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1. PREVIEW

Let X = U;}io Xo for j; : X; C X;4+1. Recall that since S™ and S™ x I are compact, we have
colim 7, (X;) — m(X)

The next goal is to prove that this holds for generalized homology theories as well.

Theorem 1.1. Let E, : Toppairs — Ab be a generalized homology theory, then the natural map
colim F, (X;) — F.(X)

18 an isomorphism.
We start with some remarks.

Remark 1.2. Recall that a coequlizer is the colimit of a diagram


http://link.springer.com.colorado.idm.oclc.org/book/10.1007/b97586
http://www.math.uchicago.edu/~may/CONCISE/ConciseRevised.pdf
http://www.math.uchicago.edu/~may/TEAK/KateBookFinal.pdf
https://www.math.cornell.edu/~hatcher/AT/AT.pdf

2 MATH 6280 - CLASS 33

or equivalently, the pushout:

AT[A - B
v
A

Let A be a category with coproducts and co-equilizers. For f; : A; — A;11 a directed system,
colim A; is the coequilizer:
Uid
Uf;
(In abelian groups, these diagrams can be rewritten as an exact sequence
oo o)
0— @Ai &N @Ai — colim A; — 0
i=1 i=1
for s; : A; — A;q1 given by s;(a) = a — fi(a) and s = Ps;.)
Therefore, if a functor preserves arbitrary coproducts and coequilizers, then it preserves directed
colimits. Generalized homology theories do preserve coproducts, but we need some kind of approx-
imation of what it would been for it to preserve co-equiliizers, or at least, how it behaves with

pushouts. This is what Mayer-Vietoris will gives us.

2. MAYER-VIETORIS

There are many versions of this theorem. I'll give a simple one and let you figure out others.

Theorem 2.1. Let E, : CWTop pairs — Ab. Let (X; A, B) be a CW-triad and i denote the various
inclusions. Let C = AN B.

Then there is a long exact sequence
s B(O) Y By e El(B) 22T LX) S B (C) -
where & is the composit:
E.(X) — Eu(X,B) —> E.(A,C) — = E,_1(C).
Remark 2.2. Under these conditions, we have that

C ——= A

L

B—— X

is a (homotopy) pushout and MVT says that E,(—) turns this into a long exact sequence.
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First, note the following lemma.
Lemma 2.3. Let E, : CWTop pairs — Ab. Let (X; A, B) be a CW-triad and i denote the various
inclusions. Let C = AN B. Then

E.(A,C)® E.(B,C) = E.(X,C)

s an isomorphism. Further, the inclusion of the factors is split by the excision isomorphism

E.(A,C) —> E(X,C) —> E,(X,B) —— E,(A,0)

and equivalently,

E.(X,C) =& B,(X,A) @ E.(X,B)

18 an isomorphism.

Proof. We have X/C ~ A/C VvV B/C. Then

E.(A,C) @ E,(B,C) =
%% B (4/CV B/C)

E.(A/C)& E.(B/C)

For CW triad, the excision isomorphism comes from the equivalence X/B = A/C and the second
O

claim follows.

Proof of Theorem [2.1. As in Concise, the following diagram commutes

e \ 7 X’B\ /\
\ / i

We use the notation a € A, b€ B,ce C and x € X

We first prove exactness at
(i*yi*) i*®_i*
E.(C) —= E.(A) ® E.(B) —= E.(X).
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That the composition is zero is obvious. Suppose i.(a) — ix(b) = 0. Then i.(a) = ix(b). Then, by
exactness of

E.(A) = E, (X) E.(X,A)
we have j.(i.(a)) =0 € E.(X, A) and similarly, j.(i.(b)) =0 € E.(X, B).
Since F,(X,C) =2 E.(X,A) ® E.(X, B)
ki (ix(a)) = K (ix (b)) = 0.

There is a ¢ € E,(C) such that i,(c) = is(a) = i.(b) € E«(X). Hence, (a,b) = (ix(c),i«(c)) and we
have exactness of
E.(C) " B (4) @ E(B) 227 BL(X).

Next, we prove exactness of
E.(A)® E.(B) =22 B(X) % B,4(C)

The map 9 is the composite of the bottom row

/\a

E.(X) -2~ B.(X,B) —> E.(A,0) — E.1(0).

