MATH 6280 - CLASS 28

Contents

1. Uniqueness 2
2. Proving the axioms hold for $H_{q}(-, \mathbb{Z})$ and $H^{q}(-, \mathbb{Z})$ 5
3. Long exact sequences and excision 5
4. The suspension isomorphism 6
5. Homology and Cohomology of $\mathbb{R} P^{n}$ 7
6. Mayer-Vietoris 10

These notes are based on

- Algebraic Topology from a Homotopical Viewpoint, M. Aguilar, S. Gitler, C. Prieto
- A Concise Course in Algebraic Topology, J. Peter May
- More Concise Algebraic Topology, J. Peter May and Kate Ponto
- Algebraic Topology, A. Hatcher

Remark 0.1 (Passage from reduced to unreduced). Suppose that we are given an unreduced homology theory E. Let X pointed $C W$-complex. Note that

$$
* \rightarrow X \rightarrow *
$$

is the identity. This implies that the long exact sequence

$$
\ldots \rightarrow E_{q+1}(X, *) \rightarrow E_{q}(*) \rightarrow E_{q}(X) \rightarrow E_{q}(X, *) \rightarrow E_{q-1}(*) \rightarrow \ldots
$$

splits into split short exact sequences

$$
0 \rightarrow E_{q}(*) \rightarrow E_{q}(X) \rightarrow E_{q}(X, *) \rightarrow 0
$$

so that

$$
E_{*}(X) \cong E_{*}(X, *) \oplus E_{*}(*) .
$$

Then, the functor

$$
\widetilde{E}_{*}(X)=E_{*}(X, *)
$$

gives a reduced homology theory.
Conversely, given a reduced homology theory \widetilde{E}_{*} and a CW-pair (X, A). Then letting

$$
E_{*}(X, A)=\widetilde{E}_{*}\left(X_{+} / A_{+}\right)
$$

In particular,

$$
E_{*}(X)=E_{*}(X, \emptyset)=\widetilde{E}_{*}\left(X_{+} / \emptyset_{+}\right)=\widetilde{E}_{*}\left(X_{+}\right)
$$

This will give an unreduced homology theory.
Note that nothing in this remark appealed to the dimension axiom.
Theorem 0.2. The following data is equivalent:
(1) $E_{*}:$ Toppairs $\rightarrow \mathrm{Ab}$
(2) $E_{*}:$ CWpairs $\rightarrow \mathrm{Ab}$
(3) $\widetilde{E}_{*}: \mathrm{CWTop}_{*} \rightarrow \mathrm{Ab}$
(4) $\widetilde{E}_{*}: \mathrm{Top}_{*} \rightarrow \mathrm{Ab}$

The same holds for cohomology.

1. Uniqueness

Definition 1.1. An isomorphism $\alpha: \widetilde{E}_{*} \rightarrow \widetilde{E}_{*}^{\prime}$ of reduced cohomology theories is a natural isomorphism that commutes with the suspension isomorphisms, i.e.,

In this section, we are going to assume what Katharyn and Andy proved las class and prove the uniqueness of \widetilde{H}.

Theorem 1.2. Let \widetilde{E} is be a reduced cohomology theory such that $\widetilde{E}_{*}\left(S^{0}\right)=\mathbb{Z}$, then $\widetilde{E} \cong \widetilde{H}$.
Note that this also holds for coefficients other than \mathbb{Z}. Again, this is exactly the argument in Concise.

Proof. Assume $\widetilde{E}:$ CWTop $_{*} \rightarrow \mathrm{Ab}$ is a homology theory that satisfies the dimension axiom.
We will assume the following fact and prove it later.

Theorem 1.3. Let E be any generalized homology theory. Let $X=\bigcup_{i=1}^{\infty} X_{i}$ where $X_{0} \subset X_{1} \subset X_{2} \subset \ldots$ Then $E_{*}(X)=\operatorname{colim} E_{*}\left(X_{i}\right)$.

As Katharyn and Andy showed, this implies that,

- $\widetilde{E}_{n}(X)=\widetilde{E}_{n}\left(X^{n+1}\right)$ for any X.
- $\pi_{n}^{a b}\left(\bigvee S^{n}\right) \xrightarrow{h} \widetilde{E}_{n}\left(\bigvee S^{n}\right)$ is an isomorphism.

