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1. Preview

Let X =
⋃∞
i=0X0 for ji : Xi ⊆ Xi+1. Recall that since Sn and Sn × I are compact, we have

colimπ∗(Xi)→ π∗(X)

The next goal is to prove that this holds for generalized homology theories as well.

Theorem 1.1. Let E∗ : Toppairs→ Ab be a generalized homology theory, then the natural map

colimE∗(Xi)→ E∗(X)

is an isomorphism.

We start with some remarks.

Remark 1.2. Recall that a coequlizer is the colimit of a diagram

A
g
//

f
//
B

1

http://link.springer.com.colorado.idm.oclc.org/book/10.1007/b97586
http://www.math.uchicago.edu/~may/CONCISE/ConciseRevised.pdf
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or equivalently, the pushout:

A
∐
A

∇
��

ftg
// B

A

.

Let A be a category with coproducts and co-equilizers. For fi : Ai → Ai+1 a directed system,

colimAi is the coequilizer: ∐
Ai

tfi
//

tid // ∐
Ai // colimAi

(In abelian groups, these diagrams can be rewritten as an exact sequence

0→
∞⊕
i=1

Ai
s−→
∞⊕
i=1

Ai → colimAi → 0

for si : Ai → Ai+1 given by si(a) = a− fi(a) and s = ⊕si.)
Therefore, if a functor preserves arbitrary coproducts and coequilizers, then it preserves directed

colimits. Generalized homology theories do preserve coproducts, but we need some kind of approx-

imation of what it would been for it to preserve co-equiliizers, or at least, how it behaves with

pushouts. This is what Mayer-Vietoris will gives us.

2. Mayer-Vietoris

There are many versions of this theorem. I’ll give a simple one and let you figure out others.

Theorem 2.1. Let E∗ : CWTop pairs→ Ab. Let (X;A,B) be a CW-triad and i denote the various

inclusions. Let C = A ∩B.

Then there is a long exact sequence

. . .→ E∗(C)
(i∗,i∗)−−−−→ E∗(A)⊕ E∗(B)

i∗⊕−i∗−−−−→ E∗(X)
δ−→ E∗−1(C)→ . . .

where δ is the composit:

E∗(X) // E∗(X,B)
exc.

∼= // E∗(A,C)
∂ // E∗−1(C).

Remark 2.2. Under these conditions, we have that

C //

��

A

��
B // X

is a (homotopy) pushout and MVT says that E∗(−) turns this into a long exact sequence.
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First, note the following lemma.

Lemma 2.3. Let E∗ : CWTop pairs→ Ab. Let (X;A,B) be a CW-triad and i denote the various

inclusions. Let C = A ∩B. Then

E∗(A,C)⊕ E∗(B,C)→ E∗(X,C)

is an isomorphism. Further, the inclusion of the factors is split by the excision isomorphism:

E∗(A,C) // E∗(X,C) // E∗(X,B)
∼=
exc.
// E∗(A,C) ,

and equivalently,

E∗(X,C)
i∗⊕i∗−−−→ E∗(X,A)⊕ E∗(X,B)

is an isomorphism.

Proof. We have X/C ' A/C ∨B/C. Then

E∗(A,C)⊕ E∗(B,C) = Ẽ∗(A/C)⊕ Ẽ∗(B/C)

i∗⊕i∗−−−→
∼=
Ẽ∗(A/C ∨B/C)

∼= Ẽ∗(X/C)

= E∗(X,C).

For CW triad, the excision isomorphism comes from the equivalence X/B ∼= A/C and the second

claim follows. �

Proof of Theorem 2.1. As in Concise, the following diagram commutes:

E∗(A)

$$

E∗(X,B) E∗(A,C)∼=
oo

∂

&&xx
E∗(C)

::

$$

// E∗(X)

j∗
99

k∗ //

j∗ %%

E∗(X,C)

ff

xx

∂ // E∗−1(C)

E∗(B)

::

E∗(X,A) E∗(B,C)
∼=oo

∂

88ff

We use the notation a ∈ A, b ∈ B, c ∈ C and x ∈ X
We first prove exactness at

E∗(C)
(i∗,i∗)−−−−→ E∗(A)⊕ E∗(B)

i∗⊕−i∗−−−−→ E∗(X).
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That the composition is zero is obvious. Suppose i∗(a) − i∗(b) = 0. Then i∗(a) = i∗(b). Then, by

exactness of

E∗(A)→ E∗(X)
j∗−→ E∗(X,A)

we have j∗(i∗(a)) = 0 ∈ E∗(X,A) and similarly, j∗(i∗(b)) = 0 ∈ E∗(X,B).

Since E∗(X,C) ∼= E∗(X,A)⊕ E∗(X,B)

k∗(i∗(a)) = k∗(i∗(b)) = 0.

There is a c ∈ E∗(C) such that i∗(c) = i∗(a) = i∗(b) ∈ E∗(X). Hence, (a, b) = (i∗(c), i∗(c)) and we

have exactness of

E∗(C)
(i∗,i∗)−−−−→ E∗(A)⊕ E∗(B)

i∗⊕−i∗−−−−→ E∗(X).

Next, we prove exactness of

E∗(A)⊕ E∗(B)
i∗⊕−i∗−−−−→ E∗(X)

δ−→ E∗−1(C)

The map δ is the composite of the bottom row

E∗(A)

i∗

yy

`∗

&&
E∗(X)

j∗ // E∗(X,B)
exc.

∼= // E∗(A,C)
∂ // E∗−1(C).

