MATH 6280 - CLASS 28

Contents

1.	Uniqueness	2
2.	Proving the axioms hold for $H_q(-,\mathbb{Z})$ and $H^q(-,\mathbb{Z})$	5
3.	Long exact sequences and excision	5
4.	The suspension isomorphism	6
5.	Homology and Cohomology of $\mathbb{R}P^n$	7
б	Mayer-Vietoris	10

These notes are based on

- Algebraic Topology from a Homotopical Viewpoint, M. Aguilar, S. Gitler, C. Prieto
- A Concise Course in Algebraic Topology, J. Peter May
- More Concise Algebraic Topology, J. Peter May and Kate Ponto
- Algebraic Topology, A. Hatcher

Remark 0.1 (Passage from reduced to unreduced). Suppose that we are given an unreduced homology theory E. Let X pointed CW-complex. Note that

$$* \to X \to *$$

is the identity. This implies that the long exact sequence

$$\dots \to E_{q+1}(X,*) \to E_q(*) \to E_q(X) \to E_q(X,*) \to E_{q-1}(*) \to \dots$$

splits into split short exact sequences

$$0 \to E_q(*) \to E_q(X) \to E_q(X,*) \to 0$$

so that

$$E_*(X) \cong E_*(X, *) \oplus E_*(*).$$

Then, the functor

$$\widetilde{E}_*(X) = E_*(X, *)$$

gives a reduced homology theory.

Conversely, given a reduced homology theory \widetilde{E}_* and a CW-pair (X,A). Then letting

$$E_*(X, A) = \widetilde{E}_*(X_+/A_+).$$

In particular,

$$E_*(X) = E_*(X, \emptyset) = \widetilde{E}_*(X_+/\emptyset_+) = \widetilde{E}_*(X_+).$$

This will give an unreduced homology theory.

Note that nothing in this remark appealed to the dimension axiom.

Theorem 0.2. The following data is equivalent:

- (1) E_* : Toppairs \to Ab
- (2) $E_* : \text{CWpairs} \to \text{Ab}$
- (3) $\widetilde{E}_* : \mathrm{CWTop}_* \to \mathrm{Ab}$
- (4) $\widetilde{E}_* : \mathrm{Top}_* \to \mathrm{Ab}$

The same holds for cohomology.

1. Uniqueness

Definition 1.1. An isomorphism $\alpha: \widetilde{E}_* \to \widetilde{E}'_*$ of reduced cohomology theories is a natural isomorphism that commutes with the suspension isomorphisms, i.e.,

$$\begin{split} \widetilde{E}_n(X) & \xrightarrow{\alpha_X} \widetilde{E}'_n(\Sigma X) \\ \Sigma & & \downarrow \Sigma \\ \widetilde{E}_{n+1}(\Sigma X) & \xrightarrow{\alpha_{\Sigma X}} \widetilde{E}'_{n+1}(\Sigma X). \end{split}$$

In this section, we are going to assume what Katharyn and Andy proved las class and prove the uniqueness of \widetilde{H} .

Theorem 1.2. Let \widetilde{E} is be a reduced cohomology theory such that $\widetilde{E}_*(S^0) = \mathbb{Z}$, then $\widetilde{E} \cong \widetilde{H}$.

Note that this also holds for coefficients other than \mathbb{Z} . Again, this is exactly the argument in Concise.

Proof. Assume $\widetilde{E}: \mathrm{CWTop}_* \to \mathrm{Ab}$ is a homology theory that satisfies the dimension axiom. We will assume the following fact and prove it later.

Theorem 1.3. Let E be any generalized homology theory. Let $X = \bigcup_{i=1}^{\infty} X_i$ where $X_0 \subset X_1 \subset X_2 \subset \ldots$ Then $E_*(X) = \operatorname{colim} E_*(X_i)$.

As Katharyn and Andy showed, this implies that,

- $\widetilde{E}_n(X) = \widetilde{E}_n(X^{n+1})$ for any X.
- $\pi_n^{ab}(\bigvee S^n) \xrightarrow{h} \widetilde{E}_n(\bigvee S^n)$ is an isomorphism.

