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1. Natural Transformation

Definition 1.1. A natural transformation is a morphism of functors. That is, if F,G : C → D, a

natural transformation η : F → G is a collection of morphisms ηX : F (X) → G(X) which make

the following diagrams commute for every f : X → Y in C:

F (X)
F (f)

//

ηX
��

F (Y )

ηY
��

G(X)
G(f)

// G(Y ).

If each ηX is an isomorphism, then η is a natural isomorphism and we write F ∼= G.

Example 1.2. (1) Let A and B be abelian groups. There are functors

Hom(A⊗B,−) : Ab→ Ab

and

Hom(A,Hom(B,−)) : Ab→ Ab .

Further, there is a map

ηC : Hom(A⊗B,C)→ Hom(A,Hom(B,C))

defined by

ηC(f)(a)(b) = f(a⊗ b).
1
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Then η defines a natural transformation:

η : Hom(A⊗B,−)→ Hom(A,Hom(B,−))

which is in fact a natural isomorphism.

(2) If F : C → Sets is representable, this means that there exists X ∈ C and a natural isomor-

phism F (−)→ C(X,−).

(3) The Hurewicz homomorphism:

π1(X)→ H1(X)

will be an example of a natural transformation.

(4) If F : Ab → Top is the free abelian group functor and U : Ab → Sets is the forgetful

functor, then there are natural transformations F ◦ U → idAb and idSets → U ◦ F .

Remark 1.3. Whenever we say that two things are naturally isomorphic, it means that there are

functors lying around and a natural isomorphism between them.

Exercise 1.4. A natural transformation is a kind of categorical homotopy. Let I be the category:

0
��

// 1
��

and F,G : C → D. Then a natural transformation is equivalent to a functor:

η : C × I → D

that satisfies η(X, 0) = F (X) and η(X, 1) = G(X).

Definition 1.5. • Categories C and D are isomorphic if there exists functors F : C → D and

G : D → C such that F ◦G = idD and G ◦ F = idC .

• Categories C and D are equivalent if there exists functors F : C → D and G : D → C and

natural isomorphisms F ◦G ∼= idD and G ◦ f ∼= idD.

2. Adjunctions

Definition 2.1. Let F : C → D and G : D → C. Then we say that F and G are an adjoint pair if

there is a natural isomorphism

C(F (X), Y ) ∼= D(X,G(Y )).

In this case, we say that F is the left adjoint and G is the right adjoint. Finally, we write

F : C
//
D : G⊥oo
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Example 2.2. • Consider the functors U : Ab → Sets which sends A to the set underlying

A and F : Sets → Ab which sends a set S to the free abelian group F (S) generated by S.

Note that

Ab(F (X), Y ) ∼= Ab(X,U(Y ))

and that this isomorphism is natural in each variables. This is an example of an adjunction.

F : Sets
//
Ab : U⊥oo

• Fix a set Y . There are functors − × Y : Sets → Sets an Hom(Y,−) and these give rise to

an adjunction:

−× Y : Sets
//
Sets : Hom(Y,−)⊥oo

which just reflex the isomorphism:

Sets(X × Y,Z) ∼= Sets(X,Sets(Y, Z)).

• In abelian groups, you get a similar adjunction:

−⊗B : Ab
//
Ab : Hom(B,−)⊥oo

which just reflex the isomorphism:

Ab(A⊗B,C) ∼= Ab(A,Hom(B,C)).

and these kinds of adjunctions are often called tensor-hom adjunctions.

3. Yoneda

Lemma 3.1 (Yoneda). Given F : C → Sets and A ∈ C, the natural transformations C(A,−)→ F

are in bijective correspondence with the elements of F (A).

Proof sketch. Let a ∈ F (A). Then

ηX : C(A,X)→ F (X)

f 7→ F (f)(a)

is a natural transformation. Conversely, if η : C(A,−) → F is a natural transformation, let

a = ηA(idA) and check that ηX must be as above for this a. �
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4. Limits and Colimits

Example 4.1 (Limit: product). The product of X×Y is an object of C with the following property:

Z

f

��

g

��

��
X × Y

pX ##pY{{
X Y

Given maps f : Z → X and g : Z → Y , there exists a unique map f × g : Z → X × Y making the

above diagram commute.

Depending on C, the product map or may not exist.

• The product in Sets, Top, Gr and Ab is just the cartesian product.

• The product in Top∗ is (X, ∗)× (Y, ∗) = (X × Y, (∗, ∗)). Warning: This is not the smash

product. Remember, the smash product will not be the categorical product in Top∗.

Example 4.2 (Colimit: coproduct). The coproduct of X t Y is an object of C with the following

property:

X

f

��

##

Y

{{

g

��

X t Y

��
Z

Given maps f : X → Z and g : Y → Z, there exists a unique map f t g : X t Y → Z making the

above diagram commute.

Depending on C, the coproduct map or may not exist.

• The coproduct in Sets, Top is the disjoint union.

• The coproduct in Top∗ is the wedge X ∨ Y .

• The coproduct in Ab is direct sum, X t Y = X ⊕ Y .

Details. Given two maps f : X → Z and g : Y → Z. Then, one can define a map

f t g = f + g : X ⊕ Y → Z
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by (f + g)((a, b)) = f(a) + g(b). Further, suppose that F : X ⊕ Y → Z is a map, then we

get maps

f(a) = F ((a, 0)), g(b) = F ((0, b)).

These correspondences are inverse to one another.

• The coproduct in Gr is the free product ∗.

Example 4.3 (Limit: pull-back). Consider a diagram

X

i
��

Y
j
// Z

The pull-back of the diagram is an element X ×Z Y of C with maps X ×Z Y → X, X ×Z Y → Y

such that, given maps f : W → X and g : W → Y such that if = jg, there exists a unique map

W → X ×Z Y making the following diagram commute:

W
f

))
g

��

$$
X ×Z Y

��

// X

i
��

Y
j

// Z

• In Sets, Ab, Gr, Top

X ×Z Y = {(x, y) | i(x) = j(y)} ⊆ X × Y

Details. If f : W → X and g : W → Z, then f × g : W → X ×Z Y is given by

(f × g)(z) = (f(z), g(z)).

Example 4.4 (Colimit: push-out). Consider a diagram

Z
i //

j

��

X

Y

The push-out of the diagram is an element X tZ Y of C with maps X → X tZ Y , Y → X tZ Y
such that, given maps f : X → W and g : Y → W such that fi = gj, there exists a unique map
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X tZ Y →W making the following diagram commute:

Z
i //

j

��

X

��
f

��

Y //

g
))

X tZ Y

$$
W

• In Sets and Top,

X tZ Y = (X t Y )/(j(z) ∼ i(z))

Exercise 4.5. What is the pushout in groups, abelian groups and commutative rings?


