MATH 6280 - CLASS 3

Contents

1.	Natural Transformation	1
2.	Adjunctions	2
3.	Yoneda	3
4.	Limits and Colimits	4

1. NATURAL TRANSFORMATION

Definition 1.1. A natural transformation is a morphism of functors. That is, if $F, G : \mathcal{C} \to \mathcal{D}$, a natural transformation $\eta : F \to G$ is a collection of morphisms $\eta_X : F(X) \to G(X)$ which make the following diagrams commute for every $f : X \to Y$ in \mathcal{C} :

$$F(X) \xrightarrow{F(f)} F(Y)$$

$$\downarrow^{\eta_X} \qquad \qquad \downarrow^{\eta_Y}$$

$$G(X) \xrightarrow{G(f)} G(Y).$$

If each η_X is an isomorphism, then η is a *natural isomorphism* and we write $F \cong G$.

Example 1.2. (1) Let A and B be abelian groups. There are functors

$$\operatorname{Hom}(A \otimes B, -) : \operatorname{Ab} \to \operatorname{Ab}$$

and

$$\operatorname{Hom}(A, \operatorname{Hom}(B, -)) : \operatorname{Ab} \to \operatorname{Ab}.$$

Further, there is a map

$$\eta_C : \operatorname{Hom}(A \otimes B, C) \to \operatorname{Hom}(A, \operatorname{Hom}(B, C))$$

defined by

$$\eta_C(f)(a)(b) = f(a \otimes b).$$

Then η defines a natural transformation:

$$\eta: \operatorname{Hom}(A \otimes B, -) \to \operatorname{Hom}(A, \operatorname{Hom}(B, -))$$

which is in fact a natural isomorphism.

- (2) If $F : \mathcal{C} \to \text{Sets}$ is representable, this means that there exists $X \in \mathcal{C}$ and a natural isomorphism $F(-) \to \mathcal{C}(X, -)$.
- (3) The Hurewicz homomorphism:

$$\pi_1(X) \to H_1(X)$$

will be an example of a natural transformation.

(4) If $F : Ab \to \text{Top}$ is the free abelian group functor and $U : Ab \to \text{Sets}$ is the forgetful functor, then there are natural transformations $F \circ U \to \text{id}_{Ab}$ and $\text{id}_{\text{Sets}} \to U \circ F$.

Remark 1.3. Whenever we say that two things are *naturally* isomorphic, it means that there are functors lying around and a natural isomorphism between them.

Exercise 1.4. A natural transformation is a kind of categorical homotopy. Let I be the category: $0 \longrightarrow 1$

and $F, G : \mathcal{C} \to \mathcal{D}$. Then a natural transformation is equivalent to a functor:

$$\eta: \mathcal{C} \times I \to \mathcal{D}$$

that satisfies $\eta(X, 0) = F(X)$ and $\eta(X, 1) = G(X)$.

- **Definition 1.5.** Categories C and D are *isomorphic* if there exists functors $F : C \to D$ and $G : D \to C$ such that $F \circ G = id_D$ and $G \circ F = id_C$.
 - Categories \mathcal{C} and \mathcal{D} are *equivalent* if there exists functors $F : \mathcal{C} \to \mathcal{D}$ and $G : \mathcal{D} \to \mathcal{C}$ and natural isomorphisms $F \circ G \cong id_{\mathcal{D}}$ and $G \circ f \cong id_{\mathcal{D}}$.

2. Adjunctions

Definition 2.1. Let $F : \mathcal{C} \to \mathcal{D}$ and $G : \mathcal{D} \to \mathcal{C}$. Then we say that F and G are an adjoint pair if there is a natural isomorphism

$$\mathcal{C}(F(X),Y) \cong \mathcal{D}(X,G(Y))$$

In this case, we say that F is the left adjoint and G is the right adjoint. Finally, we write

$$F: \mathcal{C} \xrightarrow{\perp} \mathcal{D}: G$$

Example 2.2. • Consider the functors $U : Ab \to Sets$ which sends A to the set underlying A and $F : Sets \to Ab$ which sends a set S to the free abelian group F(S) generated by S. Note that

$$\operatorname{Ab}(F(X), Y) \cong \operatorname{Ab}(X, U(Y))$$

and that this isomorphism is natural in each variables. This is an example of an adjunction.