We use \widetilde{E} to define the cellular chain complex. Let $\widetilde{C}_n^E(X) = \widetilde{E}_n(X^n/X^{n-1})$. Then $\widetilde{C}_n^E(X) \cong \pi_n^{ab}(X^n/X^{n-1})$. So, as abelian groups

$$\widetilde{C}_n^E(X) \cong \widetilde{C}_n^{CW}(X).$$

Define $d_n: \widetilde{C}_n^E(X) \to \widetilde{C}_{n-1}^E(X)$ by $\Sigma^{-1} \circ \widetilde{E}_n(\partial_n)$ where

$$\partial_n: X^n/X^{n-1} \xrightarrow{\simeq} C_i \to \Sigma X^{n-1} \to \Sigma X^{n-1}/X^{n-2}$$

Note that $\widetilde{E}_n(\partial_n) = \partial$ is the connecting homomorphism in the long exact sequence

$$\dots \to \widetilde{E}_n(X^n/X^{n-1}) \xrightarrow{\partial} \widetilde{E}_{n-1}(X^{n-1}) \to \widetilde{E}_{n-1}(X^n) \to \widetilde{E}_{n-1}(X^n/X^{n-1}) \to \dots$$

Now, since h is natural and commutes with Σ , we have a commutative diagram:

$$\pi_n^{ab}(X^n/X^{n-1}) \xrightarrow{\pi_n \partial_n} \pi_n^{ab}(\Sigma X^{n-1}/X^{n-2}) \xrightarrow{\Sigma^{-1}} \pi_{n-1}^{ab}(X^{n-1}/X^{n-2})$$

$$\downarrow h \qquad \qquad \downarrow h \qquad \qquad \downarrow h$$

$$\widetilde{E}_n(X^n/X^{n-1}) \xrightarrow{\widetilde{E}_n(\partial_n)} \widetilde{E}_n(\Sigma X^{n-1}/X^{n-2}) \xrightarrow{\Sigma^{-1}} \widetilde{E}_{n-1}(X^{n-1}/X^{n-2}).$$

The top row is the differential of $C_n^{CW}(X)$. This shows that there is an isomorphism of chain complexes

$$C_*^E(X) \cong C_*^{CW}(X).$$

We construct a natural isomorphism

$$\alpha: \widetilde{E}_n(X) \to \ker(d_n)/\operatorname{im}(d_{n+1}) = \widetilde{H}_n(X)$$

using the diagram, which is based on the fact that we know the homology of a wedge of spheres. Here, we use the following fact.

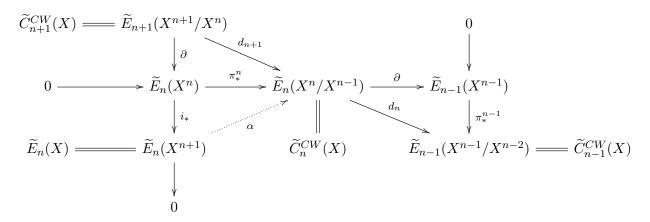
Lemma 1.4. $\widetilde{E}_n(Y) = 0$ if Y is a CW complex of dimension $\leq n$ and $n+1 \leq m$.

Proof. If Y has dimension 0, then it is a set of points and this follows from the dimension axiom. If Y has dimension n, then consider the exact sequence:

$$\widetilde{E}_m(Y^{n-1}) \to \widetilde{E}_m(Y) \to \widetilde{E}_m(Y/Y^{n-1}) = \widetilde{E}_m(\bigvee D^n/\partial D^n)$$

The claim holds for Y^{n-1} by the induction hypothesis and for a wedge of spheres by the dimension axiom and the suspension isomorphism. Hence, it holds for Y.

This lemma implies that $\widetilde{E}_{n+1}(X^n/X^{n-1}) = 0$. We then have the following commutative diagram, where the columns are pieces of the long exact sequences for $X^k \subset X^{k+1}$.



Definition. For any y such that $i_*(y) = x$, let

$$\alpha(x) = \pi_*(y).$$

Well-defined. First, note that

$$d_n(\alpha(x)) = \pi_*^{n-1} \partial(\pi_*^n(y)) = 0$$

since $\partial \circ \pi_*^n = 0$. So $\alpha(x) \in \ker(d_n)$. Now, if $i_*(y') = x$, we have $i_*(y - y') = 0$, so that

$$y - y' = \partial(z)$$
.

Hence,

$$\pi_*^n(y - y') = \pi_*^n \partial(z) = d_{n+1}(z).$$

Hence, $y \equiv y' \mod \operatorname{im} d_{n+1}$. So, α is well-defined.

Injective. If $\alpha(x) = 0$, then $\pi_*^n(y) = 0$, but π_*^n is injective, so y = 0. Hence, $0 = i_*(y) = x$.

Surjective. Let $a \in \ker(d_n)$. Then, $a \in \ker \partial$ since π_*^{n-1} is injective. That means that $a = \pi_*^n y$. Then $\alpha(i_*(y)) = a$.

Naturality. All maps in the diagram are natural, hence so is α . Suspension is a natural isomorphism of chain complexes

$$\widetilde{C}_{n}^{CW}(X) = \pi_{n}^{ab}(X^{n}/X^{n+1}) \xrightarrow{\cong} \pi_{n+1}^{ab}(\Sigma X^{n}/X^{n+1}) \cong \widetilde{C}_{n+1}^{CW}(\Sigma X)$$

and everything in the above diagram commutes with the suspension isomorphism. Therefore, α commutes with Σ .