MATH 6280 - CLASS 27

Contents

1.	Reduced and relative homology and cohomology	1
2.	Eilenberg-Steenrod Axioms	2
2.1.	Axioms for unreduced homology	2
2.2.	Axioms for reduced homology	4
2.3.	Axioms for cohomology	5

These notes are based on

- Algebraic Topology from a Homotopical Viewpoint, M. Aguilar, S. Gitler, C. Prieto
- A Concise Course in Algebraic Topology, J. Peter May
- More Concise Algebraic Topology, J. Peter May and Kate Ponto
- Algebraic Topology, A. Hatcher

1. Reduced and relative homology and cohomology

Definition 1.1. For $A \subset X$ a sub-complex, let

$$C_n(A) \subset C_n(X)$$

as the cells of A are a subset of the cells of X.

- Let $C_*(X, A) = C_*(X)/C_*(A)$ and $H_*(X, A) = H_*(C_*(X, A))$.
- Let

$$C^{*}(X, A) = \ker(C^{*}(X) \to C^{*}(A)) = \operatorname{Hom}(C_{*}(X, A), \mathbb{Z})$$

and $H^*(X) = H^*(C^*(X, A)).$

We can give similar definitions for

$$H_*(X, A; M)$$

and

$$H^*(X, A; M).$$

Definition 1.2. For X a based CW-complex with based point * a zero cell,

Let \$\tilde{C}_*(X) = C_*(X)/C_*(*)\$ and \$\tilde{H}_*(X) = H_*(\tilde{C}_*(X))\$.
Let

$$\widetilde{C}^*(X) = \ker(C^*(X) \to C^*(*)) = \operatorname{Hom}(\widetilde{C}_*(X), \mathbb{Z})$$

and $\widetilde{H}^*(X) = H^*(\widetilde{C}^*(X)).$

Remark 1.3. Note that $C_*(X, A) = C_*(X)/C_*(A) \cong \widetilde{C}_*(X/A)$. Indeed, X/A has a CW-structure all cells in A identified to the base point and one cell for each cell not in A. Therefore, we have a natural isomorphism

$$H_*(X, A) \cong H_*(X/A).$$

Similarly,

$$H^*(X,A) \cong \widetilde{H}^*(X/A)$$

Unreduced cohomology can be though of as a functor from the homotopy category of pairs of topological spaces to abelian groups:

$$H_*(-,-;M):hCW$$
pairs $\rightarrow Ab$

where

$$H_*(X;M) = H_*(X,\emptyset;M).$$

2. EILENBERG-STEENROD AXIOMS

2.1. Axioms for unreduced homology.

Definition 2.1. A family of functors

$$E_q(-): h$$
CWpairs \rightarrow Ab

indexed over the integers and natural transformations

$$\partial: E_q(X, A) \to E_{q-1}(A)$$

which satisfies the following axioms is called an unreduced homology theory.

(1) (Exactness) There is a long exact sequence

$$\dots \to E_q(A) \to E_q(X) \to E_q(X, A) \to E_{q-1}(A) \to \dots$$

(2) (Excision) If (X; A, B) is a CW triad, then

$$E_q(A, A \cap B) \to E_q(X, B)$$

(3) (Additivity) If $(X, A) = \coprod_i (X_i, A_i)$, then

$$\bigoplus_i E_q(X_i, A_i) \xrightarrow{\cong} E_q(X, A)$$

Let M be an abelian group. The following additional property, which may or may not be satisfied, is called the *dimension axiom*:

• (Dimension for M) $E_*(*) = M$ concentrated in degree zero.

For (X, A) a pair of spaces, let $(\Gamma X, \Gamma A)$ be a CW-approximation. Defining

$$E_*(X,A) := E_*(\Gamma X, \Gamma A)$$

we have that the above axioms are equivalent to the following.

Definition 2.2. A family of functors

$$E_q(-;):h$$
Top-pairs \rightarrow Ab

indexed over the integers and natural transformations

$$\partial: E_q(X, A) \to E_{q-1}(A)$$

which satisfies the following axioms is called an unreduced homology theory.

(1) (Exactness) There is a long exact sequence

$$\dots \to E_q(A) \to E_q(X) \to E_q(X,A) \to E_{q-1}(A) \to \dots$$

(2) (Excision) If (X; A, B) is an excisive triad, then

$$E_q(A, A \cap B) \to E_q(X, B)$$

(3) (Additivity) If $(X, A) = \coprod_i (X_i, A_i)$, then

$$E_q(X, A; M) \cong \bigoplus_i E_q(X_i, A_i)$$

(4) (Weak equivalence) If $f: (X, A) \to (Y, B)$ is a weak equivalence, then $E_*(f)$ is an isomorphism.

Let M be an abelian group. The following additional property, which may or may not be satisfied, is called the *dimension axiom*:

• (Dimension) $E_*(*) = M$ concentrated in degree zero.

