 0

where f
i

and f i+1 are the universal maps induced by f i and f i+1 respectively.

Hence, since limE∗(Xi) is the kernel of the middle arrow, we have a surjection

E∗(X)→ limE∗(Xi)

is a surjection. Further, lim 1E∗(Xi) is the cokernel of the middle arrow. Therefore, by the exactness

of the sequence, it is the kernel of the map

E∗+1(X)→ limE∗+1(Xi)→ 0.

Hence, gluing these facts together proves the claim. �

2. Consequences of the Künneth and Universal Coefficient Theorem for spaces

Theorem 2.1. Let R be a PID. Let X be a free chain complex of R–modules.

(a) (Künneth Theorem) Let Y be any chain complex of R–modules. Then there is a short exact

sequence

0→
⊕
p+q=n

Hp(X)⊗R Hq(Y )→ Hn(X ⊗R Y )→
⊕

p+q=n−1
TorR1 (Hp(X), Hq(Y ))→ 0.

This sequence is split but the splitting is not natural.
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(b) Let Y be any cochain complex of R–modules. Then there is a short exact sequence

0→
∏

p+q=n−1
Ext1R(Hp(X), Hq(Y ))→ Hn(HomR(X,Y ))→

∏
p+q=n

HomR(Hp(X), Hq(Y ))→ 0.

This sequence is split but the splitting is not natural.

Corollary 2.2 (Universal Coefficient Theorems). Let R be a PID. Let X a free chain complex of

R–modules and M be any R–module.

(a) There is a not naturally split short exact sequence

0→ Hn(X)⊗RM
α−→ Hn(X ⊗RM)→ TorR1 (Hn−1(X),M)→ 0.

The map α is defined by

α([x]⊗m) = [x⊗m]

where x ∈ X is a representative for [x].

(b) There is a not naturally split short exact sequence

0→ Ext1R(Hn−1(X),M)→ Hn(HomR(X,M))
α−→ HomR(Hn(X),M)→ 0.

The map α is defined by

α([f ])([x]) = [f(x)]

where f ∈ Hom(X,M) is a representative for [f ] and x ∈ X is a representative for [x].

Exercise 2.3. Go over the proof of (b), the universal coefficient theorem for cohomology.

Recall that for X and Y CW-complexes, there is an isomorphism

C∗(X;R)⊗R C∗(Y ;R)→ C∗(X × Y ;R).

Further, C∗(X;R) is always a chain complex of free R–modules. Therefore,

H∗(X × Y ;R) ∼= H∗(C∗(X;R)⊗R C∗(Y ;R)).

Hence, the Künneth can be restated as

0→
⊕
p+q=n

Hp(X;R)⊗Hq(Y ;R)→ Hn(X × Y ;R)→
⊕

p+q=n−1
TorR1 (Hp(X;R), Hq(Y ;R))→ 0.

Corollary 2.4 (Künneth Isomorphism). If k is a field, then for any space X and Y , there is a

natural isomorphism ⊕
p+q=n

Hp(X; k)⊗Hq(Y ; k)
∼=−→ Hn(X × Y ; k),
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i.e., H∗(X; k)⊗H∗(Y ; k)∼=H∗(X × Y ; k).

Proof. H∗(Z; k) is free as a k–module for any space Z. Hence, all the Tork1 terms vanish. The map

on chains inducing the isomorphism is natural in both X and Y , hence this so is the induced map

on cohomology. �
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