Equivalently, § can be computed as the composite of the bottom row

/\

o)

EA(X) —"> E(X,A) — > E,(B,C) "~ E._,(C).

So, that d o (ix & —is) = 0 is immediate.

If 6(x) = 0, then O(j«(z)) = 0. By exactness, of
E(4) % E(4,0) % E.1(C)

there is a € A such that £,(a) = j.«(x) € E.(A,C). That is

By exactness of
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ker(j.) = ix(E«(B)), so there is b € B such that
ix(a) + i4(b) = x.
Hence
(ix @ —ix)(a, —b) = .

Finally, we check exactness at
E(X) S5 B S B (A) @ Eai(B)

That the composite is zero follows from the definition of ¢ as either

Tx

E.(X) > BAX,B) -~ B.(A,C) ~"= B (C) —"~ E.(4)

or
E.(X) —> E.(X,A) — > B.(B,C) —> E,_1(C) —~ E.(B).
Suppose that (i.(c),i«(c)) = 0. The following diagram commutes:

j* = Tx

E.(X) Y~ E.(X,B) — E.(A,C) — 2~ B, 1(C) —“= E._1(A)

E,_1(B)

Hence, since i.(c) = 0, there is y € E.(X, B) such that d(y) = ¢. However, since i.(c) = 0 €
E. 1(B), 9(y) = 0 € E._1(B). It follows that there is z € F,(X) such that j.(z) = y. Hence,
i(z) =c.

(]

3. CoLIMITS

Exercise 3.1. Let f; : A; — A;+1 give a directed system of abelian groups:
Al f—1>A2f—2>A3—>

Then for s; : A; — A;y1 given by si(a) = a — fi(a) and s = @s;, there is an exact sequence

00 00
0— @Az i) @Az — COlimAi — 0.
i=1 =1

That is, the colimit can be expressed as the coequalizer of the maps id and & f;.

Proof. We will fatten up the X; in |J X; in order to use Mayer-Vietoris.
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Let -
telX; = | ) X x [i,i + 1]
=0
where we identify
wi x {i+ 1} € Xy x [i,i+1] = ji(ws) x {i + 1} € Xipq x [i+1,i+2].
Let Vi, = UM} Xi x [i,i 4+ 1] U (X}, x {k}). Then

telX; = colimY;

There are commutative diagrams:

T

Y[) [ }/Z Y7;+1H"'
Ji
Xo X; Xiy1 —— ...

where the maps r are deformation retracts. Since m,.(—) commutes with colimits, we have that the
natural map

telX; = colimY; — X

is a weak equivalence. Therefore,
E.(telX;) — E.(X)

is an isomorphism.

Let
1
A= (Xox {0}) U J(Xai x [2i + 520+ 1) U (Xoier x [2i +1,2i +2))
>0
1
B = (Xox[0,1]) U | J(Xai-1 x [2i — 5 211) U (Xai x [20, 2 + 1)
i>1
C=ANB=|J(XiUX;x [i+1/2,i+1)).
i>1
Then
AQUXQZ‘A BQUX% C’LUXi.

i>1 >0 1>0
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Further, there is a commutative diagram

c A

J2i—1Vidx,,

Uiso Xi Uiso X2i UU;>1 X2ic1 Uis1 X2i1
and
C B
| |
idx,, | Uj2
UiZO Xz ES UiZO XQZ‘ U Uizl X2i—1 Uz’ZO X?i

Now, note that (telX;; A, B) is an excisive triad. Let k : A, B — telX; and k; : X; — X be the
inclusions.

Using Mayer-Vietoris, we have a commutative diagram:

kv ®—kx
By (tel X;) E.(C) E.(A) & E.(B) ——2 E.(telX;) — E,_,(C)
\L l @i (id B(5:)«) i @izo(—1) (ki)« l T
0 @z’zo E(Xi) @izo E*(Xz> E*(X) 0
%l@(—l)i =l e T
®i(id &(—1)(Ji)«) )
0 69120 E.(X;) @ZZO E.(X;) colim E, (X;) 0

which establishes the isomorphism. ]
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