2.2. Axioms for reduced homology.

Definition 2.3. A family of functors

$$\widetilde{E}_q(-): h \operatorname{CWTop}_* \to \operatorname{Ab}$$

indexed over the integers

(1) (Exactness) If A is a subcomplex of X

$$\widetilde{E}_q(A) \to \widetilde{E}_q(X) \to \widetilde{E}_q(X/A)$$

is exact.

(2) (Suspension) There are natural isomorphisms

$$\Sigma: \widetilde{E}_q(X) \to \widetilde{E}_{q+1}(\Sigma X)$$

(3) (Additivity) If $X = \bigvee_i X_i$, then

$$\bigoplus_{i} \widetilde{E}_q(X_i) \xrightarrow{\cong} \widetilde{E}_q(X).$$

Let M be an abelian group. The following additional property, which may or may not be satisfied, is called the *dimension axiom*:

• (Dimension for M) $\widetilde{E}_*(S^0) = M$ concentrated in degree zero.

Again, for well based space X, let $(\Gamma X, \Gamma *) \to (X, *)$ be a CW approximation with $\Gamma *$ a point. Then we can define

$$\widetilde{E}_q(X) := \widetilde{E}_q(\Gamma X).$$

The axioms translate to:

Definition 2.4. A family of functors

$$\widetilde{E}_q(-): h \operatorname{Top}_* \to \operatorname{Ab}$$

indexed over the integers (where Top_* is the category of well-based spaces) which satisfies the following axioms is called a reduced homology theory.

(1) (Exactness) If $A \to X$ is a cofibration, then

$$\widetilde{E}_q(A) \to \widetilde{E}_q(X) \to \widetilde{E}_q(X/A)$$

is exact.

(2) (Suspension) There are natural isomorphisms

$$\Sigma: \widetilde{E}_q(X) \to \widetilde{E}_{q+1}(\Sigma X)$$

(3) (Additivity) If $X = \bigvee_i X_i$, then

$$\bigoplus_{i} \widetilde{E}_q(X_i) \xrightarrow{\cong} \widetilde{E}_q(X).$$

(4) (Weak equivalence) If $f: X \to Y$ is a weak equivalence, then $\widetilde{E}_*(f)$ is an isomorphism.

Let M be an abelian group. The following additional property, which may or may not be satisfied, is called the *dimension axiom*:

• (Dimension for M) $\widetilde{E}_*(S^0) = M$ concentrated in degree zero.

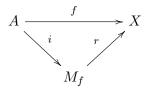
Remark 2.5. Note that Exactness implies the following:

• If $A \xrightarrow{f} X \to C_f$ is a cofiber sequence, then

$$\widetilde{E}_q(A) \to \widetilde{E}_q(X) \to \widetilde{E}_q(C_f)$$

is exact.

Indeed, consider the commutive diagram



then $A \to M_f$ is a cofibration so there is a commutative diagram, where $\widetilde{E}_q(r)$ is an isomorphism and the top row is exact:

Proposition 2.6. Given a reduced cohomology theory \widetilde{E} and a cofiber sequence $A \to X \to C_f$, there is a long exact sequence

$$\dots \longrightarrow \widetilde{E}_{n+1}(C_f) \longrightarrow \widetilde{E}_n(A) \longrightarrow \widetilde{E}_n(X) \longrightarrow \widetilde{E}_n(C_f) \longrightarrow \widetilde{E}_{n-1}(A) \longrightarrow \dots$$

2.3. Axioms for cohomology. All of the above axioms generalize to contravariant functors

$$E^q(-), \quad \widetilde{E}^q(-)$$

with all arrows reversed in the obvious way. However, the Additivity axiom has a different flavor:

• (Unreduced Additivity) If $(X, A) = \coprod_i (X_i, A_i)$, then

$$E_q(X,A) \xrightarrow{\cong} \prod_i E^q(X_i,A_i).$$

• (Reduced Additivity) If $X = \bigvee_i X_i$, then

$$\widetilde{E}^q(X) \xrightarrow{\cong} \prod_i \widetilde{E}^q(X_i)$$

Remark 2.7 (Passage from reduced to unreduced). Suppose that we are given an unreduced homology theory E. Let X pointed CW-complex. Note that

$$* \to X \to *$$

is the identity. This implies that the long exact sequence

$$\dots \to E_{q+1}(X,*) \to E_q(*) \to E_q(X) \to E_q(X,*) \to E_{q-1}(*) \to \dots$$

splits into split short exact sequences

$$0 \to E_q(*) \to E_q(X) \to E_q(X,*) \to 0$$

so that

$$E_*(X) \cong E_*(X, *) \oplus E_*(*).$$

Then, the functor

$$\widetilde{E}_*(X) = E_*(X,*)$$

gives a reduced homology theory.

Conversely, given a reduced homology theory \widetilde{E}_* and a CW-pair (X, A). Then letting

$$E_*(X,A) = \widetilde{E}_*(X_+/A_+).$$

In particular,

$$E_*(X) = E_*(X, \emptyset) = \widetilde{E}_*(X_+/\emptyset_+) = \widetilde{E}_*(X_+).$$

This will give an unreduced homology theory.

Note that nothing in this remark appealed to the dimension axiom.