MATH 6280 - CLASS 17

Contents

1.	n-equivalences continued	1
2.	The Whitehead theorem	2

These notes are based on

- Algebraic Topology from a Homotopical Viewpoint, M. Aguilar, S. Gitler, C. Prieto
- A Concise Course in Algebraic Topology, J. Peter May
- More Concise Algebraic Topology, J. Peter May and Kate Ponto
- Algebraic Topology, A. Hatcher

1. n-equivalences continued

Recall,

Definition 1.1. For X and Y, $f: X \to Y$ is an *n*-equivalence if, for all $x \in X$

$$\pi_n(X, x) \to \pi_n(Y, f(x))$$

is an isomorphism for $0 \le q < n$ and surjective if q = n.

Last time, we proved that

Proposition 1.2. If $X \cup_{\phi} D^{n+1}$ for some map $\phi : S^n \to X$, then $(X \cup_{\phi} D^{n+1}, X)$ is n-connected.

Corollary 1.3. The pair (X, X^n) is n-connected. That is, $X^n \to X$ is an n-equivalence.

Proof. Let $q \leq n$ and $f: (D^q, S^{q-1}) \to (X, X^n)$. Since $f(D^q)$ is compact, its image meets a finite number of cells. Therefore, it factors as

$$(D^q, S^{q-1}) \xrightarrow{f'} (Y, X^n) \xrightarrow{r} (X, X^n)$$

where $Y = X^n \cup_{f_1} D_1^{m_1+1} \cup_{f_2} D_2^{m_2+1} \cup \ldots \cup_{f_k} D_k^{m_k+1}$ for $n \leq m_i$. Now one applies (a) inductively to prove that f' is trivial $\pi_q(Y, X^n)$, and hence trivial in $\pi_q(X, X^n)$.

Remark 1.4. So to compute the first homotopy n groups of a CW–complexes, we can restrict our attention to its n + 1–skeleton.

Example 1.5. $\pi_1 \mathbb{R} P^{\infty} = \mathbb{Z}/2$ and $\pi_k \mathbb{R} P^{\infty} = 0$ if $k \neq 1$. Indeed,

$$\pi_1 \mathbb{R} P^\infty \cong \pi_1 (\mathbb{R} P^\infty)^2 \cong \pi_1 \mathbb{R} P^2 \cong \mathbb{Z}/2.$$

Further,

$$\pi_k \mathbb{R} P^{\infty} \cong \pi_k (\mathbb{R} P^{\infty})^{k+1} \cong \pi_k \mathbb{R} P^{k+1} \cong \pi_k S^{k+1} = 0$$

2. The Whitehead Theorem

The following proposition is called the *homotopy extension lifting property*. It is technical to state but will have important consequences.

Proposition 2.1 (HELP). Suppose that (X, A) is a relative CW-complex of dimension $\leq n$. Suppose that $e: Y \to Z$ is an n-equivalence. Given a diagram

which commutes up to a homotopy H, there exists a lift $X \to Y$ which makes the upper triangle commute and makes the lower triangle commute up to a homotopy \tilde{H} that extends H.

In other words, in

the dashed arrows exist.

Corollary 2.2. If $A \to X$ is a relative CW-complex, then it is a cofibration.

the map \tilde{h} is the desired extension.

- **Theorem 2.3** (Whitehead). (a) Let $e: Y \to Z$ be an n-equivalence. Let X be a CW-complex of dimension d. Then $[X, Y]_* \to [X, Z]_*$ is a bijection if d < n and a surjection if d = n.
- (b) Let $e: Y \to Z$ be a weak equivalence and X be any CW-complex. Then $[X,Y]_* \to [X,Z]_*$ is a bijection.
- (c) Let $e: Y \to Z$ be an n-equivalence. Suppose that Y and Z are CW complexes and dim Y, dim Z < n. Then e is a homotopy equivalence.
- (d) Let $e: Y \to Z$ be a weak equivalence of CW-complexes. Then e is a homotopy equivalence.

Proof.

(a) Let $[f] \in [X, Z]_*$. Then the diagram

gives a map $\tilde{g}: X \to Y$ and a homotopy \tilde{h} between $e \circ \tilde{g}$ and f. So $e_*([g]) = [e \circ g] = [f]$ and e_* is surjective.

To be continued....