MATH 6280 - CLASS 19

Contents

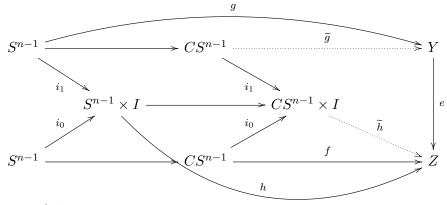
1.	The Whitehead theorem - Continued	1
2.	Corrections	5
3.	Cellular Approximation	5

These notes are based on

- Algebraic Topology from a Homotopical Viewpoint, M. Aguilar, S. Gitler, C. Prieto
- A Concise Course in Algebraic Topology, J. Peter May
- More Concise Algebraic Topology, J. Peter May and Kate Ponto
- Algebraic Topology, A. Hatcher

1. The Whitehead Theorem - Continued

Lemma 1.1. Let $e: Y \to Z$ be an *n*-equivalence. Then given a diagram



the dotted arrows exist.

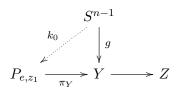
Proof. Proof of Lemma 1.1. The proof is directly adapted from Concise (Ch. 9, §6).

First, we choose some points. Let $* \in S^{n-1}$ and $\bullet \in CS^{n-1}$ be the cone point. Define

$$y_1 = g(*)$$

 $z_1 = e \circ g(*)$
 $z_0 = f(*, 0) = h(*, 0)$
 $z_{-1} = f(\bullet).$

Recall that since e is an n-equivalence, $\pi_{n-1}(P_{e,z_1},(y_1,c_{z_1})) = 0$. The idea is to construct a lift



and use the provided null-homotopy of k_0 to get the desired extensions. Note that

$$P_{e,z_1} = \{(y,\alpha) \mid \alpha(0) = z_1, \ \alpha(1) = e(y)\} \subset Y \times Z^I.$$

The lift will have to satisfy

$$k_0(x) = (g(x), \gamma_x),$$
 $\gamma_x(0) = z_1 = e \circ g(*)$ $\gamma_x(1) = e \circ g(x)$

So we need a path

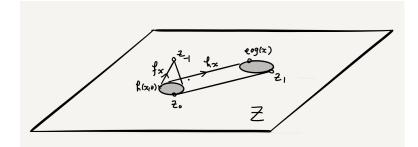
$$z_1 = e \circ g(*) \xrightarrow{\gamma_x} e \circ g(x)$$

Fix $x \in S^{n-1}$. Let s be the cone coordinate of CS^{n-1} and t be the time coordinate of $S^{n-1} \times I$. There are various paths connecting the points z_{-1}, z_0, z_1 .

$$h(x,0) = f(x,0) \xrightarrow{f_x(s) = f(x,s)} z_{-1}$$
$$f(x,0) = h(x,0) \xrightarrow{h_x(t) = h(x,t)} (e \circ g)(x)$$

In particular, after re-parametrizing, for any $x \in S^{n-1}$, we get a path

$$z_1 = (e \circ g)(*) \xrightarrow{\gamma_x = h_x \circ f_x^{-1} \circ f_* \circ h_*^{-1}} (e \circ g)(x)$$



As discussed above, this gives a lift $k_0: S^{n-1} \to P_{e,z_1}$ of g:

$$k_0(x) = (g(x), \gamma_x)$$

Now, $k_0: S^{n-1} \to P_{e,z_1}$ is not a based map since

$$k_0(*) = (g(*), h_* \circ f_*^{-1} \circ f_* \circ h_*^{-1})$$

and $h_* \circ f_*^{-1} \circ f_* \circ h_*^{-1}$ is a non-constant path from z_1 to z_1 . However, there is a path in P_{e,z_1} from

$$(g(*), h_* \circ f_*^{-1} \circ f_* \circ h_*^{-1}) \to (g(*), c_{z_1})$$

so there is a homotopy:

$$H_0: S^{n-1} \times I \to P_{e,z_1}$$

from k_0 to a based map $k_1: S^{n-1} \to P_{e,z_1}$. Since $\pi_{n-1}(P_{e,z_1}, (y_1, c_{z_1})) = 0$, there is a homotopy

$$H_1: S^{n-1} \times I \to P_{e,z_1}$$

from k_1 to the constant map at $(g(*), c_{z_1})$. Concatenating H_0 and H_1 and reparametrizing, we get an unbased homotopy

$$k: S^{n-1} \times I \to P_{e,z_1}$$

from k_0 to the constant map at $(g(*), c_{z_1})$.

