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1. Category Theory

Introduction

The language of categories is not strictly necessary to understand the basics of commutative
algebra, ring theory or topology. Nonetheless, it is extremely convenient, powerful and
actually will become indispensible for advanced topics such as “homological algebra” or
“homotopy theory”. Moreover, category theory will clarify many of the constructions made
in the future when we can freely use terms like “universal property” or “adjoint functor”.
As a result, we begin this book with an introduction to category theory. The interested
reader can pursue further study in Mac Lane (1998) or Kashiwara & Schapira (2006).

For the beginning, the reader is advised not to take the present chapter too seriously;
skipping it for the moment to the following chapters and returning here as a reference
could be quite reasonable.

1.1. Objects, morphisms, and categories

Definitions and first examples

1.1.1 Categories are supposed to be places where mathematical objects live. Intuitively, to
any given type of structure (e.g. groups, rings, etc.), there should be a category of objects
with that structure. These are not, of course, the only type of categories, but they will be
the primary ones of concern to us in this book.

The basic idea of a category is that there should be objects, and that one should be able
to map between objects. These mappings could be functions, and they often are, but they
don’t have to be. Next, one has to be able to compose mappings, and associativity and
unit conditions are required. Nothing else is required.

1.1.2 Definition A (locally small) category C consists of:

• a collection of sets called objects,

• for each pair of objects X,Y a set of morphisms MorC(X,Y ) such that for every
quadruple of objects X,X ′, Y, Y ′ the morphism sets MorC(X,Y ) and MorC(X ′, Y ′)
have no common element in case X 6= X ′ or Y 6= Y ′,

• for every object X an identity morphism idX ∈ MorC(X,X), and
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1. Category Theory 1.1. Objects, morphisms, and categories

• for every triple X,Y, Z of objects a composition law

◦(X,Y,Z) : MorC(X,Y )×MorC(Y,Z)→ MorC(X,Z), (f, g)→ g ◦ f.

It is further required that these data fulfill the following two axioms:

(Cat1) The composition law is associative which means that for every quadrupel of objects
X,Y, Z,W and all f ∈ MorC(X,Y ), g ∈ MorC(Y, Z) and h ∈ MorC(Z,W ) the
relation

h ◦ (g ◦ f) = (h ◦ g) ◦ f

holds true.

(Cat2) The composition law is unital with units given by the identity morphism. This
means that for each pair of objects X,Y and every morphism f ∈ MorC(X,Y ) the
relation

idY ◦ f = f ◦ idX = f

holds true.

1.1.3 Remarks (a) In practice, a category C will often be the storehouse for mathematical
objects such as groups, Lie algebras, rings, manifolds, etc., in which case the corresponding
morphisms will be (induced by) ordinary functions preserving the underlying structure of
the objects of the category. More precisely, the objects of such categories are structured
sets that means ordered pairs (X, S), where X is a set, called the (underlying) space,
and S is the so-called structure on X; see (Bourbaki, 2004, Chap. IV) for the theory of
structures, and (Moschovakis, 2006, 4.30) for structured sets. A topology on a set X, a
group operation plus an identity element, a sheaf of rings on X, a manifold structure, a
σ-algebra with a measure, or (compatible) combinations of these all form examples of a
structure on the space X. Morphisms between two structured sets (X, S) and (Y,T) of the
same type - meaning the structures are both topologies, or both group operations with
identity elements, and so on - are then functions f : X → Y preserving the structures
S and T. For the mentioned examples, the structure preserving maps are the continuous
functions if the structures are topologies and they are homomorphisms when the structures
are group operations with identities. There is one - luckily curable - caveat with that
concept. Consider for example the category of topological spaces, and consider the set R
of real numbers. There are many topologies on R, so let us pick for example the euclidean
topology OR,e and the discrete topology P(R) (recall that P(Y ) denotes the powerset of a
set Y ). The identity map idR then is continuos from (R,OR,e) to (R,OR,e) and continuous
from (R,P(R)) to (R,OR,e) (but not vice versa). Hence, idR would be regarded as a
morphism both from (R,OR,e) to (R,OR,e) and from (R,P(R)) to (R,OR,e) in violation
of the requirement that MorC(X,Y ) ∩ MorC(X ′, Y ′) = ∅ for (X,Y ) 6= (X ′, Y ′). This
deficiency can be healed by a slight modification of the notion of a morphism between
structured sets. Let f : X → Y be a structure preserving map between the underlying
spaces of two structured sets (X, S) and (Y,T). The function f then can be understood
as a triple (X,Y,Γf ), where Γf denotes the graph of the function. Now we replace the
domain X in this triple by the structured set (X, S), and the range Y by the structured
set (Y,T), and obtain the triple

(
(X, S), (Y,T),Γf

)
. We shortly denote this new triple by
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1. Category Theory 1.1. Objects, morphisms, and categories

f : (X, S) → (Y,T) and call it the morphism from (X, S) to (Y,T) induced by the map
f : X → Y . In other words, f : X → Y has been enriched by the structures on X and
Y to give the morphism f : (X, S) → (Y,T). Often one still writes f : X → Y for the
resulting morphism, as long as it is clear that it is regarded as a morphism in a category
of structured sets.

(b) Even when the category under consideration does not come from one of structured
sets, we shall write f : X → Y to denote an element of MorC(X,Y ). Moreover, if the con-
text indicates which underlying category is meant, we usually write Mor(X,Y ) instead of
MorC(X,Y ). Likewise, and as already practiced in the preceding definition, we abbreviate
◦(X,Y,Z) by ◦ because this keeps notation clear and will not lead to confusion.

(c) In this book we will almost always consider only locally small categories which means
categories where the collection of morphisms between two objects forms a set, or in other
words, using language by (Bourbaki, 2004, Chap. II), where the relation of being a mor-
phism between two given objects is collectivizing. Unless stated differently, we therefore
consider our categories to be locally small.

Here is a simple list of examples.

