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1. Introduction

In this class, we will study the category of “nice” topological spaces Top with morphisms the

continuous maps. All maps X → Y between topological spaces are continuous unless otherwise

specified. We will also study the category of based topological spaces Top∗, which are spaces with

a “nice” base point ∗ and that maps preserve this base point.

1.1. Homotopy equivalence and weak homotopy equivalence.

Definition 1.1 (Homotopies). Let I = [0, 1] be the closed unit interval.

(1) A homotopy between f, g : X → Y is a map H : X × I → Y such that f = H0 : X × {0} → Y

and g = H1 : X × {1} → Y .

(2) Spaces X and Y are homotopy equivalent if there are maps f : X → Y and g : Y → X such

that g ◦ f ' idX and f ◦ g ' idY . We write X ' Y if they are homotopy equivalent.

(3) We also consider the notion of based homotopies and the corresponding notion of based

equivalences between objects of Top∗. A based homotopy H : X × I → Y is one where

Ht : X × {t} → Y preserves the base point for all t ∈ I.
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(4) We let [X,Y ] = Hom∗(X,Y )/ ' be the set of based continuous maps from X to Y modulo

based homotopy equivalences.

Algebraic topology is the study of the category of Top or Top∗ up to homotopy equivalences via

homotopy invariant functors from Top to some “algebraic” category such as abelian groups.

Example 1.2. (1) The n’th homology functor Hn : Top → Ab or the n’th cohomology functor

Hn : Topop → Ab

(2) For fixed based spaces X or Y , the functors [X,−] : Top∗ → Ab and [−, Y ] : Topop
∗ → Ab.

(3) The n’th homotopy group functor πn : Top∗ → Ab where πn(X) = [Sn, X].

(4) The K–theory functor K : Top→ Ab.

There is a weaker notion of equivalence between two topological spaces which can be easier to

track down.

Definition 1.3. A map f : X → Y is an n–equivalence if πqf is an isomorphisms for q < n and

surjective for q = n. A map f is a weak homotopy equivalence if πnf is an isomorphism for all n.

Slogan. Weak homotopy equivalences are to spaces what quasi-isomorphisms are to chain com-

plexes.

Example 1.4. One can prove that any homotopy equivalence is a weak homotopy equivalence,

but the converse is not always true. One can prove that the circle S1 and the poset P :

•b

•c

>>

  

•d

``

~~
•a

(with open sets U = {∅, {a}, {b}, {a, b, c}, {a, b, d}, {a, b, c, d}}) are weakly homotopy equivalent,

where P has the poset topology. However, they are not homotopy equivalent. To prove this, one

can use the following results:

Proposition 1.5 (May, “Weak Equivalences and Quasi-fibrations”, Cor 1.4). Let f : X → Y be a

map and let O be an open cover of Y which is closed under finite intersections. If f : f−1(U)→ U

is a weak equivalence for all U ∈ O, then f : X → Y is a weak equivalence.

We often work with the weaker notion as it is slightly more algebraic. However, for a very wide

class of spaces, the two notion coincide.
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1.2. CW-Complex and the Whitehead theorem.

Definition 1.6. A CW–complex is a space built by gluing disks together along their boundary. If

the largest kind of disk used to build X is Dn, then dimX = n.

Example 1.7. The following admit the structure of CW–complexes: Sn, CPn, RPn, differentiable

manifolds, algebraic and projective varieties, anything that can be triangulated.

Theorem 1.8 (Whitehead). A weak equivalence between CW complexes is a homotopy equivalence.

Remark 1.9. Not every two CW–complexes which have the same homotopy groups are homotopy

equivalent. You really need the map. For example, you can show that S2 × RP 3 and RP 2 × S3

have the same homotopy groups. Compute their cohomology to check that they are not homotopy

equivalent.

In fact, in many cases, the following theorem justifies restricting our attention to the much nicer

category of CW–complexes CWTop.

Theorem 1.10 (CW-approximation). There is a functor Γ : Top→ CWTop and a natural trans-

formation γ : Γ→ Id such that γ : ΓX → X is a weak homotopy equivalence for any X.

1.3. Σ-Ω adjunction.

• Let Map(X,Y ) be the space of maps from X to Y .

• Let Map∗(X,Y ) be the space of based maps from X to Y .

• Let X × Y be the product of X and Y .

• Let X ∧Y = X × Y/(∗ × Y ∪X × ∗).

Theorem 1.11. For X,Y, Z ∈ Top, there is a homeomorphism

Map(X × Y,Z)→ Map(X,Map(Y, Z))

f((x, y)) = z 7→ f(x)(y) = z.