$$F: Sets \xrightarrow{\bot} Ab: U$$

• Fix a set Y. There are functors $- \times Y$: Sets \rightarrow Sets an Hom(Y, -) and these give rise to an adjunction:

$$- \times Y$$
: Sets $\xrightarrow{}$ Sets : Hom $(Y, -)$

which just reflex the isomorphism:

$$\operatorname{Sets}(X \times Y, Z) \cong \operatorname{Sets}(X, \operatorname{Sets}(Y, Z)).$$

• In abelian groups, you get a similar adjunction:

$$-\otimes B: \operatorname{Ab} \xrightarrow{\perp} \operatorname{Ab}: \operatorname{Hom}(B, -)$$

which just reflex the isomorphism:

$$\operatorname{Ab}(A \otimes B, C) \cong \operatorname{Ab}(A, \operatorname{Hom}(B, C)).$$

and these kinds of adjunctions are often called *tensor-hom* adjunctions.

3. Yoneda

Lemma 3.1 (Yoneda). Given $F : \mathcal{C} \to \text{Sets}$ and $A \in \mathcal{C}$, the natural transformations $\mathcal{C}(A, -) \to F$ are in bijective correspondence with the elements of F(A).

Proof sketch. Let $a \in F(A)$. Then

$$\eta_X : \mathcal{C}(A, X) \to F(X)$$

 $f \mapsto F(f)(a)$

is a natural transformation. Conversely, if $\eta : \mathcal{C}(A, -) \to F$ is a natural transformation, let $a = \eta_A(\mathrm{id}_A)$ and check that η_X must be as above for this a.

MATH 6280 - CLASS 3

4. Limits and Colimits

Example 4.1 (Limit: product). The product of $X \times Y$ is an object of \mathcal{C} with the following property:

Given maps $f: Z \to X$ and $g: Z \to Y$, there exists a unique map $f \times g: Z \to X \times Y$ making the above diagram commute.

Depending on \mathcal{C} , the product map or may not exist.

- The product in Sets, Top, Gr and Ab is just the cartesian product.
- The product in Top_{*} is $(X, *) \times (Y, *) = (X \times Y, (*, *))$. Warning: This is not the smash product. Remember, the smash product will not be the categorical product in Top_{*}.

Example 4.2 (Colimit: coproduct). The coproduct of $X \sqcup Y$ is an object of C with the following property:

Given maps $f: X \to Z$ and $g: Y \to Z$, there exists a unique map $f \sqcup g: X \sqcup Y \to Z$ making the above diagram commute.

Depending on \mathcal{C} , the coproduct map or may not exist.

- The coproduct in Sets, Top is the disjoint union.
- The coproduct in Top_{*} is the wedge $X \vee Y$.
- The coproduct in Ab is direct sum, $X \sqcup Y = X \oplus Y$.

Details. Given two maps $f: X \to Z$ and $g: Y \to Z$. Then, one can define a map

$$f\sqcup g=f+g:X\oplus Y\to Z$$

by (f + g)((a, b)) = f(a) + g(b). Further, suppose that $F : X \oplus Y \to Z$ is a map, then we get maps

$$f(a) = F((a, 0)), \qquad g(b) = F((0, b)).$$

These correspondences are inverse to one another.

• The coproduct in Gr is the free product *.

Example 4.3 (Limit: pull-back). Consider a diagram

The pull-back of the diagram is an element $X \times_Z Y$ of \mathcal{C} with maps $X \times_Z Y \to X$, $X \times_Z Y \to Y$ such that, given maps $f: W \to X$ and $g: W \to Y$ such that if = jg, there exists a unique map $W \to X \times_Z Y$ making the following diagram commute:

• In Sets, Ab, Gr, Top

$$X \times_Z Y = \{(x, y) \mid i(x) = j(y)\} \subseteq X \times Y$$

Details. If $f: W \to X$ and $g: W \to Z$, then $f \times g: W \to X \times_Z Y$ is given by

$$(f \times g)(z) = (f(z), g(z)).$$

Example 4.4 (Colimit: push-out). Consider a diagram

$$\begin{array}{ccc} Z & \stackrel{i}{\longrightarrow} X \\ \downarrow & \\ Y \end{array}$$

The push-out of the diagram is an element $X \sqcup_Z Y$ of \mathcal{C} with maps $X \to X \sqcup_Z Y$, $Y \to X \sqcup_Z Y$ such that, given maps $f: X \to W$ and $g: Y \to W$ such that fi = gj, there exists a unique map $X \sqcup_Z Y \to W$ making the following diagram commute:

• In Sets and Top,

$$X \sqcup_Z Y = (X \sqcup Y)/(j(z) \sim i(z))$$

Exercise 4.5. What is the pushout in groups, abelian groups and commutative rings?