1.1.4 Example (Categories of structured sets) (a) Sets as objects together with func-
tions between them as morphisms form a category which is denoted by Ens.

(b) Groups together with (group) homomorphisms as morphisms form a category denoted
by Grp.

(c) Topological spaces and continuous maps between them form the category Top.

(d) Given a field k, the vector spaces over k together with the k-linear maps between them
as morphisms form a category which we denote by Vectk.

(e) The objects of the category LieAlgk are the Lie algebras over the field k, its morphisms
are Lie algebras homomorphisms, i.e. k-linear maps which preserve the Lie brackets.

(f) This example is slightly more subtle. Here the category has objects consisting of topo-
logical spaces, but the morphisms between two topological spaces X,Y are the homotopy
classes of continuous maps X → Y . Since composition respects homotopy classes, the
composition of homotopy classes of maps is well-defined. The identity morphisms in this
category are obviously the homotopy classes of the identity maps. The resulting category
is called the homotopy category of topological spaces and is denoted by hTop.

1.1.5 Remark In general, the objects of a category do not have to form a set; they can
be too large for that. For instance, the collection of objects in Ens does not form a set.

1.1.6 Definition A category is called small if the collection of objects is a set.

The standard examples of categories are the ones above: structured sets together with
structure-preserving maps betwen them. Nonetheless, one can easily give other examples
that are not of this form.
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1. Category Theory 1.1. Objects, morphisms, and categories

1.1.7 Example (Groups as categories) Let G be a group. Then we can make a cat-
egory BG where the objects just consist of one element ∗ and the maps ∗ → ∗ are the
elements g ∈ G. The identity is the identity of G and composition is multiplication in the
group.

In this case, the category does not represent much of a class of objects, but instead we
think of the composition law as the key thing. So a group is a special kind of (small)
category.

1.1.8 Example (Monoids as categories) A monoid is precisely a category with one
object. Recall that a monoid is a set together with an associative and unital multiplication
(but which need not have inverses).

1.1.9 Example (Posets as categories) Let (P,≤) be a partially ordered set (i.e. a poset).
Then P can be regarded as a (small) category, where the objects are the elements p ∈ P ,
and

MorP (p, q) =

{
(p, q), if p ≤ q,
∅, otherwise.

The composition (q, r) ◦ (p, q) of two arrows (q, r) and (p, q), where p ≤ q ≤ r, is defined
as the arrow (p, r). The identity morphism of an object p ∈ P is the pair (p, p).

1.1.10 Remark There is, however, a major difference between category theory and set
theory. There is nothing in the language of categories that lets one look inside an object.
We think of vector spaces having elements, spaces having points, etc. By contrast, cate-
gories treat these kinds of things as invisible. There is nothing “inside” of an object X ∈ C;
the only way to understand X is to understand the ways one can map into and out of X.
Even if one is working with a category of “structured sets,” the underlying set of an object
in this category is not part of the categorical data. However, there are instances in which
the “underlying set” can be recovered as a Mor-set.

1.1.11 Example In the category Top of topological spaces, one can in fact recover the
“underlying set” of a topological space via the hom-sets. Namely, for each topological
space X, the points of X are the same thing as the mappings from a one-point space into
X. That is, we have

X = MorTop(1, X),

or more precisely
X = MorTop

(
(1, {∅, 1}), (X,O)

)
,

where 1 denotes the one-point space {∅}, {∅, 1} the discrete topology on 1, and O is the
topology on X.

Later we will say that the functor assigning to each space its underlying set is corepre-
sentable.

1.1.12 Example Let Ab be the category of abelian groups and group homomorphisms.
Again, the claim is that using only this category, one can recover the underlying set of a
given abelian group A. This is because the elements of A can be canonically identified with
morphisms Z→ A (based on where 1 ∈ Z maps).
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1.1.13 Definition We say that C is a subcategory of the category D if the collection of
objects of C is a subclass of the collection of objects of D, and if whenever X,Y are objects
of C, we have

MorC(X,Y ) ⊂ MorD(X,Y )

with the laws of composition in C induced by that in D.

C is called a full subcategory if MorC(X,Y ) = MorD(X,Y ) whenever X,Y are objects of C.

1.1.14 Example The category of abelian groups is a full subcategory of the category of
groups.

The language of commutative diagrams

While the language of categories is, of course, purely algebraic, it will be convenient for psy-
chological reasons to visualize categorical arguments through diagrams. We shall introduce
this notation here.

Let C be a category, and let X,Y be objects in C. If f ∈ Mor(X,Y ), we shall sometimes
write f as an arrow

f : X → Y

or
X

f→ Y

as if f were an actual function. If X
f→ Y and Y

g→ Z are morphisms, composition
g ◦ f : X → Z can be visualized by the picture

X
f→ Y

g→ Z.

Finally, when we work with several objects, we shall often draw collections of morphisms
into diagrams, where arrows indicate morphisms between two objects.

1.1.15 Convention A diagram will be said to commute if whenever one goes from one
object in the diagram to another by following the arrows in the right order, one obtains
the same morphism. For instance, the commutativity of the diagram

X W

Y Z

f

f ′

g

g′

is equivalent to the assertion that

g ◦ f ′ = g′ ◦ f ∈ Mor(X,Z) .
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As an example, the assertion that the associative law holds in a category C can be stated as
follows. For every quadruple X,Y, Z,W ∈ C, the following diagram (of sets) commutes:

Mor(X,Y )×Mor(Y, Z)×Mor(Z,W ) //

��

Mor(X,Z)×Mor(Z,W )

��
Mor(X,Y )×Mor(Y,W ) //Mor(X,W ).

Here the maps are all given by the composition laws in C. For instance, the downward
map to the left is the product of the identity on Mor(X,Y ) with the composition law
Mor(Y, Z)×Mor(Z,W )→ Mor(Y,W ).

