MATH 6280 - CLASS 12

Contents

1.	Homotopy Fiber	1
2.	Fibrations	5

These notes are based on

- Algebraic Topology from a Homotopical Viewpoint, M. Aguilar, S. Gitler, C. Prieto
- A Concise Course in Algebraic Topology, J. Peter May
- More Concise Algebraic Topology, J. Peter May and Kate Ponto
- Algebraic Topology, A. Hatcher

1. Homotopy Fiber

Construction. • The mapping space $Y^I = \operatorname{Map}(I,Y)$ with maps $ev_t : Y^I \to Y$, $ev_t(\alpha) = \alpha(t)$. If Y is based, the constant map at * is a base point for Y^I .

• Given a point $* \rightarrow Y$, the path space

$$PY \longrightarrow Y^{I}$$

$$\downarrow \qquad \qquad \downarrow ev_{0}$$

$$* \longrightarrow Y$$

There is a map $PY \xrightarrow{ev_1} Y$ and the constant map is a natural base point.

• The loop space

• The mapping path space $E_f = \{(x, \alpha) \mid f(x) = \alpha(1)\}$

$$E_f \longrightarrow Y^I \qquad \qquad \downarrow^{ev_1} \\ \downarrow \qquad \qquad \downarrow^{e} Y$$

$$X \xrightarrow{f} Y$$

with base point (*,*) with map $E_f \xrightarrow{ev_0} Y$. Note, we can also form a homeomorphic space $E_{f,0} = \{(x,\alpha) \mid f(x) = \alpha(0)\}$ with a map $E_{f,0} \xrightarrow{ev_1} Y$.

• For a based map $f: X \to Y$, the fiber of over $* \in Y$ is $F = f^{-1}(*)$, that is, the pull-back

$$F \longrightarrow *$$

$$\downarrow \qquad \qquad \downarrow$$

$$X \longrightarrow Y$$

• The homotopy fiber $P_f = \{(x, \alpha) \mid f(x) = \alpha(1), \ \alpha(0) = *\}$

$$P_{f} \longrightarrow PY \qquad or \qquad P_{f} \longrightarrow E_{f}$$

$$\downarrow v_{1} \qquad \qquad \downarrow ev_{0}$$

$$X \longrightarrow Y \qquad * \longrightarrow Y$$

(also often denoted Ff, F_f , ...). The map $p: P_f \to X$ sends (x, α) to x.

Lemma 1.1. A map $f: X \to Y$ is homotopic to the constant map at a point $* \to Y$ if and only if it lifts to PY, that is,

$$\begin{array}{c}
PY \\
\downarrow ev_1 \\
X \xrightarrow{f} Y
\end{array}$$

(If f is a map of based spaces and it is null via a based point preserving homotopy if and only if there is a based lift to PY.)

Proof. A null-homotopy is equivalent to a map $h: X \to Y^I$ such that

$$h(x)(1) = f(x)$$

$$h(x)(0) = *.$$

Consider the following diagram. Since the square is a pull-back,

there must be an extension of f to PY.

Proposition 1.2. Consider maps $W \xrightarrow{g} X \xrightarrow{f} Y$. Then $f \circ g$ is null-homotopic if and only if g extends to the homotopy fiber of f, that is

Proof. The following diagram shows that an extension of g to P_f is equivalent to an extension of $f \circ g$ to to PX, which is equivalent to $f \circ g$ being null-homotopic.

Remark 1.3. There is an inclusion $\Omega Y \hookrightarrow P_f$:

$$\alpha \mapsto (*, \alpha).$$

In fact, there is a pull-back

$$\Omega Y \longrightarrow P_f \\
\downarrow \qquad \qquad \downarrow p \\
* \longrightarrow X$$

Further, $\Omega Y \hookrightarrow P_f$ lifts to P_p

$$P_{r}$$

$$\downarrow$$

$$\Omega Y \longrightarrow P_{t}$$

where

$$\alpha \mapsto ((*,\alpha),*) \in P_p \subset P_f \times PX.$$

We will show that

- $\Omega Y \to P_p$ is a homotopy equivalence.
- For $P_{p_2} \xrightarrow{p_3} P_{p_1} \xrightarrow{p_2} P_f \xrightarrow{p_1} X \xrightarrow{f} Y$, the following commutes up to homotopy

$$\Omega X \xrightarrow{-\Omega f} \Omega Y \\
\downarrow \qquad \qquad \downarrow \\
P_{p_2} \xrightarrow{p_3} P_{p_1}$$

Dual to the Barratt-Puppe sequence, we thus get a commutative diagram

Proposition 1.4. For $f: X \to Y$ a map of pointed spaces, there is a long exact sequence

$$\ldots \longrightarrow [Z,\Omega Pf]_* \longrightarrow [Z,\Omega X]_* \longrightarrow [Z,\Omega Y]_* \longrightarrow [Z,P_f]_* \longrightarrow [Z,X]_* \longrightarrow [Z,Y]_*$$

Corollary 1.5. There is a long exact sequence on homotopy groups

$$\dots \longrightarrow \pi_1 P_f \longrightarrow \pi_1 X \longrightarrow \pi_1 Y \longrightarrow \pi_0 P_f \longrightarrow \pi_0 X \longrightarrow \pi_0 Y$$

Remark 1.6. We will also show that if $X \to Y$ is a special kind of map called a fibration, then $F \to P_f$ is a homotopy equivalence, so that, for fibrations, we get a long exact sequence as above with P_f replaced by F.

5

2. Fibrations

Definition 2.1. A map $p: E \to B$ has the homotopy lifting property with respect to \mathcal{C} if, for every A in \mathcal{C} and every diagram

$$\begin{array}{ccc}
A & \xrightarrow{f} & E \\
\downarrow i_0 & & \widetilde{H} & \downarrow p \\
A \times I & \xrightarrow{H} & B
\end{array}$$

there is a map \widetilde{H} making the diagram commute. Equivalently, given the diagram

there is a map $h:A\to E^I$ making the diagram commute.

Definition 2.2. If C = Top, a map $p : E \to B$ which has the HLP with respect to C is called a fibration or *Hurewicz fibration*. If $C = \{I^n\} = \{D^n\}$, or equivalently, CWTop, then p is a called a *Serre fibration*.

Proposition 2.3. Let

$$E_{p,0} = \{(e,\gamma) \mid \gamma(0) = p(e)\} \subset E \times B^I,$$

i.e., the pull-back

$$E_{p} \xrightarrow{\pi_{B^{I}}} B^{I}$$

$$\pi_{E} \downarrow \qquad \qquad \downarrow ev_{0}$$

$$E \xrightarrow{n} B$$

A map $E \xrightarrow{p} B$ is a fibration if and only if there is a map $s: E_{p,0} \to E^I$ making the following diagram commute:

Proof. If p is a fibration, this is the HLP. If there is such a map, then, given a diagram

the universal property of the pull-back gives a map $Y \xrightarrow{f} E_{p,0}$. Then $\widetilde{p} = s \circ f$ has the desired properties.