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1. Motivation

There are a lot of ways to motivate spectra. For example:

• Representing objects for generalized cohomology theories. Also give rise to generalized

homology theories. We will do that next week.

• Exisive functors from Sfin
∗ → S∗, where S∗ is the infinity category of spaces. That perspec-

tive I’d like to get to, but it will be later in the semester and only if people are willing to

work hard with me to do it.

For today, I’m going to take a different path, one which parallels last semester’s topic of the derived

category of an abelian category.

Last semester, we saw the following constructions. Let A be an abelian category, for example

A = R-Mod. We had the following picture.

K−(P)
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∼= // D−(A)

��
A // Ch(A)

/chain homot.

//
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We saw that if A had enough projectives, then the subcategory K−(P) of the bounded below

chain complexes of projectives is equivalent to the derived category D−(A). So in certain good

situations, we don’t have to invert quasi-isomorphisms (a potentially nasty process), to get the

derived category we want to study.

Further, in many cases, these categories have a lot of structure. For example, Ch(A) is often a

closed symmetric moinoidal category (for example, if A = R-Mod), making it a great place to do

mathematics.

In topology, things are a little backwards. Imagine that you knew what properties D(A) had,

but didn’t really know how to construct a good model for Ch(A). You might get stuck trying to

do algebra. For example, how do you put a module structure on cofibers? Let’s make this problem

precise. Look at what we do in an abelian context. Suppose that A is symmetric monoidal and

that we have an algebra object in A, say R, and let x : R→ R be a self map. Then we can define

R/x as the cokernel of x. We can produce a commutative diagram

R⊗R
1⊗x //

m

��

R⊗R

m

��

1⊗p
// R⊗R/x //

!
��

0

R
x // R // R/x

p
//// 0

and this gives R/x the structure of an R–module. Now, suppose that D(A) gets an induced

symmetric monoidal structure and that we have an object in R ∈ D(A), . Our exact sequences are

replaced by exact triangles, and R/x is the cofiber of x so that we have an exact triangle

R
x−→ R

p−→ R/x→ R[1].

Therefore, the best thing we can do is

R⊗R
1⊗x //

m

��

R⊗R

m

��

1⊗p
// R⊗R/x //

��

R⊗R[1]

m[1]

��
R

x // R // R/x
p

//// R[1]

but that arrow is not necessarily unique in D(A). So, it’s not clear how to put a module structure

on R/x.

For a long time, we’ve known what our derived category should looks like, but didn’t have a

good symmetric moinoidal category to represent it. This accounts for the strange history of the

subject. So let’s start by looking at this derived category, called the stable homotopy category.
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2. Some recollections about Top*

Let Top* be well-pointed pointed compactly generated weak Hausdorff topology spaces. Recall

that a map f : X → Y is a weak homotopy equivalence if π0f is a bijection and f it induces an

isomorphism π∗(X,x)→ π∗(Y, f(x)) for all x ∈ X.

We have the following classical results:

Theorem 2.1 (Whitehead). A weak equivalence between CW*-complexes is a homotopy equiva-

lence.

Theorem 2.2 (CW -Approximation). There is a functor

Γ : Top* → CW*

and a natural transformation η from Γ : Top* → CW* ⊆ Top* to id : Top* → Top*, and such

that

ΓX
ηX−−→ X

is a weak equivalence.

There are two “homotopy” categories that we can form from Top*. The classical one is hTop*,

which is just spaces with homotopy classes of pointed maps. This would be the analogue of K(A).

The second, we can form as follows.

Let HoCW* be full subcategory of hTop* whose objects are the CW -complexes.

Definition 2.3. Let HoTop* be the category whose objects are topological spaces, but whose

morphisms are

HomHoCW*
(ΓX,ΓY ) = [ΓX,ΓY ]∗.

Note that there is an equivalence of categories:

HoTop*
∼= HoCW* .

By Whitehead’s theorem, this is the same as “inverting” the weak homotopy equivalences. In

other words, any functor

F : Top* → C

such that F takes weak homotopy equivalences to isomorphisms will factor through HoTop*.
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3. Spanier Whitehead category

Now, note that hTop* is not an algebraically flavored category. In general, [X,Y ]∗ is just a

pointed set. However, if X = ΣX ′, then [X,Y ]∗ is a group, and if X = ΣX ′′, then it’s an abelian

group.

To put ourselves in a more manageable setting, we might decide to turn [X,Y ]∗ into abelian

groups by lettting

{X,Y } = colimk[Σ
kX,ΣkY ]∗

These are the stable homotopy classes of maps. If X and Y are finite CW complexes, then the

Freudenthal Suspension theorem tells you that for k � 0,

[ΣkX,ΣkY ]∗
∼=−→ [Σk+1X,Σk+1Y ]∗

(in fact, all we need is dim(ΣkX) ≤ 2dim-bottom-cell(ΣkY )− 2).

We can form a category whose objects are finite CW*-complexes CWfin
* and morphisms {X,Y }.

Then

Σ : CWfin
* → CWfin

*

is an isomorphism on hom-sets. However, it’s not an equivalence of categories since it is not

essentially surjective: not all spaces are the suspension of another space. However, we can remedy

that by inverting Σ.

So we let SW, the Spanier-Whitehead category, have objects (X,n) for X a finite pointed CW-

complex and n ∈ Z. Further,

{X,Y } = HomSW((X,m), (Y, n)) = colimk[Σ
m+kX,Σn+kY ]∗

Then, Σ : SW → SW is an automorphism. In fact, this category is

• Additive

• Triangulated

• Symmetric monoidal where

(X,m)∧(Y, n) = (X ∧Y, n+m).