Isomorphisms

Classically, one can define an isomorphism of groups as a bijection that preserves the
group structure. This does not generalize well to categories, as we do not have a notion
of “bijection,” as there is no way (in general) to talk about the “underlying set” of an
object. Moreover, this definition does not generalize well to topological spaces: there, an
isomorphism should not just be a bijection, but something which preserves the topology
(in a strong sense), i.e. a homeomorphism.

Thus we make:

1.1.16 Definition An isomorphism between objects X,Y in a category C is a morphism
f : X → Y such that there exists g : Y → X with

g ◦ f = idX and f ◦ g = idY .

Such a g is called an inverse to f .

1.1.17 Lemma The inverse of an isomorphism f : X → Y in a category C is uniquely
determined.

Proof. It is easy to check that the inverse g is unique. Indeed, suppose g, g′ both were
inverses to f . Then

g′ = g′ ◦ idY = g′ ◦ (f ◦ g) = (g′ ◦ f) ◦ g = idX ◦ g = g.

1.1.18 Remark The above notion of an isomorphism is more correct than the idea of being
one-to-one and onto. For instance, a bijection, even a continuous one, of topological spaces
is not necessarily a homeomorphism, i.e. an isomorphism in the category of topological
spaces.

1.1.19 Example It is easy to check that an isomorphism in the category Grp is an iso-
morphism of groups, that an isomorphism in the category Ens is a bijection, and so on.
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1.1.20 Remarks (a) We are supposed to be able to identify isomorphic objects. In the
categorical sense, this means mapping into X should be the same as mapping into Y , if
X,Y are isomorphic, via an isomorphism f : X → Y . Indeed, let Z be another object of
C. Then we can define a map

f∗ : MorC(Z,X)→ MorC(Z, Y )

given by post-composition with f . This is a bijection if f is an isomorphism (the inverse
is given by postcomposition with the inverse to f). Similarly, one can easily see that
mapping out of X is essentially the same as mapping out of Y . Anything in general
category theory that is true for X should be true for Y (as general category theory can
only try to understand X in terms of morphisms into or out of it!).

(b) The relation “X,Y are isomorphic” is an equivalence relation on the class of objects of
a category C.

(c) Let P be a preordered set, and make P into a category as in Example 1.1.9. Then P
is a poset if and only if two isomorphic objects are equal.

1.1.21 Definition A groupoid is a category where every morphism is an isomorphism.

1.1.22 Remark If C is a groupoid and A an object of C, the set MorC(A,A) is a groups.
A group is essentially the same as a groupoid with one object.

1.1.23 Example Let X be a topological space, and let π1(X) be the category defined as
follows: the objects are elements of X, and morphisms x→ y (for x, y ∈ X) are homotopy
classes of maps γ : [0, 1] → X (i.e. paths) that send 0 7→ x and 1 7→ y. Composition of
maps is given by concatenation of paths. Because one is working with homotopy classes of
paths, composition is associative, indeed. The identity at x ∈ X is given by the constant
path εx : [0, 1] → X, t 7→ x. The inverse of a path γ in X is obtained by “going the path
backwards” which means by the path γ− : [0, 1]→ X, t 7→ γ(1− t). The groupoid π1(X) is
called the fundamental groupoid of X. Note that Morπ1(X)(x, x) is the fundamental group
π1(X,x). For details and proofs of this example see (Brown, 2006, Chap. 6).

Monomorphisms and epimorphisms

Besides isomorphisms, one can also charaterize monomorphisms and epimorphisms in a
purely categorical setting. That is what we wish to do now. In categories where there is
an underlying set the notions of injectivity and surjectivity makes sense but in category
theory, one does not in a sense have “access” to the internal structure of objects. In this
light, we make the following definition.

1.1.24 Definition A morphism f : X → Y is a monomorphism if for any two morphisms
g1 : X ′ → X and g2 : X ′ → X the relation fg1 = fg2 implies g1 = g2. A morphism
f : X → Y is an epimorphism if for any two maps g1 : Y → Y ′ and g2 : Y → Y ′ the
equality g1f = g2f implies g1 = g2.
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So f : X → Y is a monomorphism if whenever X ′ is another object in C, the map

MorC(X ′, X)→ MorC(X ′, Y )

is an injection (of sets). Epimorphisms in a category are defined similarly; note that neither
definition makes any reference to surjections of sets.

The reader can easily check:

1.1.25 Proposition The composite of two monomorphisms is a monomorphism, as is the
composite of two epimorphisms.

1.1.26 Remark Prove ??.

1.1.27 Remark The notion of “monomorphism” can be detected using only the notions
of fibered product and isomorphism. To see this, suppose i : X → Y is a monomorphism.
Show that the diagonal

X → X ×Y X
is an isomorphism. (The diagonal map is such that the two projections to X both give
the identity.) Conversely, show that if i : X → Y is any morphism such that the above
diagonal map is an isomorphism, then i is a monomorphism.

Deduce the following consequence: if F : C → D is a functor that commutes with fibered
products, then F takes monomorphisms to monomorphisms.

1.2. Functors

A functor is a way of mapping from one category to another: each object is sent to another
object, and each morphism is sent to another morphism. We shall study many functors
in the sequel: localization, the tensor product, Mor, and fancier ones like Tor,Ext, and
local cohomology functors. The main benefit of a functor is that it doesn’t simply send
objects to other objects, but also morphisms to morphisms: this allows one to get new
commutative diagrams from old ones. This will turn out to be a powerful tool.

Covariant functors

Let C,D be categories. If C,D are categories of structured sets (of possibly different types),
there may be a way to associate objects in D to objects in C. For instance, to every group G
we can associate its group ring Z[G]; to each topological space we can associate its singular
chain complex, and so on. In many cases, given a map between objects in C preserving the
relevant structure, there will be an induced map on the corresponding objects in D. It is
from here that we define a functor.

1.2.1 Definition A functor F : C → D consists of a function F : C → D (that is, a
rule that assigns to each object in C an object of D) and, for each pair X,Y ∈ C, a map
F : MorC(X,Y )→ MorD(FX,FY ), which preserves the identity maps and composition.