We use \widetilde{E} to define the cellular chain complex. Let $\widetilde{C}_{n}^{E}(X)=\widetilde{E}_{n}\left(X^{n} / X^{n-1}\right)$. Then $\widetilde{C}_{n}^{E}(X) \cong$ $\pi_{n}^{a b}\left(X^{n} / X^{n-1}\right)$. So, as abelian groups

$$
\widetilde{C}_{n}^{E}(X) \cong \widetilde{C}_{n}^{C W}(X)
$$

Define $d_{n}: \widetilde{C}_{n}^{E}(X) \rightarrow \widetilde{C}_{n-1}^{E}(X)$ by $\Sigma^{-1} \circ \widetilde{E}_{n}\left(\partial_{n}\right)$ where

$$
\partial_{n}: X^{n} / X^{n-1} \xrightarrow{\simeq} C_{i} \rightarrow \Sigma X^{n-1} \rightarrow \Sigma X^{n-1} / X^{n-2} .
$$

Note that $\widetilde{E}_{n}\left(\partial_{n}\right)=\partial$ is the connecting homomorphism in the long exact sequence

$$
\ldots \rightarrow \widetilde{E}_{n}\left(X^{n} / X^{n-1}\right) \xrightarrow{\partial} \widetilde{E}_{n-1}\left(X^{n-1}\right) \rightarrow \widetilde{E}_{n-1}\left(X^{n}\right) \rightarrow \widetilde{E}_{n-1}\left(X^{n} / X^{n-1}\right) \rightarrow \ldots
$$

Now, since h is natural and commutes with Σ, we have a commutative diagram:

The top row is the differential of $C_{n}^{C W}(X)$. This shows that there is an isomorphism of chain complexes

$$
C_{*}^{E}(X) \cong C_{*}^{C W}(X)
$$

We construct a natural isomorphism

$$
\alpha: \widetilde{E}_{n}(X) \rightarrow \operatorname{ker}\left(d_{n}\right) / \operatorname{im}\left(d_{n+1}\right)=\widetilde{H}_{n}(X)
$$

using the diagram, which is based on the fact that we know the homology of a wedge of spheres. Here, we use the following fact.

Lemma 1.4. $\widetilde{E}_{n}(Y)=0$ if Y is a $C W$ complex of dimension $\leq n$ and $n+1 \leq m$.

Proof. If Y has dimension 0 , then it is a set of points and this follows from the dimension axiom. If Y has dimension n, then consider the exact sequence:

$$
\widetilde{E}_{m}\left(Y^{n-1}\right) \rightarrow \widetilde{E}_{m}(Y) \rightarrow \widetilde{E}_{m}\left(Y / Y^{n-1}\right)=\widetilde{E}_{m}\left(\bigvee D^{n} / \partial D^{n}\right)
$$

The claim holds for Y^{n-1} by the induction hypothesis and for a wedge of spheres by the dimension axiom and the suspension isomorphism. Hence, it holds for Y.

This lemma implies that $\widetilde{E}_{n+1}\left(X^{n} / X^{n-1}\right)=0$. We then have the following commutative diagram, where the columns are pieces of the long exact sequences for $X^{k} \subset X^{k+1}$.

Definition. For any y such that $i_{*}(y)=x$, let

$$
\alpha(x)=\pi_{*}(y) .
$$

Well-defined. First, note that

$$
d_{n}(\alpha(x))=\pi_{*}^{n-1} \partial\left(\pi_{*}^{n}(y)\right)=0
$$

since $\partial \circ \pi_{*}^{n}=0$. So $\alpha(x) \in \operatorname{ker}\left(d_{n}\right)$. Now, if $i_{*}\left(y^{\prime}\right)=x$, we have $i_{*}\left(y-y^{\prime}\right)=0$, so that

$$
y-y^{\prime}=\partial(z)
$$

Hence,

$$
\pi_{*}^{n}\left(y-y^{\prime}\right)=\pi_{*}^{n} \partial(z)=d_{n+1}(z) .
$$

Hence, $y \equiv y^{\prime} \bmod \operatorname{im} d_{n+1}$. So, α is well-defined.
Injective. If $\alpha(x)=0$, then $\pi_{*}^{n}(y)=0$, but π_{*}^{n} is injective, so $y=0$. Hence, $0=i_{*}(y)=x$.
Surjective. Let $a \in \operatorname{ker}\left(d_{n}\right)$. Then, $a \in \operatorname{ker} \partial$ since π_{*}^{n-1} is injective. That means that $a=\pi_{*}^{n} y$. Then $\alpha\left(i_{*}(y)\right)=a$.
Naturality. All maps in the diagram are natural, hence so is α. Suspension is a natural isomorphism of chain complexes

$$
\widetilde{C}_{n}^{C W}(X)=\pi_{n}^{a b}\left(X^{n} / X^{n+1}\right) \xrightarrow{\cong} \pi_{n+1}^{a b}\left(\Sigma X^{n} / X^{n+1}\right) \cong \widetilde{C}_{n+1}^{C W}(\Sigma X)
$$

and everything in the above diagram commutes with the suspension isomorphism. Therefore, α commutes with Σ.