Equivalently, δ can be computed as the composite of the bottom row

E∗(B)

i∗

yy

`∗

&&
E∗(X)

j∗ // E∗(X,A)
exc.

∼= // E∗(B,C)
∂ // E∗−1(C).

So, that ∂ ◦ (i∗ ⊕−i∗) = 0 is immediate.

If δ(x) = 0, then ∂(j∗(x)) = 0. By exactness, of

E∗(A)
`∗−→ E∗(A,C)

∂−→ E∗−1(C)

there is a ∈ A such that `∗(a) = j∗(x) ∈ E∗(A,C). That is

j∗(i∗(a)) = `∗(a) = j∗(x).

By exactness of

E∗(B)
i∗−→ E∗(X)

j∗−→ E∗(X,B)
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ker(j∗) = i∗(E∗(B)), so there is b ∈ B such that

i∗(a) + i∗(b) = x.

Hence

(i∗ ⊕−i∗)(a,−b) = x.

Finally, we check exactness at

E∗(X)
δ−→ E∗−1(C)

(i∗,i∗)−−−−→ E∗−1(A)⊕ E∗−1(B)

That the composite is zero follows from the definition of δ as either

E∗(X)
j∗ // E∗(X,B)

exc.

∼= // E∗(A,C)
∂ // E∗−1(C)

i∗ // E∗(A)

or

E∗(X)
j∗ // E∗(X,A)

exc.

∼= // E∗(B,C)
∂ // E∗−1(C)

i∗ // E∗(B).

Suppose that (i∗(c), i∗(c)) = 0. The following diagram commutes:

E∗(X)
j∗ // E∗(X,B)

exc.

∼= //

∂ &&

E∗(A,C)
∂ // E∗−1(C)

i∗tt

i∗ // E∗−1(A)

E∗−1(B)

Hence, since i∗(c) = 0, there is y ∈ E∗(X,B) such that ∂(y) = c. However, since i∗(c) = 0 ∈
E∗−1(B), ∂(y) = 0 ∈ E∗−1(B). It follows that there is x ∈ E∗(X) such that j∗(x) = y. Hence,

δ(x) = c.

�

3. Colimits

Exercise 3.1. Let fi : Ai → Ai+1 give a directed system of abelian groups:

A1
f1−→ A2

f2−→ A3 → . . .

Then for si : Ai → Ai+1 given by si(a) = a− fi(a) and s = ⊕si, there is an exact sequence

0→
∞⊕
i=1

Ai
s−→
∞⊕
i=1

Ai → colimAi → 0.

That is, the colimit can be expressed as the coequalizer of the maps id and ⊕fi.

Proof. We will fatten up the Xi in
⋃
Xi in order to use Mayer-Vietoris.
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Let

telXi =

∞⋃
i=0

Xi × [i, i+ 1]

where we identify

xi × {i+ 1} ∈ Xi × [i, i+ 1] = ji(xi)× {i+ 1} ∈ Xi+1 × [i+ 1, i+ 2].

Let Yk =
⋃k−1
i=0 Xi × [i, i+ 1] ∪ (Xk × {k}). Then

telXi = colimYi

There are commutative diagrams:

Y0
r //

��

. . . // Yi

r

��

// Yi+1

r

��

// . . .

X0
// . . . // Xi

ji // Xi+1
// . . .

where the maps r are deformation retracts. Since π∗(−) commutes with colimits, we have that the

natural map

telXi = colimYi → X

is a weak equivalence. Therefore,

E∗(telXi)→ E∗(X)

is an isomorphism.

Let

A = (X0 × {0}) ∪
⋃
i≥0

(X2i × [2i+
1

2
, 2i+ 1]) ∪ (X2i+1 × [2i+ 1, 2i+ 2])

B = (X0 × [0, 1]) ∪
⋃
i≥1

(X2i−1 × [2i− 1

2
, 2i]) ∪ (X2i × [2i, 2i+ 1])

C = A ∩B =
⋃
i≥1

(Xi ∪Xi × [i+ 1/2, i+ 1]).

Then

A
r−→

⋃
i≥1

X2i−1 B
r−→

⋃
i≥0

X2i C
r−→

⋃
i≥0

Xi.
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Further, there is a commutative diagram

C //

r
��

A

r

��⋃
i≥0Xi

⋃
i≥0X2i ∪

⋃
i≥1X2i−1

j2i−1∪idX2i //
⋃
i≥1X2i−1

and

C //

r
��

B

r

��⋃
i≥0Xi

⋃
i≥0X2i ∪

⋃
i≥1X2i−1

idX2i−1
∪j2i

//
⋃
i≥0X2i

Now, note that (telXi;A,B) is an excisive triad. Let k : A,B → telXi and ki : Xi → X be the

inclusions.

Using Mayer-Vietoris, we have a commutative diagram:

E∗+1(telXi)

��

// E∗(C)

∼=
��

// E∗(A)⊕ E∗(B)

∼=
��

k∗⊕−k∗ // E∗(telXi)

∼=
��

// E∗−1(C)

0 //
⊕

i≥0E∗(Xi)
⊕i(id⊕(ji)∗) //

⊕(−1)i∼=
��

⊕
i≥0E∗(Xi)

⊕i≥0(−1)i(ki)∗
//

⊕(−1)i∼=
��

E∗(X) // 0

OO

0 //
⊕

i≥0E∗(Xi)
⊕i(id⊕(−1)(ji)∗)//

⊕
i≥0E∗(Xi) // colimE∗(Xi)

OO

// 0

which establishes the isomorphism. �
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