MATH 6280 - CLASS 21

Contents

1.	Triads and homotopy excision	1
2.	Some remarks about homotopy fiber and cofiber	5
3.	Excision : Proof sketch	5

These notes are based on

- Algebraic Topology from a Homotopical Viewpoint, M. Aguilar, S. Gitler, C. Prieto
- A Concise Course in Algebraic Topology, J. Peter May
- More Concise Algebraic Topology, J. Peter May and Kate Ponto
- Algebraic Topology, A. Hatcher

1. TRIADS AND HOMOTOPY EXCISION

Definition 1.1. (1) An *excisive triad*, denoted (X; A, B), consists of a space X and subspaces A and B of X such that $X = int(A) \cup int(B)$.

(2) A CW-triad denoted (X; A, B), consists of a CW-complex X and subcomplexes A and B such that $X = A \cup B$.

Here are two results which we will not prove.

Theorem 1.2. A map $e: (X; A, B) \to (X'; A', B')$ of excisive triads which induces weak equivalences $A \simeq A'$, $B \simeq B'$ and $A \cap B \simeq A' \cap B'$ induces a weak equivalence $X \simeq X'$.

Corollary 1.3. An excisive triad (X; A, B), then there is a CW-triad $e : (\Gamma X; \Gamma A, \Gamma B) \to (X, A, B)$ with e inducing weak equivalences $\Gamma A \simeq A$, $\Gamma B \simeq B$, $\Gamma A \cap \Gamma B \to A \cap B$, and, $\Gamma X \simeq X$. The approximation can be made functorial up to homotopy. Further, if $(A, A \cap B)$ is n-connected, we can choose $(\Gamma A, \Gamma A \cap \Gamma B)$ to have no cells for $q \leq n$ and the same holds for $(B, A \cap B)$.

Recall the following fact about homology:

Theorem 1.4 (Excision). Given excisive triad, denoted (X; A, B), the inclusion $(B, A \cap B) \rightarrow (X, A)$ gives an isomorphism on relative homology

$$H_*(B, A \cap B) \to H_*(X, A).$$

Here, the relative homology groups $H_*(X, A)$ are computed using the complex $C_*(X, A) = C_*(X)/C_*(A)$.

Often, we use excision when we want to compute $H_*(X, B)$ by choosing A to be a neighborhood of X - B. Then what this is saying is that relative homology is somehow local: you only need chains in A relative to $A \cap B$ to compute it.

Some important results one can deduce from excision are:

- (1) Homology of quotients: If $A \to X$ is a cofibration, then $H_*(X, A) \cong \widetilde{H}(X/A)$.
- (2) Suspension isomorphism: $\widetilde{H}_{n+1}(\Sigma X) \cong \widetilde{H}_n(X)$
- (3) Local orientations: By excision, $H_n(X, X \{x\}) \cong H_n(U, U \{x\})$. If X is an n-manifold, then $U \cong \mathbb{R}^n$ and

$$H_n(\mathbb{R}^n, \mathbb{R}^n - \{0\}) \cong \widetilde{H}_{n-1}(\mathbb{R}^n - \{0\}) \cong \widetilde{H}_{n-1}S^{n-1} \cong \mathbb{Z}.$$

A local orientation is a choice of generator of \mathbb{Z} .

In homotopy, we don't quite get as good of a result.

Theorem 1.5 (Homotopy excision). Let (X; A, B) be an excisive triad with $A \cap B \neq \emptyset$. Suppose that

- $(A, A \cap B)$ is n-connected for $n \ge 1$.
- $(B, A \cap B)$ is m-connected for $m \ge 0$.

Then $(A, A \cap B) \to (X, B)$ is an m + n equivalence.

Definition 1.6. Recall,

- (1) (X, A) is *n*-connected if $\pi_0 A \to \pi_0 X$ is surjective and $\pi_q(X, A) = 0$ for $1 \le q \le n$.
- (2) $(X, A) \xrightarrow{f} (Y, B)$ is an *n*-equivalence if
 - $f(i_*(\pi_0(A))) = i_*(\pi_0(B))$, where *i* are the inclusions $A \to X$ and $B \to Y$.
 - $\pi_q f$ is an isomomorphism for $1 \le q < n$ and surjective if q = n.

Let's see some consequences of excision.

First, we need the following lemma:

Lemma 1.7. If $f: X \to Y$ is an *n*-equivalence, then (M_f, X) is *n*-connected.

Proof. We use the long exact sequence on homotopy groups for the pair.

$$\pi_n X \to \pi_n M_f \to \pi_n(M_f, X) \to \pi_{n-1} X \to \pi_{n-1} M_f \to \dots$$

Since $X \to Y$ is an *n* equivalence and factors through $X \to M_f \xrightarrow{\simeq} Y$, then $X \to M_f$ is an *n*-equivalence. The claim follows.

Proposition 1.8. Suppose that $f: X \to Y$ is an *n*-equivalence and X is *m*-connected for $n \ge 1$. Then $(M_f, X) \to (C_f, *)$ is a n + m + 1-equivalence.

Proof. We use excision. Consider the following subsets of C_f :

$$A = Y \cup_f X \times [0, 2/3] / (X \times 1) \qquad \qquad B = X \times [1/3, 1] / (X \times 1).$$

Note that A and B intersect in a collar $A \cap B = X \times [1/3, 2/3]$. We have homotopy equivalences

$$(M_f, X) \simeq (A, A \cap B)$$

 $(C_f, *) \simeq (C_f, B),$

and up to homotopy, $(M_f, X) \to (C_f, *)$ factors through $(A, A \cap B) \to (C_f, B)$. So we will use the excisive triad

$$(C_f; A, B)$$

We need to prove that

- $(A, A \cap B)$ is *n*-connected
- $(B, A \cap B)$ is m + 1-connected.

The first is obvious since $(M_f, X) \simeq (A, A \cap B)$. For the second, note that there is a homotopy equivalence

$$(B, A \cap B) \simeq (CX, X)$$

and $\pi_{q+1}(CX, X) \cong \pi_q X$ by the long exact sequence on homotopy groups for a pair. So the connectivity of X gives the claim.