In detail, the last two conditions state the following.
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(Fun1) If X ∈ C, then F (idX) is the identity morphism idF (X) : F (X)→ F (X).

(Fun2) If X
f→ Y

g→ Z are morphisms in C, then F (g ◦ f) = F (g) ◦ F (f) as morphisms
F (X)→ F (Z). Alternatively, we can say that F preserves commutative diagrams.

In the last statement of the definition, note that if

X
h

  

f // Y

g

��
Z

is a commutative diagram in C, then the diagram obtained by applying the functor F ,
namely

F (X)
F (h)

##

F (f) // F (Y )

F (g)
��

F (Z)

also commutes. It follows that applying F to more complicated commutative diagrams
also yields new commutative diagrams.

Let us give a few examples of functors.

1.2.2 Example There is a functor from Ens → Ab sending a set S to the free abelian
group Z[S] = Z(S) on the set. For the definition of a free abelian group, or more generally
a free R-module over a ring R, see Definition 11.6.1.

1.2.3 Example Let X be a topological space. Then to it we can associate the set π0(X)
of connected components of X.

Recall that the continuous image of a connected set is connected, so if f : X → Y is a
continuous map and X ′ ⊂ X connected, f(X ′) is contained in a connected component of
Y . It follows that π0 is a functor Top → Ens. In fact, it is a functor on the homotopy
category as well, because homotopic maps induce the same maps on π0.

1.2.4 Example Fix n ∈ N. There is a functor from Top → Ab (categories of topological
spaces and abelian groups) sending a space X to its n-th singular homology group Hn(X).
We know that given a map of spaces f : X → Y , we get a map of abelian groups f∗ :
Hn(X)→ Hn(Y ). See (Dold, 1995, Sec. VI. 7) or (Hatcher, 2002, Chap. 2), for instance.

We shall often need to compose functors. For instance, we will want to see, for instance,
that the tensor product (to be defined later, see Section 13.3) is associative, which is really
a statement about composing functors. The following (mostly self-explanatory) definition
elucidates this.

10



1. Category Theory 1.2. Functors

1.2.5 Definition If C,D,E are categories, and F : C → D, G : D → E are covariant
functors, then one defines the composite functor

G ◦ F : C→ E

as the functor which sends an object X of C to the object G(F (X)) of E. Similarly, a
morphism f : X → Y is sent to G(F (f)) : G(F (X))→ G(F (Y )).

The composite functor G ◦F is well-defined. To see this observe that for an object X of C
the identity morphism idX is mapped to

G ◦ F (idX) = G(F (idX)) = G(idF (X)) = idG(F (X)).

Moreover, if f : X → Y and g : Y → Z are morphisms in C, then

G ◦ F (g ◦ f) =G(F (g ◦ f)) = G(F (f) ◦ F (f)) = G(F (g)) ◦G(F (f)) =

=
(
(G ◦ F )(g)

)
◦
(
(G ◦ F )(f)

)
,

hence conditions (Fun1) and (Fun2) are both fulfilled for G ◦ F .

1.2.6 Example (Category of categories) In fact, because we can compose functors,
there is a category of categories. Let Cat have as objects the small categories, and mor-
phisms as functors. Composition is defined as in Definition 1.2.5.

1.2.7 Example (Group actions) Fix a group G. Let us understand what a functor
BG → Ens is. Here BG is the category of Example 1.1.7. The unique object ∗ of BG
goes to some set X. For each element g ∈ G, we get a morphism g : ∗ → ∗ and thus a
map ϕg : X → X. This is supposed to preserve the composition law (which in G is just
multiplication), as well as identities. That means that the following diagram commutes for
each g, h ∈ G:

X X

X .

ϕh

ϕgh
ϕg

Moreover, if e ∈ G is the identity, then ϕe = idX . So a functor BG → Ens is just a left
G-action on a set X.

1.2.8 Example (Forgetful functors) An important example of functors is given by the
following. Let C be a “category of structured sets”, see Remark 1.1.3 (a) . Then, there
is a functor U : C → Ens that sends a structured set to the underlying set. For instance,
there is the functor from groups to sets that forgets the group structure or the functor from
topological spaces to sets that associates to a topological space its underlying set. More
generally, suppose given two categories C, D, such that C can be regarded as “structured
objects in D”. Then there is a functor U : C→ D that forgets the structure. Such functors
are called forgetful functors.

11



1. Category Theory 1.2. Functors

Contravariant functors

Sometimes what we have described above are called covariant functors. Indeed, we shall
also be interested in similar objects that reverse the arrows, such as duality functors:

1.2.9 Definition A contravariant functor C
F→ D (between categories C and D) is similar

data as in Definition 1.2.1 except that a morphism X
f→ Y now goes to a morphism

F (Y )
F (f)−→ F (X). Composites are required to be preserved, albeit in the other direction.

In other words, one requires (Fun1) to hold true and

(Func 2)◦ If X
f→ Y and Y

g→ Z are morphisms, then F (g ◦f) = F (f)◦F (g) as morphisms
F (Z)→ F (X).

We shall sometimes say just “functor” for covariant functor. When we are dealing with a
contravariant functor, we will always say the word “contravariant.”

A contravariant functor also preserves commutative diagrams, except that the arrows have
to be reversed. For instance, if F : C→ D is contravariant and the diagram

A

��

// C

B

>>

is commutative in C, then the diagram

F (A) F (C)oo

{{
F (B)

OO

commutes in D.

1.2.10 Remark One can, of course, compose contravariant functors as in Definition 1.2.5.
But the composition of two contravariant functors will be covariant. So there is no “cate-
gory of categories” where the morphisms between categories are contravariant functors.

Similarly as in Example 1.2.7, we have:

1.2.11 Example A contravariant functor from BG (defined as in Example 1.1.7) to Ens
corresponds to a set with a right G-action.

