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1. THE WHITEHEAD THEOREM

Recall:

Proposition 1.1 (HELP). Suppose that (X, A) is a relative CW-complex of dimension < n.

Suppose that e : Y — Z is an n—equivalence. Given a diagram

A——Y
|7
X;>Z

which commutes up to a homotopy H, there exists a lift X — Y which makes the upper triangle

commute and makes the lower triangle commute up to a homotopy H that extends H.
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http://link.springer.com.colorado.idm.oclc.org/book/10.1007/b97586
http://www.math.uchicago.edu/~may/CONCISE/ConciseRevised.pdf
http://www.math.uchicago.edu/~may/TEAK/KateBookFinal.pdf
https://www.math.cornell.edu/~hatcher/AT/AT.pdf
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In other words, in

g
N N
Ax1IT X x1I e
AN
A D f N

the dashed arrows exist.

Theorem 1.2 (Whitehead). (a) Let e : Y — Z be an n-equivalence. Let X be a CW-complex of
dimension d. Then [X,Y]. — [X, Z]« is a bijection if d < n and a surjection if d = n.

(b) Lete:Y — Z be a weak equivalence and X be any CW-complex. Then [X,Y ], — [X, Z]« is a
bijection.

(¢c) Lete: Y — Z be an n-equivalence. Suppose thatY and Z are CW complezes and dimY, dim Z <
n. Then e is a homotopy equivalence.

(d) Lete:Y — Z be a weak equivalence of CW-complezes. Then e is a homotopy equivalence.

Proof.
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(a) Let [f] € [X, Z]«. Since dim(X, x) < n, the diagram

gives amap §: X — Y and a homotopy h between eo § and f. So e,([g]) = [e o g] = [f] and e, is
surjective.
Now, assume that X is a CW—complex of dimension < n. Suppose that [e o gg] = [e 0 g1]. Let

J = [0, 1] and choose a homotopy h: X x J — Z from eo gy to eo g;. Let
h: (X x{0jUuX x{1}) xI—Z

be the constant map in ¢ given by h(p,t) = (eoggUeogy)(p). Then the following diagram commutes:

goUg1

(anﬂ_QYXHHUX;?i/////’ﬂ’—~___;:;i‘\\\\\;\\\\\\§Y

(X x9J)x1I X xJxI
(X x 9J) X xJ il 27z
h

Since dim X < n, we have that dim(X x J, X x dJ) < n. Therefore, we get a lift
G:XxJ—=Y

which is a homotopy between gy and g;.
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(b) For every n, we have that [X,, Y], =% [X,,, Z]. is a bijection. Passing to the limit, we get that
[X,Y], = lim[X,,, Y], = lim[X,,, Z], = [X, Z].
n n
is a bijection,
(c) Consider [Z,Y]s — [Z, Z]«. Since dim Z < n, this is a bijection, so there is amap f: Z — Y

such that [e o f] = [idz]. That is, Z Ly 4 zis homotopic to the identity. Since, dimY < n, the
map e, : [Y, Y] — [Y, Z]. is a bijection. However,

ex[foe]=[eo foe] =]e] =[eoidy] = eidy]

so [f oe] = [idy], that is, Y 5 Z Iy homotopic to the identity.

(d) Use (b) and the same proof as in (c). O

2. Proor or HELP

Lemma 2.1. Ife: Y — Z is an n—equivalence, then for any zo € e(Y'), we have w P, ., = 0 for

0 < q < n where
Pez ={(y;a) | 2(0) = 20,a(1) = e(y)}.

Proof. Choose yp such that e(yo) = zo0. Let po = (vo,¢s,) € Pz for c;, the constant path at z.

Consider the long exact sequence on homotopy groups. We have
oo = Tp(Pezyp0) = (Y, %0) = (2, 20) = Tn—1(Pe,z,p0) = Tn-1(Y,%0) = m-1(Z, 20) — ...

Since m4(Y, yo) — m4(Z, 20) is an iso for ¢ < n and surjective for ¢ = n, the conclusion follows. [J

We will show:

Lemma 2.2. Lete:Y — Z be such that m,—1(P; y(y), (Y; c())) = 0 for ally € Y. Then given a

diagram
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g
T
Sn=lx [ cSs" 1T
—1 -1 f N
S™ csm A

the dotted arrows exist.

Lemma 2.3. Let X be the pushout

1 @
Uier ST 2 A

[

4
Uier D! — X.

Then the pair (X, A) has HELP.

Proof. Let n > q and e: Y — Z be an n—equivalence. Consider:

A X
N N
AxT X x 1
SN
A X d >
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By the previous lemma, we can find lifts

god
UierS; Uier D; =Y
Uier STt x I Uier DI x T
foW BN

1
UierS? Uier D} Z

Let g be the map given by

and h be the map given by

Lemma 2.4. If AC B C X and (B, A) and (X, B) have HELP, then so does (X, A).

Proof. Exercise

The proof of HELP now follows by induction over the skeleton of (X, A).
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