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1. NATURAL TRANSFORMATION

Definition 1.1. A natural transformation is a morphism of functors. That is, if F,G : C — D, a
natural transformation n : F' — G is a collection of morphisms ny : F(X) — G(X) which make

the following diagrams commute for every f: X — Y in C:

If each nx is an isomorphism, then 7 is a natural isomorphism and we write F' = G.

Example 1.2. (1) Let A and B be abelian groups. There are functors
Hom(A® B,—) : Ab — Ab

and
Hom(A,Hom(B,—)) : Ab — Ab.
Further, there is a map

nc : Hom(A ® B,C) — Hom(A, Hom(B, C))

defined by
ne(f)(a)(b) = fla®b).
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Then n defines a natural transformation:
n: Hom(A ® B, —) — Hom(A, Hom(B, —))

which is in fact a natural isomorphism.
(2) If F: C — Sets is representable, this means that there exists X € C and a natural isomor-
phism F(—) — C(X, —).

(3) The Hurewicz homomorphism:
1 (X ) — H; (X )

will be an example of a natural transformation.
(4) If F : Ab — Top is the free abelian group functor and U : Ab — Sets is the forgetful

functor, then there are natural transformations F o U — id 45 and idgets — U o F.

Remark 1.3. Whenever we say that two things are naturally isomorphic, it means that there are

functors lying around and a natural isomorphism between them.

Exercise 1.4. A natural transformation is a kind of categorical homotopy. Let I be the category:

Yy ()

0——1
and F,G : C — D. Then a natural transformation is equivalent to a functor:
n:CxI—D
that satisfies n(X,0) = F(X) and n(X,1) = G(X).

Definition 1.5. e Categories C and D are isomorphic if there exists functors F' : C — D and
G :D — C such that F oG =1idp and G o F' = idg.
e Categories C and D are equivalent if there exists functors £ : C — D and G : D — C and

natural isomorphisms F o G 2 idp and G o f 2 idp.

2. ADJUNCTIONS

Definition 2.1. Let F: C — D and G : D — C. Then we say that F' and G are an adjoint pair if
there is a natural isomorphism

C(F(X),Y) = D(X,G(Y)).

In this case, we say that F' is the left adjoint and G is the right adjoint. Finally, we write

F:C 1 D:G
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Example 2.2. e Consider the functors U : Ab — Sets which sends A to the set underlying
A and F : Sets — Ab which sends a set S to the free abelian group F(S) generated by S.
Note that

Ab(F(X),Y) =2 Ab(X,U(Y))
and that this isomorphism is natural in each variables. This is an example of an adjunction.
F:Sets 1~ Ab:U

e Fix a set Y. There are functors — x Y : Sets — Sets an Hom(Y, —) and these give rise to
an adjunction:

—xY :Sets L Sets:Hom(Y,—)

-~

which just reflex the isomorphism:
Sets(X x Y, Z) = Sets(X, Sets(Y, Z)).
e In abelian groups, you get a similar adjunction:
—~®B:Ab ZAb:Hom(B,—)
which just reflex the isomorphism:
Ab(A® B,C) = Ab(A,Hom(B, C)).

and these kinds of adjunctions are often called tensor-hom adjunctions.

3. YONEDA

Lemma 3.1 (Yoneda). Given F : C — Sets and A € C, the natural transformations C(A,—) — F

are in bijective correspondence with the elements of F(A).

Proof sketch. Let a € F(A). Then
nx :C(A, X) = F(X)
f=F(f)(a)

is a natural transformation. Conversely, if n : C(A,—) — F is a natural transformation, let

a =n4(id4) and check that nx must be as above for this a. O
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4. LiMITS AND COLIMITS

Example 4.1 (Limit: product). The product of X xY" is an object of C with the following property:

Given maps f: Z — X and g: Z — Y, there exists a unique map f x g: Z — X x Y making the
above diagram commute.

Depending on C, the product map or may not exist.

e The product in Sets, Top, Gr and Ab is just the cartesian product.
e The product in Top, is (X, *) x (Y, *) = (X X Y, (%,%)). Warning: This is not the smash

product. Remember, the smash product will not be the categorical product in Top,.

Example 4.2 (Colimit: coproduct). The coproduct of X LI'Y is an object of C with the following

property:
X Y
f XxXuy /4
v
Z

Given maps f: X — Z and g : Y — Z, there exists a unique map fllg: X UY — Z making the
above diagram commute.

Depending on C, the coproduct map or may not exist.

e The coproduct in Sets, Top is the disjoint union.
e The coproduct in Top, is the wedge X VY.
e The coproduct in Ab is direct sum, X UY = X @Y.

Details. Given two maps f: X — Z and g:Y — Z. Then, one can define a map

fUlg=f+g: XY > Z
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by (f +9)((a,b)) = f(a) + g(b). Further, suppose that F : X &Y — Z is a map, then we

get maps
fla) = F((a,0)),  g(b) = F((0,0)).

These correspondences are inverse to one another.
e The coproduct in Gr is the free product *.

Example 4.3 (Limit: pull-back). Consider a diagram

X

|

J

The pull-back of the diagram is an element X Xz Y of C with maps X xzY — X, X xzY —» Y
such that, given maps f: W — X and g : W — Y such that ¢f = jg, there exists a unique map

W — X Xz Y making the following diagram commute:

e In Sets, Ab, Gr, Top
X xz Y ={(z,y) [i(z) =j(y)} € X xY
Details. If f W > X and g: W — Z, then f x g: W — X Xz Y is given by
(f x 9)(2) = (£(2), 9(2)).
Example 4.4 (Colimit: push-out). Consider a diagram

e
i)
Y

The push-out of the diagram is an element X Uz Y of C with maps X - X UzY,Y - XUzY
such that, given maps f: X — W and g : Y — W such that fi = gj, there exists a unique map
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X Uz Y — W making the following diagram commute:

e In Sets and Top,
XUzY =(XUY)/(j(z) ~i(z))

Exercise 4.5. What is the pushout in groups, abelian groups and commutative rings?