In fact, this is a model for the stable homotopy category of finite spectra, denote HoSpectrafin.

Further, there is a functor

Σ∞ : HoCWfin
* → HoSpectrafin

which sends X to (X, 0). Now, we could forget the “finite CW-complex” part and try to build a

larger Spanier-Whitehead category, but it won’t have all coproducts and Σ∞ won’t be coproduct
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preserving. Indeed, consider{(∨
α∈I

Xα, 0

)
, (Y, n)

}
= colimk[Σ

k
∨
α∈I

Xα,Σ
k+nY ]

= colimk

∏
α∈I

[ΣkXα,Σ
k+nY ]

and we run into problems commuting limits and colimits.

What we would like is a diagram

HoCWfin
*

//

Σ∞

��

HoTop*

Σ∞

��
HoSpectrafin // HoSpectra

where Σ∞ is colimit preserving functor.

4. Properties of the Stable Homotopy Category HoSpectra

I’m basing this section on C. Malkieviech, The stable homotopy category for this exposition.

There is a category, called the stable homotopy category, and denoted HoSpectra, with the

following properties:

• HoSpectra is an additive category. That is, it has finite products and coproducts, is

pointed (called the zero object ∗), the natural map

X ∨ Y → X × Y

is an equivalence and

[X,Y ] := HoSpectra(X,Y )

are abelian groups.

(Note, if X and Y are finite CW-complexes with bottom cell in high dimension so for

example, if they are in the image of the suspension functor Σn for sufficiently large n, then

X ∨ Y → X × Y is an isomorphism on homotopy groups in some range since they have the

same k–skeleton up to a certain point.)

• There is a suspension functor Σ : HoSpectra → HoSpectra and a loop space Ω :

HoSpectra → HoSpectra such that Ω and Σ are inverse equivalences. In fact, with

this functor, HoSpectra is triangulated.

http://math.uiuc.edu/~cmalkiew/stable.pdf
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• There is a functor Σ∞ : Top* → HoSpectra such that the following diagram commutes:

CW*
//

Σ
��

HoTop*
Σ∞
//

Σ
��

HoSpectra

Σ
��

CW*
// HoTop*

Σ∞
// HoSpectra

• Further, Σ∞ as a right adjoint, Ω∞ : HoSpectra → HoTop* such that the following

diagram commutes:

Top*
//

Ω
��

HoTop*

Ω
��

HoSpectra

Σ
��

Ω∞
oo

Top*
// HoTop* HoSpectra

Ω∞
oo

Thus, we have

[Σ∞K,X] ∼= HoTop*(K,Ω∞X).

• (Cary had, if A → X has a retract, then X = A ∨ B... but shouldn’t this follow from

triangulation axioms?)

• There is a special object in HoSpectra, the sphere spectrum

S = Σ∞S0.

The homotopy groups of a spectrum are then defined as

πnX = [ΣnS, X].

Further, there is an isomorphism

πnΣ∞K ∼= πsnK = colimk πn+k(Σ
kK).

• If a map f : X → Y in HoSpectra induces an isomorphisms on π∗, then it is an isomor-

phism in HoSpectra.

• HoSpectra is a closed symmetric monoidal category (HoSpectra,∧, S), where the internal

hom is denoted by F (X,Y ). The “closed” means that there are isomorphisms

F (X ∧Y,Z) ∼= F (X,F (Y,Z)).

Further, Σ∞ is a moinoidal functor:

Σ∞(X ∧Y ) ∼= Σ∞X ∧Σ∞Y
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in HoSpectra, and ΣX = Σ∞S1 ∧X and ΩX = F (Σ∞S1, X).

Definition 4.1. A ring spectrum is a monoid in HoSpectra.

Definition 4.2. Let A be an abelian group. An Eilenberg MacLane spectrum HR is a spectrum

such that πnHR = R if n = 0 and 0 otherwise. If A = R a ring, then HR is a ring spectrum.

Definition 4.3 (Pre-Definition). Let Spectra be any category C with weak equivalences W such

that the homotopy category C[W−1] can be formed and is equivalent to HoSpectra.

Remark 4.4. Below, I’ll give a first example, but note that later on, we will have closed symmetric

monoidal models for Spectra in which we can do honest algebra. In there, for any ring spectrum

E, we will be able to form the category of E–module spectra. In particular, if E = HR (which will

exist in our category), we will have the following result.

Theorem 4.5 (Shipley). Let R be a commutative ring. There is a triangulated equivalence between

the categories D(R-Mod) and the homotopy category of HR–modules.

So, in particular, Spectra encompass classical homological algebra.

5. Topics

Here is a list of lectures I have in mind:

(1) Cohomology Theories and Brown Representability (Cherry and Sebastian)

(2) Prespectra and spectra

(3) The stable homotopy category as a triangulate symmetric monoidal category

(4) Interlude: Vector bundles, Thom Spaces, Thom Isomorphism theorem

(5) Thom Spectra, MO and MU , the Pontryagin-Thom theorem

(6) Quillen’s theorem: MU and formal group laws

(7) K–theory, algebraic and topological (Markus)

(8) Interlude: Model Categories

(9) Symmetric, orthogonal and diagram Spectra

(10) S–modules, E∞ and A∞–ring spectra (Agnes)

(11) The classical spectral sequences

(12) HR–module spectra (Shipley’s theorem)

(13) Quotients and localization, and MU–module spectra (Morava K–theories)

(14) Interlude: Simplicial Sets

(15) ∞–categories

(16) Stable ∞–categories
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(17) Spectrum objects and ∞–category of Spectra Sp(S∗)
(18) Symmetric monoidal structire on Sp(S∗)
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