1.2.12 Example (Singular cohomology) In algebraic topology, one encounters con-
travariant functors on the homotopy category of topological spaces via the singular co-
homology functors X 7→ Hn(X;Z), see (Dold, 1995, Sec. VI. 7). Given a continuous map
f : X → Y , there is a homomorphism of groups

f∗ : Hn(Y ;Z)→ Hn(X;Z) .

12



1. Category Theory 1.2. Functors

1.2.13 Example (Duality for vector spaces) On the category Vectk of vector spaces
over a field k, we have the contravariant functor

V 7→ V ∨

sending a vector space V to its dual V ∨ := Hom(V,k) := MorVectk(V,k). Given a linear
map f : V →W of vector spaces, there is the induced map

f∨ : W∨ → V ∨, µ 7→ µ ◦ f

which is called the transpose of f .

1.2.14 Example If we map BG → BG sending ∗ 7→ ∗ and g 7→ g−1, we get a contravariant
functor.

We now give a useful (linguistic) device for translating between covariance and contravari-
ance.

1.2.15 Definition (The opposite category) Let C be a category. Define the opposite
category Cop of C to have the same objects as C but such that the morphisms between X,Y
in Cop are those between Y and X in C.

There is a contravariant functor C→ Cop. In fact, contravariant functors out of C are the
same as covariant functors out of Cop.

As a result, when results are often stated for both covariant and contravariant functors,
for instance, we can often reduce to the covariant case by using the opposite category.

1.2.16 Remark A map that is an isomorphism in C corresponds to an isomorphism in
Cop.

Functors and isomorphisms

Now we want to prove a simple and intuitive fact: if isomorphisms allow one to say that
one object in a category is “essentially the same” as another, functors should be expected
to preserve this.

1.2.17 Proposition If f : X → Y is an isomorphism in C, and F : C → D a functor,
then F (f) : FX → FY is an isomorphism.

The proof is quite straightforward, though there is an important point here. Note that the
analogous result holds for contravariant functors too.

Proof. If we have maps f : X → Y and g : Y → X such that the composites both ways
are identities, then we can apply the functor F to this, and we find that since

f ◦ g = idY , g ◦ f = idX ,

13
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it must hold that

F (f) ◦ F (g) = idF (Y ), F (g) ◦ F (f) = idF (X).

We have used the fact that functors preserve composition and identities. This implies that
F (f) is an isomorphism, with inverse F (g).

1.2.18 Categories have a way of making things so general that they are trivial. Hence,
this material is called general abstract nonsense. Moreover, there is another philosophical
point about category theory to be made here: often, it is the definitions, and not the proofs,
that matter. For instance, what matters here is not the theorem, but the definition of an
isomorphism. It is a categorical one, and much more general than the usual notion via
injectivity and surjectivity.

1.2.19 Example As a simple example, {0, 1} and I := [0, 1] are not isomorphic in the ho-
motopy category of topological spaces (i.e. are not homotopy equivalent) because π0([0, 1]) =
{[0I ]} while π0({0, 1}) has two elements, namely (the equivalence classes of) the constant
maps 0I and 1I mapping I to 0 and 1, respectively.

1.2.20 Example More generally, the higher homotopy group functors πn (see Hatcher
(2002)) can be used to show that the n-sphere Sn is not homotopy equivalent to a point.
For then πn(Sn, ∗) would be trivial, and it is not.

There is room, nevertheless, for something else. Instead of having something that sends
objects to other objects, one could have something that sends an object to a map. This
leads us to the following.

1.3. Natural transformations

Definition and some examples

1.3.1 Definition Suppose F,G : C→ D are functors. A natural transformation η : F → G
consists of the following data:

• For each object X in C, one has been given a morphism ηX : FX → GX in D such
that for every morphism f : X → Y in C the diagram

FX

ηX
��

F (f) // FY

ηY
��

GX
G(f)

// GY

commutes.

If ηX is an isomorphism for each objectX, then we shall say that η is a natural isomorphism.

14



1. Category Theory 1.3. Natural transformations

It is similarly possible to define the notion of a natural transformation between contravari-
ant functors.

When we say that things are “natural” in the future, we will mean that the transformation
between functors is natural in this sense. We shall use this language to state theorems
conveniently.

1.3.2 Example (The double dual) Here is the canonical example of “naturality.” Let
Vecfd

k be the category of finite-dimensional vector spaces over a given field k. Let us further
restrict the category such that the only morphisms are the isomorphisms of vector spaces.
Denote the resulting category by C For each object V of C, we know that there is an
isomorphism

V ' V ∨ = Mork(V,k),

because both have the same dimension.

Moreover, the maps V 7→ V, V 7→ V ∨ are both covariant functors on C.1 The first is the
identity functor; for the second, if f : V → W is an isomorphism, then there is induced a
transpose map f t : W∨ → V ∨ (defined by sending a map W → k to the precomposition

V
f→ W → k), which is an isomorphism; we can take its inverse. So we have two functors

from C to itself, the identity and the dual, and we know that V ' V ∨ for each V (though
we have not chosen any particular set of isomorphisms).

However, the isomorphism V ' V ∨ cannot be made natural. That is, there is no way of
choosing isomorphisms

TV : V ' V ∨

such that, whenever f : V →W is an isomorphism of vector spaces, the following diagram
commutes:

V
f //

TV
��

W

TW
��

V ∨
(f t)−1

//W∨.

Indeed, fix d > 1, and choose V = kd. Identify V ∨ with kd, and so the map TV is a d-by-d
matrix M with coefficients in k. The requirement is that for each invertible d-by-d matrix
N , we have

(N t)−1M = MN,

by considering the above diagram with V = W = kd, and f corresponding to the matrix
N . This is impossible unless M = 0, by elementary linear algebra.

Nonetheless, it is possible to choose a natural isomorphism

V ' V ∨∨.

