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This presentation follows the structure of the proof given in May’s A Concise Course in Algebraic Topology and relies
on the axioms for reduced homology.

Definition. From the dimension axiom for reduced homology, H(S°®) = Z. Fix io, a generator of H(S°). The

~ Y ~
suspension axiom yields that H , 11 (S"*') = H,(S") = Z is an isomorphism for all n > 0. Let in+1 = Z(in).
For a based topological space X, the Hurewicz map, h : 7, (X) — H,(X), is given by

Lemma. The Hurewicz map is a natural group homomorphism.

For [ f],[g] € mn(X), [f]1+ [g] = [f + g] is given by the following composition of maps:

sn Py gnysn TYE vy x Y, x

where p is the pinch map and V is the fold map.
Consider the composition

Hu(fve)

Haosm 22 F o (sm v sy Hox v x) 2N g7 ox).

The image of i, under this composite map is ﬁn(ng vV gop)in) = ﬁan + 2)(n) = h(f + g))-
From the additivity axioms, we have isomorphisms H,(S") & H,(S") — H,(S" v §") and
H,(X)® Hy(X) > H,(X v X).
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Hy(S") ® Hp(S") — — > Hp(X) ® Hn(X)

Let the dashed arrows be the compositions that make the above diagram commute. The image of i,, along the dashed
arrows is

in > (in.in) = (Hu(f)n), Ha(g)(in)) = Hu(f)in) + Ha()(in) = h([f]) + h((g])

Since the diagram commutes, % is a group homomorphism.
Let f : X — Y be a map of based spaces.

n(X) 2L 7 (v)

| |

Hy(X) = H,(Y)
H,(f)

n

Note that hor (f)(1g]) = h([f 0g]) = Hu(f 08)(in) = Hu(f)o Hu(8)(in) = Hu(f)oh([g)) forall [g] € mu(X).
So the above diagram commutes for any f, i.e., & is natural.

Note. The suspension isomorphism X is also natural, so X oh = h o 3.

Lemma. For any CW-complex X, IN-I,,(X) >~ ﬁn(X”H).

Leti >n -+ 1. Since X' isa subcomplex of X i+1 there exists, by the exactness and suspension axioms for reduced
homology, a long exact sequence:

oo Hpp1 (XY XY —» Hy(X') — Hoy (X' — Hy (XX — -
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For any i, X'T!/X' is a wedge of (i + 1)-spheres. So, H, (Xi+1/Xi) ~ @ﬁn(S;’) by additivity. By the
jel

suspension axiom, H,(S**') & H,_1(S%) = ... = H,_+1)(S°). Since n — (i + 1) # 0, the dimension axiom
yields that H,_;11)(S°) = 0. So, H, (Xi+1/Xi> =~ (PO0. An identical argument shows 17"+1<Xi+1/Xi) ~ 0.
jel
So, the sequence below is exact: " _ " _
0— Hp(X') - Hy(X'*) -0
Thus, ﬁn(Xl) o~ ﬁn(Xi+1) foralli > n + 1. As a consequence, ﬁn(X"+1) o~ Fln(Xj) forall j >n + 1.
So we have colim H,(X") = H,(X"t1).

In A Concise Course in Algebraic Topology, May shows H,(X) = colim H,(X;) forany X = X9 € X; € .... The
proof uses a construction, tel X;, formed by attaching the mapping cyclinders for the inclusions X; — X;41. This
construction is weakly equivalent to X, so H,(tel X;) = H,(X). Then the Mayer-Vietoris sequence for particular
subspaces of tel X; and an exact sequence for the colimit of abelian groups are used to show H 7(X) = colim H 2 (Xi).
The proof depends on the additivity and weak equivalence axioms for homology of general topological spaces - for
CW-complexes we only need additivity. See pages 114-116 in Concise for details.

Therefore, H,(X) = colim H,(X’) = H,(X"t").

Lemma. Let X be a wedge of n-spheres. Then h : 7,(X) — H n(X) is the abelianization homomorphism for n = 1
and an isomorphism for n > 1.

If X is a single n-sphere, 7, (X) = Z{[id]} and H,(X) = Z{i,} by the dimension and suspension axioms. Then

h(fid]) = I—NI,,(id)(i,,) = id(ip) = iy, so Z{[id]} i Z{in} is an isomorphism. Note that since Z{[id]} is abelian, this
also gives the conclusion forn =1. i
Now let X = v S”. By additivity, H,(X) =~ @ H,(S") =~ P Z{i,}.
jer / jel / jel
Forn > 1,m,(X) =7Z{1} =~ j%l{[id]}. The map h is natural, 7, (X) is generated by the inclusions S7 — X, and the

isomorphism P H, (87) — H, (X) is induced by the inclusions S7, thus the following diagram commutes:
jel

7 (S7) —— i (X)

| Lh

H,(S") — Hu(X)

In particular, A(. .., 0, [id],0,...) = (..., h(0), A([id]), £(0),...) = (...,0,iy,0,...). Then h maps the k-th generator
of of ZI{[id]} to the k-th generator of @ Z{i,} and is therefore an isomorphism.
JE jel
In the case where n = 1, 7, (X) = FI, the free group generated by the inclusions of the n-spheres into X. Then &
maps the k-th generator of F7 to the k-th generator of @ Z{i,} = (F I )ab and is thus the abelianization homomor-
jel
phism.