For X,Y, Z ∈ Top∗, there is a homeomorphism

Map∗(X ∧Y, Z) ∼= Map∗(X,Map∗(Y,Z)).

In particular, this implies that, for

• Let ΩX = Map∗(S
1, X).

• Let ΣX = S1 ∧X
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we have

[ΣX,Y ] ∼= [X,ΩY ].

This will fit into the theme of a certain duality between “mapping in” and “mapping out”.

1.4. Cofibrations and Fibrations. In homological algebra, if we have an exact sequence

0→ A∗ → B∗ → C∗ → 0

of chain complexes, we obtain a long exact sequence in homology H∗. This is an extremely useful

computational tool! We would like to have similar tools in homotopy theory. For that, we need to

know what we mean by an exact sequence. This will not be a word for word analogy.

There are special classes of maps called cofibrations and fibrations. Here are two prototypical

examples

• The inclusion A ↪→ X of a subspace which has neighborhood which is a deformation retract

is a cofibration. For example, the inclusion of a sub-CW-complex is a cofibration.

• A covering space p : E → B is a fibration.

Slogan. Cofibrations are very nice inclusions and fibrations are very nice surjections.

We will give very precise definitions of these notions, but here are the results:

Theorem 1.12.

If A→ X is a cofibration, then for any space Z, there is a long exact sequence

. . .→ [ΣX/A,Z]→ [ΣX,Z]→ [ΣA,Z]→ [X/A,Z]→ [X,Z]→ [A,Z]

If E → B is a fibration and F is the fiber, then for any space Z, there is a long exact sequence

. . .→ [Z,ΩE]→ [Z,ΩB]→ [Z,F ]→ [Z,E]→ [Z,B]

We can apply this theorem when Z = S0, noting that

[Sn, Z] ∼= [Sn−1,ΩZ] ∼= . . . ∼= [S1,Ωn−1Z] ∼= [S0,ΩnZ].

We get:

Corollary 1.13. If E → B is a fibration and F is the fiber, there is a long exact sequence on

homotopy groups

. . .→ π1F → π1E → π1B → π0F → π0E → π0B

Remark 1.14. Given any map X → Y , we can either replace it by a fibration or a cofibration.
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1.5. The Freudenthal Suspensions Theorem. Another big result that helps us understand

homotopy groups better it the Freudenthal Suspension Theorem.

Definition 1.15. A space is n–connected if πqY = 0 for q ≤ n.

Theorem 1.16 (Freudenthal Suspension Theorem). Let n ≥ 2. If Y is n–connected and X is a

CW complex of dimension q, then the natural map

[X,Y ]→ [ΣX,ΣY ]

is an isomorphism for q ≤ 2n and a surjection for q = 2n+ 1.

You can apply this with Y = Sn and conclude

Corollary 1.17. The natural map

πqX → πq+1ΣX

is an isomorphism for q ≤ 2n− 2 and a surjection for q = 2n− 1.

Remark 1.18. This is the gateway to stable homotopy theory. Homotopy theorist call something

stable if it is invariant under suspension Σ.

1.6. The Hurewicz Theorem. Despite all of these tools, the following fact is still true in general:

Slogan. Homotopy groups are hard to compute while homology is easy to compute.

This is why the following result and its corollary are extremely important. They also highlight

the advantage of working with CW–complexes.

Theorem 1.19 (Hurewicz). If X is (n− 1)–connected, with n ≥ 2, then H̃i(X) = 0 for i < n and

there is an isomorphism

πnX → Hn(X).

(If n = 1, we get a similar result but then H1(X) ∼= π1X/[π1X,π1X])

Corollary 1.20 (Whitehead). A map f : X → Y between simply-connected CW-complexes is a

homotopy equivalence if and only if Hn(X)→ Hn(Y ) is an isomorphism for each n.

1.7. Building spaces from fibrations. A CW–complex is a space which is built out of disk Dn.

If X has dimension n and A is the n− 1–dimensional subcomplex, then

X/A ∼=
∨
Sn.
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So, CW complexes are built out of spheres through cofibrations. Spheres have the wonderful

property that

H̃k(Sn) =

Z k = n

0 otherwise.

There is also a notion dual to spheres. This is the notion of Eilenberg–MacLane spaces. Let G

be a group if n = 1 and an abelian group if n > 1. Then there is a space K(G,n) such that

πkK(G,n) =

Z k = n

0 otherwise.

Dual to CW–complexes, one can build spaces out of Eilenberg–MacLane spaces through fibrations.

This is the Postnikov tower of a space, and we’ll see how that can be used to do some computations.


