MATH 6280 - CLASS 18

Contents

1.	The Whitehead theorem	1
2.	Proof of HELP	4
3.	Cellular Approximation	10
4.	Approx of spaces by CW-complexes	10

These notes are based on

- Algebraic Topology from a Homotopical Viewpoint, M. Aguilar, S. Gitler, C. Prieto
- A Concise Course in Algebraic Topology, J. Peter May
- More Concise Algebraic Topology, J. Peter May and Kate Ponto
- Algebraic Topology, A. Hatcher

1. The Whitehead Theorem

Recall:

Proposition 1.1 (HELP). Suppose that (X, A) is a relative CW-complex of dimension $\leq n$. Suppose that $e: Y \to Z$ is an n-equivalence. Given a diagram

which commutes up to a homotopy H, there exists a lift $X \to Y$ which makes the upper triangle commute and makes the lower triangle commute up to a homotopy \tilde{H} that extends H.

In other words, in

the dashed arrows exist.

- **Theorem 1.2** (Whitehead). (a) Let $e: Y \to Z$ be an n-equivalence. Let X be a CW-complex of dimension d. Then $[X, Y]_* \to [X, Z]_*$ is a bijection if d < n and a surjection if d = n.
- (b) Let $e: Y \to Z$ be a weak equivalence and X be any CW-complex. Then $[X,Y]_* \to [X,Z]_*$ is a bijection.
- (c) Let $e: Y \to Z$ be an n-equivalence. Suppose that Y and Z are CW complexes and dim Y, dim Z < n. Then e is a homotopy equivalence.
- (d) Let $e: Y \to Z$ be a weak equivalence of CW-complexes. Then e is a homotopy equivalence.

Proof.

(a) Let $[f] \in [X, Z]_*$. Since dim $(X, *) \le n$, the diagram

gives a map $\tilde{g}: X \to Y$ and a homotopy \tilde{h} between $e \circ \tilde{g}$ and f. So $e_*([g]) = [e \circ g] = [f]$ and e_* is surjective.

Now, assume that X is a CW–complex of dimension $\langle n$. Suppose that $[e \circ g_0] = [e \circ g_1]$. Let J = [0, 1] and choose a homotopy $h: X \times J \to Z$ from $e \circ g_0$ to $e \circ g_1$. Let

$$h: (X \times \{0\} \cup X \times \{1\}) \times I \to Z$$

be the constant map in t given by $h(p,t) = (e \circ g_0 \cup e \circ g_1)(p)$. Then the following diagram commutes:

Since dim X < n, we have that dim $(X \times J, X \times \partial J) \leq n$. Therefore, we get a lift

$$\widetilde{g}: X \times J \to Y$$

which is a homotopy between g_0 and g_1 .

(b) For every n, we have that $[X_n, Y]_* \xrightarrow{e_*} [X_n, Z]_*$ is a bijection. Passing to the limit, we get that

$$[X,Y]_* = \lim_n [X_n,Y]_* \xrightarrow{e_*} \lim_n [X_n,Z]_* = [X,Z]_*$$

is a bijection,

(c) Consider $[Z, Y]_* \to [Z, Z]_*$. Since dim Z < n, this is a bijection, so there is a map $f : Z \to Y$ such that $[e \circ f] = [\operatorname{id}_Z]$. That is, $Z \xrightarrow{f} Y \xrightarrow{e} Z$ is homotopic to the identity. Since, dim Y < n, the map $e_* : [Y, Y]_* \to [Y, Z]_*$ is a bijection. However,

$$e_*[f \circ e] = [e \circ f \circ e] = [e] = [e \circ \mathrm{id}_Y] = e_*[\mathrm{id}_Y]$$

so $[f \circ e] = [id_Y]$, that is, $Y \xrightarrow{e} Z \xrightarrow{f} Y$ is homotopic to the identity.

(d) Use (b) and the same proof as in (c).

2. Proof of HELP

Lemma 2.1. If $e: Y \to Z$ is an *n*-equivalence, then for any $z_0 \in e(Y)$, we have $\pi_q P_{e,z_0} = 0$ for $0 \le q < n$ where

$$P_{e,z_0} = \{(y,\alpha) \mid \alpha(0) = z_0, \alpha(1) = e(y)\}.$$

Proof. Choose y_0 such that $e(y_0) = z_0$. Let $p_0 = (y_0, c_{z_0}) \in P_{e,z_0}$ for c_{z_0} the constant path at z. Consider the long exact sequence on homotopy groups. We have

$$\dots \to \pi_n(P_{e,z}, p_0) \to \pi_n(Y, y_0) \to \pi_n(Z, z_0) \to \pi_{n-1}(P_{e,z}, p_0) \to \pi_{n-1}(Y, y_0) \to \pi_{n-1}(Z, z_0) \to \dots$$

Since $\pi_q(Y, y_0) \to \pi_q(Z, z_0)$ is an iso for q < n and surjective for q = n, the conclusion follows. \Box

We will show:

Lemma 2.2. Let $e: Y \to Z$ be such that $\pi_{n-1}(P_{e,f(y)}, (y, c_{f(y)})) = 0$ for all $y \in Y$. Then given a diagram

the dotted arrows exist.

Lemma 2.3. Let X be the pushout

Then the pair (X, A) has HELP.

Proof. Let $n \ge q$ and $e: Y \to Z$ be an *n*-equivalence. Consider:

By the previous lemma, we can find lifts

Let \tilde{g} be the map given by

and \tilde{h} be the map given by

Lemma 2.4. If $A \subset B \subset X$ and (B, A) and (X, B) have HELP, then so does (X, A).

Proof. Exercise

The proof of HELP now follows by induction over the skeleton of (X, A).