To do this, given V , recall that V ∨∨ is the collection of maps V ∨ → k. To give a map
V → V ∨∨ is thus the same as giving linear functions lv, v ∈ V such that lv : V → k is
linear in v. We can do this by letting lv be “evaluation at v.” That is, lv sends a linear
functional ` : V → k to `(v) ∈ k. We leave it to the reader to check (easily) that this
defines a homomorphism V → V ∨∨, and that everything is natural.
1Note that the dual ∨ was defined as a contravariant functor in ??.
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1. Category Theory 1.3. Natural transformations

1.3.3 Remark Suppose there are two functors BG → Ens, i.e. G-sets. What is a natural
transformation between them?

Natural transformations can be composed. Suppose given functors F,G,H : C → D a
natural transformation T : F → G and a natural transformation U : G → H. Then, for
each X ∈ C, we have maps TX : FX → GX,UX : GX → HY . We can compose U with
T to get a natural transformation U ◦ T : F → H.

In fact, we can thus define a category of functors Fun(C,D) (at least if C,D are small).
The objects of this category are the functors F : C → D. The morphisms are natural
transformations between functors. Composition of morphisms is as above.

Equivalences of categories

Often we want to say that two categories C,D are “essentially the same.” One way of
formulating this precisely is to say that C,D are isomorphic in the category of categories.
Unwinding the definitions, this means that there exist functors

F : C→ D, G : D→ C

such that F ◦G = idD, G ◦F = idC. This notion, of isomorphism of categories, is generally
far too restrictive.

For instance, we could consider the category of all finite-dimensional vector spaces over a
given field k, and we could consider the full subcategory of vector spaces of the form kn.
Clearly both categories encode essentially the same mathematics, in some sense, but they
are not isomorphic: one has a countable set of objects, while the other has an uncount-
able set of objects. Thus, we need a more refined way of saying that two categories are
“essentially the same.”

1.3.4 Definition Two categories C,D are called equivalent if there are functors

F : C→ D, G : D→ C

and natural isomorphisms
FG ' idD, GF ' idC.

For instance, the category of all vector spaces of the form kn is equivalent to the category
of all finite-dimensional vector spaces. One functor is the inclusion from vector spaces of
the form kn; the other functor maps a finite-dimensional vector space V to kdimV . Defining
the second functor properly is, however, a little more subtle. The next criterion will be
useful.

1.3.5 Definition A covariant functor F : C→ D is called fully faithful if for each pair of
objects X,Y ∈ C the map F : MorC(X,Y ) → MorD(FX,FY ) is a bijection. The functor
F is called essentially surjective if every object of D is isomorphic to an object of the form
FX for some object X of C.
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1.3.6 Example So, for instance, the inclusion of a full subcategory is fully faithful (by
definition). The forgetful functor from groups to sets is not fully faithful, because not all
functions between groups are automatically homomorphisms.

1.3.7 Theorem A functor F : C→ D between categories C and D induces an equivalence
of categories if and only if it is fully faithful and essentially surjective.

Proof. Let us first show that the condition is sufficient, and assume that F is fully faithful
and essentially surjective. By essentially surjectivity we can then fix for any Y ∈ Ob(D)
some XY ∈ Ob(C) and an isomorphism τY : Y → F (X). The fact that F is fully faithful
means that for any g ∈ MorD(Y1, Y2), there exists a unique fg ∈ MorC(XY1 , XY2) satisfying
F (fg) = τY2 ◦ g ◦ τ−1

Y1
. So define G : D→ C by G(Y ) = XY and G(g) = fg. To verify that

G is a functor, first note that on an identity morphism we have F (idXY ) = τY ◦ idY ◦ τ−1
Y

so it must be that G(idY ) = idXY . Next consider the composition of morphisms: Y1
g1−→

Y2
g2−→ Y3. Since F (fg2 ◦ fg1) = F (fg2) ◦ F (fg1) = (τY3 ◦ g2 ◦ τ−1

Y2
) ◦ (τY2 ◦ g1 ◦ τ−1

Y1
) =

τY3 ◦ (g2 ◦ g1) ◦ τ−1
Y1

= F (fg2◦g1) we have that G(g2 ◦ g1) = G(g2) ◦ G(g1) implying G is
indeed a functor.

Now take a morphism Y1
g−→ Y2 in order to check commutativity of the diagram in D

from Definition 1. Using the τY ’s that are already defined makes commutativity clear;
the bottom of the diagram can be expanded by recalling that G(g) is defined so that
(F ◦G)(g) = τY2 ◦ g ◦ τ−1

Y1
.

Y1 Y2

(F ◦G)(Y1) Y1 Y2 (F ◦G)(Y2)

g

id
Y1

τ
Y1

τ
Y2

τ−1
Y1

(F◦G)(g)

g τ
Y2

For commutativity of the diagram in C, we must first define ηX ’s. For X ∈ Ob(C) we
already have an isomorphism τF (X) : F (X)→ (F ◦G ◦F )(X). Since F is fully faithful, we
may take ηX ∈ MorC(X, (G ◦ F )(X)) to be the morphism satisfying F (ηX) = τF (X). Note

that taking η−1
X satisfying F (η−1

X ) = τ−1
F (X) gives η−1

X ◦ ηX = idX and ηX ◦ η−1
X = id(G◦F )(X)

implying ηX is an isomorphism. So take some morphism X1
f−→ X2 and apply F to the

diagram in C from Definition 1. Again to make commutativity clear the bottom is expanded
by recalling that (G ◦ F )(f) is defined so that (F ◦ G ◦ F )(f) = τF (X2) ◦ F (g) ◦ τ−1

F (X1) =
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F (ηX2) ◦ F (g) ◦ F (ηX1)−1.

F (X1) F (X2)

(F ◦G ◦ F )(X1) F (X1) F (X2) (F ◦G ◦ F )(X2)

F (f)

id
F (X1)

F (η
X1

) F (η
X2

)

F (η
X1

)−1

(F◦G◦F )(f)

F (f) F (η
X2

)

But F is faithful, so F ((G ◦ F )(f) ◦ ηX1) = F (ηX2 ◦ f) implies (G ◦ F )(f) ◦ ηX1 = ηX2 ◦ f
as desired.

