MATH 6280 - CLASS 2

Contents

1.	Categories	1
2.	Functors	2
3.	Natural Transformation	3

1. CATEGORIES

Definition 1.1. A category is

- a collection of *objects* $obj(\mathcal{C})$
- for any two objects $X, Y \in \mathcal{C}$, a set of morphisms $\mathcal{C}(X, Y)$ or $\operatorname{Hom}_{\mathcal{C}}(X, Y)$
- For every object $X \in \mathcal{C}$, an *identity* morphism $\mathrm{id}_X = 1_X \in \mathcal{C}(X, X)$
- For any $X, Y, Z \in \mathcal{C}$ composition law:

$$\circ: \mathcal{C}(Y,Z) \times \mathcal{C}(X,Y) \to \mathcal{C}(X,Z)$$

that satisfy the following properties:

- \circ is associative: $h \circ (g \circ f) = (h \circ g) \circ f$
- \circ is unital: $f \circ id_X = id_Y \circ f$ for $f \in \mathcal{C}(X, Y)$.

A morphism $f \in \mathcal{C}(X, Y)$, is *invertible* if there exists $g \in \mathcal{C}(Y, X)$ such that $g \circ f = \mathrm{id}_X$ and $f \circ g = \mathrm{id}_Y$.

Example 1.2. (1) The category of sets Sets with set functions.

- (2) The category of groups Gr with group homomorphisms.
- (3) The category of abelian groups Ab with group homomorphisms.
- (4) The category of topological spaces Top with continuous functions.
- (5) The homotopy category of topology spaces hTop with morphisms homotopy classes of maps [X, Y].
- (6) The following is a category I with two objects an one non-identity morphism:

- (7) From any directed graph, you can form a category by adding the identity morphisms and compositions.
- (8) The category associated to a poset P with object elements $p \in P$ and one morphisms $p \to q$ if $p \leq q$.
- (9) The category Vect_F of vector spaces with morphisms linear transformations.
- (10) There is a canonical way to make a monoid M into a category B_M with one object \bullet where $\operatorname{Hom}_{B_M}(\bullet, \bullet) = M$.
- (11) To any category \mathcal{C} , there is an opposite category \mathcal{C}^{op} where $\operatorname{obj}(\mathcal{C}^{op}) = \operatorname{obj}(\mathcal{C})$ but $\mathcal{C}^{op}(X, Y) = \mathcal{C}(Y, X)$ (so, you flip all the arrows).

Definition 1.3. A category C is small if it has a set of objects.

Definition 1.4. A small category C is a groupoid if all of its morphisms are invertible. For example G is a group, then the category B_G is a groupoid.

Example 1.5. The fundamental groupoid $\Pi(X)$ of a space X is the category whose objects are points of X and morphisms $\Pi(X)(x,y)$ from x to y are paths from $x \to y$ modulo homotopy equivalences which fix the end points. Therefore,

$$\Pi(X)(x,x) = \pi_1(X,x).$$

2. Functors

Definition 2.1. A functor is a morphism between categories. That is, a (covariant) functor $F : \mathcal{C} \to \mathcal{D}$ is a map which sends an object $X \in \mathcal{C}$ to an object $F(X) \in \mathcal{D}$ and a morphism $f: X \to Y$ in \mathcal{C} to a morphism $F(f): F(X) \to F(Y)$ in \mathcal{D} such that

•
$$F(\operatorname{id}_X) = \operatorname{id}_{F(X)}$$

•
$$F(g \circ f) = F(g) \circ F(f)$$

A contravariant functor from \mathcal{C} to \mathcal{D} is a covariant functor $F : \mathcal{C}^{op} \to \mathcal{D}$ (this is a functor that switches the direction of arrows).

Remark 2.2. Given $F : \mathcal{C} \to \mathcal{D}$ and $G : \mathcal{D} \to \mathcal{E}$, one can form the functor composite $GF = G \circ F$.

Example 2.3. (1) There is an identity functor $id_{\mathcal{C}} : \mathcal{C} \to \mathcal{C}$.

- (2) The is a *forgetful* functor $U : \text{Top} \to \text{Sets}$.
- (3) There is a *discrete* space functor $F : \text{Sets} \to \text{Top}$.
- (4) There is a *forgetful* or *underlying* functor $U : Ab \to Sets$ which sends A to the set underlying A.

- (5) There is a free abelian group functor $F : \text{Sets} \to \text{Ab}$ which sends a set S to the free abelian group F(S) generated by S.
- (6) Homology H_n : Top \rightarrow Ab which sends a space S to the n'th simplicial homology group of S.
- (7) Cohomology H^n : Top^{op} \rightarrow Ab which sends a space S to the *n*'th simplicial cohomology group of S.
- (8) The homotopy groups functors: $\pi_n : \operatorname{Top}^{op} \to \operatorname{Ab}$
- (9) If $F: G \to H$ is a group homomorphism, then it gives rise to a functor on the associated categories: $\mathcal{F}: B_G \to B_H$.
- (10) A functor $F: B_G \to \text{Sets}$ is the same as a set $X = F(\bullet)$ with a group action: i.e. for each g, an element $F(g) \in \text{Sets}(X, X)$.

Definition 2.4. Let \mathcal{C} be any category, and $X \in \mathcal{C}$. A functor $F : \mathcal{C} \to \text{Sets}$ is *representable* by X if it is of the form

$$F(Y) \cong \mathcal{C}(X,Y)$$

for every $Y \in \mathcal{C}$. A functor $G : \mathcal{C}^{op} \to \text{Sets}$ is *representable* if it is of the form

$$G(Y) \cong \mathcal{C}(Y, X).$$

(These isomorphisms have to be *natural* in a sense that we will see below.)

Example 2.5. The functor $U : \text{Top} \to \text{Sets}$ is corepresentable by *.

 $U(X) = \operatorname{Top}(*, X).$

3. NATURAL TRANSFORMATION

Definition 3.1. A natural transformation is a morphism of functors. That is, if $F, G : \mathcal{C} \to \mathcal{D}$, a natural transformation $\eta : F \to G$ is a collection of morphisms $\eta_X : F(X) \to G(X)$ which make the following diagrams commute for every $f : X \to Y$ in \mathcal{C} :

$$F(X) \xrightarrow{F(f)} F(Y)$$

$$\downarrow^{\eta_X} \qquad \qquad \downarrow^{\eta_Y}$$

$$G(X) \xrightarrow{G(f)} G(Y).$$

If each η_X is an isomorphism, then η is a *natural isomorphism* and we write $F \cong G$.