MATH 6280 - CLASS 22

CONTENTS

1.	Triads and homotopy excision - continued	1
2.	Some remarks about homotopy fiber and cofiber	3
3.	Hurewicz Preview	5
4.	Excision : Proof sketch	6

These notes are based on

- Algebraic Topology from a Homotopical Viewpoint, M. Aguilar, S. Gitler, C. Prieto
- A Concise Course in Algebraic Topology, J. Peter May
- More Concise Algebraic Topology, J. Peter May and Kate Ponto
- Algebraic Topology, A. Hatcher

1. TRIADS AND HOMOTOPY EXCISION - CONTINUED

Recall:

Theorem 1.1 (Homotopy excision). Let (X; A, B) be an excisive triad with $A \cap B \neq \emptyset$. Suppose that

- $(A, A \cap B)$ is n-connected for $n \ge 1$.
- $(B, A \cap B)$ is m-connected for $m \ge 0$.

Then $(A, A \cap B) \to (X, B)$ is an m + n equivalence.

We proved:

Proposition 1.2. Suppose that $f: X \to Y$ is an *n*-equivalence and X is *m*-connected for $n \ge 1$. Then $(M_f, X) \to (C_f, *)$ is a n + m + 1-equivalence.

As an immediate consequence, we have:

Corollary 1.3. Suppose that $f : X \to Y$ is an *n*-equivalence and X is *m*-connected for $n \ge 1$, then $(C_f, *)$ is *n*-connected.

Corollary 1.4. Let $n \ge 0$. Let $i : A \to X$ be a cofibration which is an n + 1-equivalence. Then $(X, A) \to (X/A, *)$ is a 2n + 2-equivalence if A is n-connected.

Proof. Use the commutative diagram

Because i is a cofibration, the vertical arrows are homotopy equivalences of pairs. The connectivity of the two arrow follows from the previous proposition.

Theorem 1.5 (Freudenthal Suspension). Let X be an n-connected based space with a non-degenerated base point. Then the map

$$\Sigma: \pi_q X \to \pi_{q+1} \Sigma X$$

which sends f to Σf is an isomorphism for $q \leq 2n$ and surjective for q = 2n + 1.

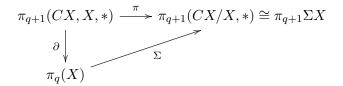
Proof. Let $CX = X \times I/(* \times I \cup \{0\} \times X)$ be the reduced cone. Using the long exact sequence on homotopy groups and the fact that CX is contractible, we have that

$$\pi_{q+1}(CX, X, *) \xrightarrow{\partial} \pi_q X$$

is an isomorphism for all q. Further, given a map $(I^q, \partial I^q) \xrightarrow{f} (X, *)$, a lift is given by the map

$$f \times I : (I^q \times I, \partial(I^q \times I), J^{q+1}) \to (CX, X, *).$$

Note that composing $f \times I$ with the quotient map $\pi : (CX, X) \to (CX/X, *)$ gives the map Σf . That is, the following diagram commutes:



where π is induced by the quotient map. Note that X is n-connected and CX is contractible. So $X \to CX$ is an n + 1-equivalence, so $(CX, X) \to (CX/X, *)$ is a 2n + 2-equivalence. We have that π is a surjection if q + 1 = 2n + 2 and an isomorphism if q + 1 < 2n + 2.

Exercise 1.6. Prove that if X is *n*-connected, then ΣX is n + 1-connected.

Corollary 1.7. The suspension $\Sigma : \pi_n S^n \to \pi_{n+1} S^{n+1}$ is an isomorphism for all $n \ge 1$. In particular, $\pi_n S^n \cong \mathbb{Z}$ for all $n \ge 1$.

Proof. We know that $\pi_1 S^1 \cong \mathbb{Z}$. Since S^n is n-1-connected, so that Σ is an isomorphism when $q \leq 2n-2$ and a surjection if q = 2n-1. If $n \geq 2$, then $n \leq 2n-2$ so $\pi_n S^n \to \pi_{n+1} S^{n+1}$ is an isomorphism. If n = 1, $\pi_1 S^1 \to \pi_2 S^2$ is surjective. Consider the Hopf fibration

$$S^1 \to S^3 \to S^2$$
.

We have $0 = \pi_2 S^3 \to \pi_2 S^2 \to \pi_1 S^1 \to \pi_1 S^3 = 0$ is exact, so $\pi_2 S^2 \cong \mathbb{Z}$. Hence, $\pi_n S^n \cong \mathbb{Z}$ for all $n \ge 1$. Finally, $\Sigma : \pi_1 S^1 \to \pi_2 S^2$ is surjective and there are no surjective group homomorphism $\mathbb{Z} \to \mathbb{Z}$ which is not an isomorphism, Σ is an isomorphism. \square

Definition 1.8. The $id: S^n \to S^n$ gives a canonical isomorphism deg : $\pi_n S^n \to \mathbb{Z}$, which we call the *degree*. The degree of a map $f: S^n \to S^n$ is just deg(f).

Definition 1.9. The stable homotopy groups of a based space X are

$$\pi_q^s X = \operatorname{colim}_n \pi_{q+n} \Sigma^n X$$

Corollary 1.10. $\pi_0^s S^0 = \mathbb{Z}$

2. Some remarks about homotopy fiber and cofiber

Let $f:X\to Y$ be a map of based spaces. There is always a map

$$\eta: P_f \to \Omega C_f$$

given by

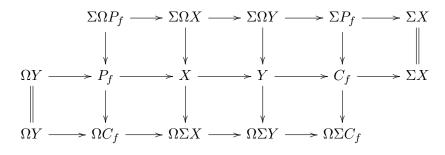
$$\eta(x,\alpha) = \begin{cases} \alpha(2t) & 0 \le t \le 1/2\\ x \land (2t-1) & 1/2 \le t \le 1. \end{cases}$$

That is, $\eta(x, \alpha)$ first does the path α in Y and then connects to the based point via the the cone coordinate.

It's adjoint is $\epsilon : \Sigma P_f \to C_f$, with, as usual $\epsilon(x, \alpha, t) = \eta(x, \alpha)(t)$. If you think of P_f as some sort of loops and C_f as some sort of suspension, this is the analogue of the units of the $\Sigma - \Omega$ -adjunction

$$\eta: X \to \Omega \Sigma X \qquad \qquad \epsilon: \Sigma \Omega X \to X$$

Exercise 2.1 (See *Concise*, Chapter 10, Section 7). Identify maps that will make the following diagram commutative up to homotopy:



Next time, we will prove:

Proposition 2.2. If $f: X \to Y$ is a map between *n*-connected spaces for $n \ge 1$, then

$$\eta: F_f \to \Omega C_f$$

is a 2n-equivalence.