Next we show the condition to be necessary. So suppose that F induces an equivalence
of categories and let G be its quasi-inverse. For any Y ∈ Ob(D) the isomorphism τY :
Y → (F ◦ G)(Y ) shows that F is essentially surjective. To see that F is faithful suppose
F (f1) = F (f2) for some f1, f2 ∈ MorC(X1, X2). Then commutativity of the diagram in
C from Definition 1 gives f1 = η−1

X2
◦ (G ◦ F )(f1) ◦ ηX1 = η−1

X2
◦ (G ◦ F )(f2) ◦ ηX1 = f2.

Note here that an analogous argument shows that G is faithful as well. Finally, take some
X1, X2 ∈ Ob(C) and g ∈ MorD(F (X1), F (X2)). Set f = η−1

X2
◦ G(g) ◦ ηX1 . Using the

diagram in C from Definition 1 again, we see that (G ◦F )(f) = ηX2 ◦ f ◦ η−1
X1

which is G(g)
by definition of f . Since G is faithful, it must be that F (f) = g implying F is full and
completing the proof.

1.3.8 Remark In the proof of the preceding theorem a strong version of the axiom of
choice has been assumed. That is, we have assumed that for every class of nonempty sets
there is choice function C on this class satisfying C(x) ∈ x for each set x. This axiom
is an extension of the Neumann-Bernays-Godel (NGB) axioms which, unlike the Zermelo-
Fraenkel (ZF) axioms, make a distinction between a set and a proper class. Just as the
consistency of (ZF) is independent of the truth or falsity of the axiom of choice for sets,
the consistency of (NGB) is independent of the truth or falsity of the strong axiom of
choice. For our purposes the axiom was required in order to simultaneously select objects
and morphisms in one category corresponding to those in another category; the collections
of eligible objects and morphisms may be proper classes.

1.4. Various universal constructions

Now that we have introduced the idea of a category and showed that a functor takes
isomorphisms to isomorphisms, we shall take various steps to characterize objects in terms
of maps (the most complete of which is the Yoneda lemma, ??). In general category theory,
this is generally all we can do, since this is all the data we are given. We shall describe
objects satisfying certain “universal properties” here.

As motivation, we first discuss the concept of the “product” in terms of a universal prop-
erty.
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Products

Recall that if we have two sets X and Y , the product X×Y is the set of all elements of the
form (x, y) where x ∈ X and y ∈ Y . The product is also equipped with natural projections
p1 : X × Y → X and p2 : X × Y → Y that take (x, y) to x and y respectively. Thus any
element of X × Y is uniquely determined by where they project to on X and Y . In fact,
this is the case more generally; if we have an index set I and a product X =

∏
i∈I Xi, then

an element x ∈ X determined uniquely by where where the projections pi(x) land in Xi.

To get into the categorical spirit, we should speak not of elements but of maps to X. Here
is the general observation: if we have any other set S with maps fi : S → Xi then there is
a unique map S → X =

∏
i∈I Xi given by sending s ∈ S to the element {fi(s)}i∈I . This

leads to the following characterization of a product using only “mapping properties.”

1.4.1 Definition Let {Xi}i∈I be a collection of objects in some category C. Then an
object P ∈ C with projections pi : P → Xi is said to be the product

∏
i∈I Xi if the following

“universal property” holds: let S be any other object in C with maps fi : S → Xi. Then
there is a unique morphism f : S → P such that pif = fi.

In other words, to map into X is the same as mapping into all the {Xi} at once. We have
thus given a precise description of how to map into X. Note that, however, the product
need not exist! If it does, however, we can express the above formalism by the following
natural isomorphism of contravariant functors

Mor(·,
∏
I

Xi) '
∏
I

Mor(·, Xi).

This is precisely the meaning of the last part of the definition. Note that this observation
shows that products in the category of sets are really fundamental to the idea of products
in any category.

1.4.2 Example One of the benefits of this construction is that an actual category is not
specified; thus when we take C to be Ens, we recover the cartesian product notion of sets,
but if we take C to be Grp, we achieve the regular notion of the product of groups (the
reader is invited to check these statements).

The categorical product is not unique, but it is as close to being so as possible.

1.4.3 Proposition (Uniqueness of products) Any two products of the collection {Xi}
in C are isomorphic by a unique isomorphism commuting with the projections.

This is a special case of a general “abstract nonsense” type result that we shall see many
more of in the sequel. The precise statement is the following: let X be a product of the
{Xi} with projections pi : X → Xi, and let Y be a product of them too, with projections
qi : Y → Xi. Then the claim is that there is a unique isomorphism

f : X → Y
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such that the diagrams below commute for each i ∈ I:

(1.4.3.1) X
pi

!!

f // Y
qi

~~
Xi.

Proof. This is a “trivial” result, and is part of a general fact that objects with the same
universal property are always canonically isomorphic. Indeed, note that the projections
pi : X → Xi and the fact that mapping into Y is the same as mapping into all the Xi gives
a unique map f : X → Y making the diagrams (1.4.3.1) commute. The same reasoning
(applied to the qi : Y → Xi) gives a map g : Y → X making the diagrams

(1.4.3.2) Y
qi

  

g // X
pi

~~
Xi

commute. By piecing the two diagrams together, it follows that the composite g ◦ f makes
the diagram

(1.4.3.3) X
pi

  

g◦f // X
pi

~~
Xi

commute. But the identity idX : X → X also would make (1.4.3.3) commute, and the
uniqueness assertion in the definition of the product shows that g ◦ f = idX . Similarly,
f ◦ g = idY . We are done.

1.4.4 Remark If we reverse the arrows in the above construction, the universal property
obtained (known as the “coproduct”) characterizes disjoint unions in the category of sets
and free products in the category of groups. That is, to map out of a coproduct of objects
(Xi)i∈I is the same as mapping out of each of these. We shall later study this construction
more generally.