Now,

$$k(x,t) = (\tilde{g}(x,t), \alpha(x,t))$$

for some function $\widetilde{g}:S^{n-1}\times I\to Y$ and $\alpha:S^{n-1}\times I\to Z^I$

$$k(x,0) = (\tilde{g}(x,0), \alpha(x,0)) = k_0(x) = (g(x), \gamma_x)$$
$$k(x,1) = (\tilde{g}(x,1), \alpha(x,1)) = (g(*), c_{z_1}).$$

In particular, $\tilde{g}: S^{n-1} \times \{1\} = g(*)$. So, we can extend $\tilde{g}: CS^{n-1} \to Y$. That's our first lift!

We now need a map

$$\widetilde{h}: CS^{n-1} \times I \to Z$$

such that

$$\begin{split} &\widetilde{h}((x,s),1) = e \circ \widetilde{g}(x,s) \\ &\widetilde{h}((x,s),0) = f(x,s) = f_x(s) \\ &\widetilde{h}((x,0),t) = h(x,t) = g_x(t). \end{split}$$

Equivalently, swapping the time coordinates, we need a map

$$\widetilde{h}: S^{n-1} \times I \times I \to Z$$

such that

$$\begin{split} &\widetilde{h}(x,1,s) = e \circ \widetilde{g}(x,s) \\ &\widetilde{h}(x,0,s) = f(x,s) = f_x(s) \\ &\widetilde{h}(x,t,0) = h(x,t) = h_x(t) \\ &\widetilde{h}(x,t,1) = \widetilde{h}(x',t,1), \quad \forall x', x \in S^{n-1}. \end{split}$$

Consider

$$j: S^{n-1} \times I \times I \to Z$$

given by

$$j(x,t,s) = \alpha(x,t)(s).$$

We have

$$j(x, 1, s) = \alpha(x, 1)(s) = c_{z_1}(s)$$

$$j(x, 0, s) = \alpha(x, 0)(s) = \gamma_x(s) = h_x \circ f_x^{-1} \circ f_* \circ h_*^{-1}(s)$$

$$j(x, t, 0) = \alpha(x, t)(0) = c_{z_1}(t)$$

$$j(x, t, 1) = \alpha(x, t)(1) = e \circ \tilde{g}(x, t).$$

Therefore, we can get \widetilde{k} by precomposing j with a reparametrization of the boundary of $I \times I$.

4



2. Corrections

- (1) For a relative CW-complex $(X, A), X^0 = A \cup P$ where P is a discrete set of points.
- (2) $\pi_n(X, A)$ is *n*-connected if $A \to X$ is an *n*-equivalence. This implies that $\pi_q(X, A) = 0$ for $1 \le q \le n$ and $\pi_0(A) \to \pi_0(X)$ is surjective.

3. Cellular Approximation

Theorem 3.1. Let $f : (X, A) \to (Y, B)$ be any map between CW-complexes. Then f is homotopic relative to A to a cellular map. That is, there is a homotopy $H : X \times I \to Y$ which is constant on A such that H(x, 0) = f(x) and $H(-, 1)|_{X^n} \subset Y^n$.

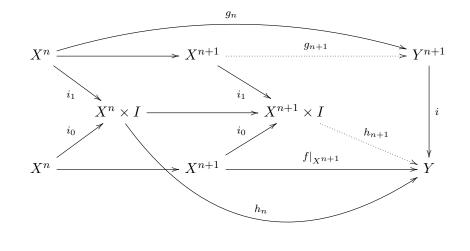
Proof. We do induction over the skeletons, using HELP and the fact that $X^n \to X$ is *n*-connected.

Start with $X^0 = A \cup P$ for P some discrete set of points. For each $p \in P$, choose a path γ_p from f(p) to $y_p \in Y^0$. Let $g_0 : X^0 \to Y$

$$g_0(x) = \begin{cases} x & x \in A \\ \gamma_p(1) & x \in P. \end{cases}$$

Assume that we have $g_n : X^n \to Y$ such that $g_n(X^n) \subset Y^n$ and that $h_n : X^n \times I \to Y$ is a homotopy between g_n and $f|_{X^n}$ relative to A.

We have that $i: Y^{n+1} \to Y$ is an n+1-equivalence and (X^{n+1}, X^n) is a relative CW complex of dimension n+1. So we can use HELP to construct g_{n+1} and h_{n+1} which extend g_n and h_n respectively:



6