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These notes are based on

• Algebraic Topology from a Homotopical Viewpoint , M. Aguilar, S. Gitler, C. Prieto

• A Concise Course in Algebraic Topology , J. Peter May

• More Concise Algebraic Topology , J. Peter May and Kate Ponto

• Algebraic Topology , A. Hatcher

Remark 0.1 (Passage from reduced to unreduced). Suppose that we are given an unreduced

homology theory E. Let X pointed CW -complex. Note that

∗ → X → ∗

is the identity. This implies that the long exact sequence

. . .→ Eq+1(X, ∗)→ Eq(∗)→ Eq(X)→ Eq(X, ∗)→ Eq−1(∗)→ . . .

splits into split short exact sequences

0→ Eq(∗)→ Eq(X)→ Eq(X, ∗)→ 0

so that

E∗(X) ∼= E∗(X, ∗)⊕ E∗(∗).

Then, the functor

Ẽ∗(X) = E∗(X, ∗)

gives a reduced homology theory.

Conversely, given a reduced homology theory Ẽ∗ and a CW-pair (X,A). Then letting

E∗(X,A) = Ẽ∗(X+/A+).
1
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In particular,

E∗(X) = E∗(X, ∅) = Ẽ∗(X+/∅+) = Ẽ∗(X+).

This will give an unreduced homology theory.

Note that nothing in this remark appealed to the dimension axiom.

Theorem 0.2. The following data is equivalent:

(1) E∗ : Toppairs→ Ab

(2) E∗ : CWpairs→ Ab

(3) Ẽ∗ : CWTop∗ → Ab

(4) Ẽ∗ : Top∗ → Ab

The same holds for cohomology.

1. Uniqueness

Definition 1.1. An isomorphism α : Ẽ∗ → Ẽ′∗ of reduced cohomology theories is a natural iso-

morphism that commutes with the suspension isomorphisms, i.e.,

Ẽn(X)
αX //

Σ
��

Ẽ′n(ΣX)

Σ
��

Ẽn+1(ΣX)
αΣX // Ẽ′n+1(ΣX).

In this section, we are going to assume what Katharyn and Andy proved las class and prove the

uniqueness of H̃.

Theorem 1.2. Let Ẽ is be a reduced cohomology theory such that Ẽ∗(S
0) = Z, then Ẽ ∼= H̃.

Note that this also holds for coefficients other than Z. Again, this is exactly the argument in

Concise.

Proof. Assume Ẽ : CWTop∗ → Ab is a homology theory that satisfies the dimension axiom.

We will assume the following fact and prove it later.

Theorem 1.3. Let E be any generalized homology theory. Let X =
⋃∞
i=1Xi where

X0 ⊂ X1 ⊂ X2 ⊂ . . .. Then E∗(X) = colimE∗(Xi).

As Katharyn and Andy showed, this implies that,

• Ẽn(X) = Ẽn(Xn+1) for any X.

• πabn (
∨
Sn)

h−→ Ẽn(
∨
Sn) is an isomorphism.
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We use Ẽ to define the cellular chain complex. Let C̃En (X) = Ẽn(Xn/Xn−1). Then C̃En (X) ∼=
πabn (Xn/Xn−1). So, as abelian groups

C̃En (X) ∼= C̃CWn (X).

Define dn : C̃En (X)→ C̃En−1(X) by Σ−1 ◦ Ẽn(∂n) where

∂n : Xn/Xn−1 '−→ Ci → ΣXn−1 → ΣXn−1/Xn−2.

Note that Ẽn(∂n) = ∂ is the connecting homomorphism in the long exact sequence

. . .→ Ẽn(Xn/Xn−1)
∂−→ Ẽn−1(Xn−1)→ Ẽn−1(Xn)→ Ẽn−1(Xn/Xn−1)→ . . .

Now, since h is natural and commutes with Σ, we have a commutative diagram:

πabn (Xn/Xn−1)
πn∂n //

h
��

πabn (ΣXn−1/Xn−2)
Σ−1

//

h
��

πabn−1(Xn−1/Xn−2)

h
��

Ẽn(Xn/Xn−1)
Ẽn(∂n)

// Ẽn(ΣXn−1/Xn−2)
Σ−1

// Ẽn−1(Xn−1/Xn−2).

The top row is the differential of CCWn (X). This shows that there is an isomorphism of chain

complexes

CE∗ (X) ∼= CCW∗ (X).

We construct a natural isomorphism

α : Ẽn(X)→ ker(dn)/ im(dn+1) = H̃n(X)

using the diagram, which is based on the fact that we know the homology of a wedge of spheres.

Here, we use the following fact.

Lemma 1.4. Ẽn(Y ) = 0 if Y is a CW complex of dimension ≤ n and n+ 1 ≤ m.

Proof. If Y has dimension 0, then it is a set of points and this follows from the dimension axiom.

If Y has dimension n, then consider the exact sequence:

Ẽm(Y n−1)→ Ẽm(Y )→ Ẽm(Y/Y n−1) = Ẽm(
∨
Dn/∂Dn)

The claim holds for Y n−1 by the induction hypothesis and for a wedge of spheres by the dimension

axiom and the suspension isomorphism. Hence, it holds for Y . �

This lemma implies that Ẽn+1(Xn/Xn−1) = 0. We then have the following commutative dia-

gram, where the columns are pieces of the long exact sequences for Xk ⊂ Xk+1.
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C̃CWn+1(X) Ẽn+1(Xn+1/Xn)

∂
��

dn+1

((

0

��

0 // Ẽn(Xn)
πn
∗ //

i∗
��

Ẽn(Xn/Xn−1)

dn

((

∂ // Ẽn−1(Xn−1)

πn−1
∗
��

Ẽn(X) Ẽn(Xn+1)

α

66

��

C̃CWn (X) Ẽn−1(Xn−1/Xn−2) C̃CWn−1(X)

0

Definition. For any y such that i∗(y) = x, let

α(x) = π∗(y).

Well-defined. First, note that

dn(α(x)) = πn−1
∗ ∂(πn∗ (y)) = 0

since ∂ ◦ πn∗ = 0. So α(x) ∈ ker(dn). Now, if i∗(y
′) = x, we have i∗(y − y′) = 0, so that

y − y′ = ∂(z).

Hence,

πn∗ (y − y′) = πn∗ ∂(z) = dn+1(z).

Hence, y ≡ y′ mod im dn+1. So, α is well-defined.

Injective. If α(x) = 0, then πn∗ (y) = 0, but πn∗ is injective, so y = 0. Hence, 0 = i∗(y) = x.

Surjective. Let a ∈ ker(dn). Then, a ∈ ker ∂ since πn−1
∗ is injective. That means that a = πn∗ y.

Then α(i∗(y)) = a.

Naturality. All maps in the diagram are natural, hence so is α. Suspension is a natural isomor-

phism of chain complexes

C̃CWn (X) = πabn (Xn/Xn+1)
∼=−→

Σ
πabn+1(ΣXn/Xn+1) ∼= C̃CWn+1(ΣX)

and everything in the above diagram commutes with the suspension isomorphism. Therefore, α

commutes with Σ. �
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