Theorem (Hurewicz). Let X be any (n — 1)-connected based space. Then the hurewicz homomorphism
h:mn(X) > Hu(X)
is the abelianization homomorphism for n = 1 and is an isomorphism for n > 1.

Proof. First, by the CW Approximation Theorem we may assume that X is a CW complex with a single 0-cell, based
attaching maps, and no g-cells for 1 < ¢ < n. Further, the inclusion of the (n + 1) skeleton X**! < X induces
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an isomorphism on the homotopy groups 7,. By the lemma above, we also have an isomorphism on the reduced
homology groups H ,,. Therefore, it is no loss of generality to assume X = X1,
We then have that X is the cofiber of amap f : K — L where K = \/; §" and X" = L =\/; S™

K—7'

|

\V; D" —— X =Cy.
Our goal is then to show that the top and bottom rows in the following commutative diagram are exact:

7 (K) —— mp(L) —— mp(X) —— m,—1(K) =0

[
Hn(K) —— Hp(L) — Hn(X) — Hn_1(K) = 0.

We know the two vertical arrows on the left are isomorphisms for » > 1 and the abelianization homomorphism for
n = 1 by the lemma, since K and L are wedges of n-spheres. So, showing exactness of the top and bottom rows will
gives us that & : 7, (X) — H,(X) is an isomorphism (or abelianization homomorphism if n = 1).

First, we consider the sequence on the reduced homology groups. We have the cofiber sequence K i) L—X=Cpy,
and would like to use the exactness axiom of reduced homology. Since K is not a subcomplex of L we cannot apply
this directly. Instead we consider the mapping cylinder M,

Mf — Mf/K

A

L X =

IR

K

Now K is a subcomplex of M s so we have an exact sequence
H,(K) = H,(My) - Hy(Ms/K) = 0

But then since M s /K is the cone Cy we have M s /K =~ Cy and since the retraction r : My — L is a homotopy
equivalence we get the exact sequence we want:

Hpy(K)—> H,(L) > X, — 0.

Now for the sequence on homotopy groups, we need to consider two cases. First, assume n > 1. By a corollary of
the homotopy excision theorem we know that for an n-equivalence f : X — Y where X is m-connected, the map
(Mg,X) — (Cr,%)isan (n + m + 1)-equivalence. In our case we have that K is (n — 1)-connected, and the map
f : K — Lisan (n — 1)-equivalence, so (M s, K) — (Cr,*) = (X, *) is a (2n — 1)-equivalence. Hence, we have
an isomorphism

n(My, K) = mp(X, %)

for n > 1. Again considering the inclusion of K into the mapping cylinder and using the exact sequence on homotopy
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for the pair (M s, K) we have

Tn(K) —— 7y(My) —— m1,(Myg,K) —— 1, 1(K) =0

T

7 (K) —— mp(L) ——— (X)) ——— 7,—1(K) = 0.

Therefore, we have an exact sequence on the homotopy groups for # > 1. This gives us that the Hurewicz homomor-

phism is an isomorphism for n > 1.
Finally, for the case n = 1, we cannot use homotopy excision since that was only valid for » > 1. Let N denote the

normal subgroup generated by f(7(K)) in 71 (L).
In this case, from a corollary of the van Kampen theorem we have

mX)y=m(L)/y.
Therefore, we have an exact sequence

0 —— N — (L) — m((X) — 0.

Next, we claim that the abelianization N is isomorphic to the abelianization f (1 (K))AP. We can see this since if

x € NAP then there is some y € N such that y — x. But, y € N implies that y = ¢ f(k)c™! for some ¢ € m;(L)
Ab

. .. .. f .
and some k € m{(K), so in NA® we have x = f(k). This gives us a surjection 7;(K) —> NAP. Further, since
abelianization is right exact we have

0 y N s 1 (L) —— m(X) — 0

Ab Ab Ab

NAY 5 7 (D)2 —— 7 (X)AY —— 0

N
K A

IR
IR

ﬂ](K)Ab — 7T1(L)Ab — ﬂl(X)Ab — 0

Therefore, we get an exact sequence on the bottom row. Since the reduced homology groups H are abelian, the maps
w1 — H factor through the abelianizations and we get a commutative diagram

7T1(K) > 7'[1(L) > 7T1(X) — 0

7
’

/ Ab Ab Ab
/

h:l ﬂl(K)Ab e 7T1(L)Ab e ﬂ](X)Ab — 0
\

\
\ ~ ~ ~
\ = = =
\

\
N N N

Hi(K) — H{(L) — H{(X) —— 0

We know that the two vertical compositions on the left are the abelianization homomorphisms from the lemma on
wedges of n-spheres. Therefore, we have & : w1 (X) — H1(X) is the abelianization homomorphism, completing the
proof. O



