MATH 6280 - CLASS 16

Contents

1.	CW Complexes	1
2.	<i>n</i> -equivalences	3

These notes are based on

- Algebraic Topology from a Homotopical Viewpoint, M. Aguilar, S. Gitler, C. Prieto
- A Concise Course in Algebraic Topology, J. Peter May
- More Concise Algebraic Topology, J. Peter May and Kate Ponto
- Algebraic Topology, A. Hatcher

1. CW Complexes

Definition 1.1 (CW-complex). (a) Let X_0 be a discrete set of points. Assume that X^{n-1} has been constructed. Let $\{D_i^n\}_{i \in I_n}$ be a set of *n*-disks D_i^n with boundary S_i^{n-1} . Let

$$\{\phi_i^n: S_i^{n-1} \to X^{n-1}\}_{i \in I_n}$$

be corresponding continuous maps which we call the *attaching maps* or *characteristic maps*. Then X_n is defined as the pushout:

- $X^{n-1} \subset X^n$ is a closed subspace and $X = \bigcup_{n=0}^{\infty} X^n$ with the union topology.
- X^n is called the *n*-skeleton.

We call X a CW–complex.

- (b) More generally, we take $X^0 = A \cup P$ for any topological space A and discrete set of points P and build X by attaching *n*-disks to A inductively. Then (X, A) is a relative CW-complex.
- (c) A continuous map $f: X \to Y$ between CW-complexes X and Y is called *cellular* if $f(X^n) \subset Y^n$.
- (d) X has dimension $\leq n$ if $X = X^n$.

Example 1.2. • $S^n = D^n \cup_{S^{n-1}} *$ is a CW-complex:

• $\mathbb{R}P^n$ is a CW-complex with on cell in each dimension $0 \le 1 \le n$. It is obtained inductively from $\mathbb{R}P^{n-1}$ by attaching a disk D^n to $\mathbb{R}P^{n-1}$ via the double cover map $\phi : S^{n-1} \to \mathbb{R}P^{n-1}$:

• $\mathbb{C}P^n$ is obtained inductively from $\mathbb{C}P^{n-1}$ by attaching a 2n-cell

via the standard covering map

$$S^1 \to S^{2n-1} \to \mathbb{C}P^{n-1}$$

which comes from viewing S^{2n-1} as the unit sphere in \mathbb{C}^n . The orbit of a unit vector (c_1, \ldots, c_n) under the action of $S^1 \cong \mathbb{C}^{\times}$ determines a line in \mathbb{C}^n , hence a point of $\mathbb{C}P^{n-1}$.

Remark 1.3. Here are some facts about CW–complexes that we will not prove but will use if need. Let X be a CW-complex.

- X is locally path connected
- X is Hausdorff (in fact, it is T_1 and normal).
- If K is compact and $K \subset X$, then $K \subset Y$ for a sub-complex $Y \subset X$ which has finitely many cells. In particular, $K \subset X^n$ for some n.

Remark 1.4. We have

$$X = \bigcup_{n} X_n = \operatorname{colim}_n X_n.$$

This implies that

$$\operatorname{Map}_{*}(X, Y) = \operatorname{Map}_{*}(\operatorname{colim}_{n} X_{n}, Y) = \lim_{n} \operatorname{Map}_{*}(X_{n}, Y).$$

Passing to π_0 , we obtain

$$[X, Y]_* = \lim_n [X_n, Y]_*$$

2. *n*-EQUIVALENCES

Definition 2.1. • A space X is n-connected if $\pi_k(X, x) = 0$ for $0 \le k \le n$ and all $x \in X$.

- A pair (X, A) is *n*-connected if $\pi_k(X, A, a) = 0$ for $1 \le k \le n$ and $\pi_0 A \to \pi_0 X$ is surjective.
- A map $f: X \to Y$ is an *n*-equivalence if, for all $x \in X$,

$$\pi_k(f):\pi_k(X,x)\to\pi_k(Y,f(x))$$

is an isomorphism for $0 \le k \le n-1$ and a surjection on π_n . It is a weak equivalence if it is an isomorphism for all n. Note that using the long exact sequence on homotopy groups

$$\dots \to \pi_2(A,a) \to \pi_2(X,a) \to \pi_2(X,A) \to \pi_1(A,a) \to \pi_1(X,a) \to \pi_1(X,A) \to \pi_0(A,a) \to \pi_0(X,a)$$

we get that (X, A) is *n*-connected if and only if $A \to X$ is an *n*-equivalence.

We will use the following exercise:

Exercise 2.2. An element $[f] \in \pi_q(X, A)$ is trivial (i.e. homotopic to the constant map at *) if and only if it has a representative $f : (D^q, S^{q-1}) \to (X, A)$ such that $f(D^q) \subset A$.

Example 2.3. The inclusion $S^{n-1} \to D^n$ is an *n*-equivalence. Indeed, $\pi_k S^{n-1} = \pi_{k-1} D^n = 0$ and $\mathbb{Z} \cong \pi_{n-1} S^{n-1} \to \pi_{n-1} D^n = 0$ is surjective.

Proposition 2.4. If $X \cup_{\phi} D^{n+1}$ for some map $\phi : S^n \to X$, then $(X \cup_{\phi} D^{n+1}, X)$ is n-connected.

Proof. For a careful proof, see Proposition 5.1.24.

Let $q \leq n$. The idea is as follows. Let $f: (D^q, S^{q-1}) \to (X \cup_{\phi} D^{n+1}, X)$ represent an element in $\pi_q(X \cup_{\phi} D^{n+1}, X)$. Then we can deform f relative to X so that

$$(D^q, S^{q-1}) \xrightarrow{f} (X \cup_{\phi} D^{n+1}, X)$$

misses a point of the interior of D^{n+1} . We can assume that this point is the center of D^{n+1} . Using a retraction of $D^{n+1} - \{0\}$ onto its boundary S^n , we can deform f so that it's image lies entirely in X. Therefore, it represents the trivial element in $\pi_q(X \cup_{\phi} D^{n+1}, X)$.