1.4.5 Example Let P be a poset, and make P into a category as in Example 1.1.9. Fix
p, q ∈ P . The product of p, q then is the greatest lower bound of {p, q} (if it exists). This
claim holds more generally for arbitrary subsets of P . In particular, consider the poset of
subsets of a given set S. Then the product in this category corresponds to the intersection
of subsets.

We shall, in this section, investigate this notion of “universality” more thoroughly.
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Initial and terminal objects

We now introduce another example of universality, which is simpler but more abstract than
the products introduced in the previous section.

1.4.6 Definition Let C be a category. An initial object in C is an object X ∈ C with the
property that MorC(X,Y ) has one element for all Y ∈ C.

So there is a unique map out of X into each Y ∈ C. Note that this idea is faithful to the
categorical spirit of describing objects in terms of their mapping properties. Initial objects
are very easy to map out of.

1.4.7 Example If C is Ens, then the empty set ∅ is an initial object. There is a unique
map from the empty set into any other set; one has to make no decisions about where
elements are to map when constructing a map ∅ → X.

1.4.8 Example In the category Grp of groups, the group consisting of one element is an
initial object.

Note that the initial object in Grp is not that in Ens. This should not be too surprising,
because ∅ cannot be a group.

1.4.9 Example Let P be a poset, and make it into a category as in ??. Then it is easy
to see that an initial object of P is the smallest object in P (if it exists). Note that this is
equivalently the product of all the objects in P . In general, the initial object of a category
is not the product of all objects in C (this does not even make sense for a large category).

There is a dual notion, called a terminal object, where every object can map into it in
precisely one way.

1.4.10 Definition A terminal object in a category C is an object Y ∈ C such that
MorC(X,Y ) = ∗ for each X ∈ C.

Note that an initial object in C is the same as a terminal object in Cop, and vice versa. As
a result, it suffices to prove results about initial objects, and the corresponding results for
terminal objects will follow formally. But there is a fundamental difference between initial
and terminal objects. Initial objects are characterized by how one maps out of them, while
terminal objects are characterized by how one maps into them.

1.4.11 Example The one point set is a terminal object in Ens.

The important thing about the next “theorems” is the conceptual framework.

1.4.12 Proposition (Uniqueness of the initial or terminal object) Any two initial
(resp. terminal) objects in C are isomorphic by a unique isomorphism.
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Proof. The proof is easy. Assume that Y, Y ′ are both initial or both terminal objects. Then
Mor(Y, Y ′) and Mor(Y ′, Y ) are one-point sets. So there are unique maps f : Y → Y ′,
g : Y ′ → Y , whose composites must be the identities: we know that Mor(Y, Y ) and
Mor(Y ′, Y ′) are one-point sets, so the composites have no other choice to be the identities.
This means that the maps f : Y → Y ′ and g : Y ′ → Y are isomorphisms.

There is a philosophical point to be made here. We have characterized an object uniquely in
terms of mapping properties. We have characterized it uniquely up to unique isomorphism,
which is really the best one can do in mathematics. Two sets are not generally the “same,”
but they may be isomorphic up to unique isomorphism. They are different, but the sets
are isomorphic up to unique isomorphism. Note also that the argument was essentially
similar to that of Proposition 1.4.3.

In fact, we could interpret Proposition 1.4.3 as a special case of Proposition 1.4.12. If C
is a category and {Xi}i∈I is a family of objects in C, then we can define a category D as
follows. An object of D is the data of an object Y ∈ C and morphisms fi : Y → Xi for
all i ∈ I. A morphism between objects (Y, {fi : Y → Xi}) and (Z, {gi : Z → Xi}) is a map
Y → Z making the obvious diagrams commute. Then a product

∏
Xi in C is the same

thing as a terminal object in D, as one easily checks from the definitions.

Pushouts and pullbacks

Like always in this chapter let C be a category.

Now we are going to talk about more examples of universal constructions, which can all be
phrased via initial or terminal objects in some category. This, therefore, is the proof for
the uniqueness up to unique isomorphism of everything we will do in this section. Later
we will present these in more generality.

Suppose we have objects A,B,C,X of C.

1.4.13 Definition A commutative square

A

��

// B

��
C // X

.

is called cocartesian or a pushout square (and X is called the pushout) if it satisfies the
following universal property:

• Given a commutative diagram
A //

��

B

��
C // Y

there is a unique map X → Y making the following diagram commute:
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A B

C X

Y .

Sometimes pushouts are also called fibered coproducts. We shall also write X = C tA B.

In other words, to map out ofX = CtAB into some object Y is to give mapsB → Y,C → Y
whose restrictions to A are the same.

The next few examples will rely on notions to be introduced later.

1.4.14 Example The following is a pushout square in the category of abelian groups:

Z/2 //

��

Z/4

��
Z/6 // Z/12

In the category of groups, the pushout is actually SL2(Z), though we do not prove it.
The point is that the property of a square’s being a pushout is actually dependent on the
category.

In general, to construct a pushout of groups C tA B, one constructs the direct sum C ⊕B
and quotients by the subgroup generated by (a, a) (where a ∈ A is identified with its image
in C ⊕B). We shall discuss this later, more thoroughly, for modules over a ring.

1.4.15 Example Let R be a commutative ring and let S and Q be two commutative
R-algebras. In other words, suppose we have two maps of rings s : R→ S and q : R→ Q.
Then we can fit this information together into a pushout square:

R //

��

S

��
Q // X

It turns out that the pushout in this case is the tensor product of algebras S ⊗R Q (see
Section 13.3 for the construction). This is particularly important in algebraic geometry as
the dual construction will give the correct notion of “products” in the category of “schemes”
over a field.

1.4.16 Proposition Let C be any category. If the pushout of the diagram

A

��

// B

C

exists, it is unique up to unique isomorphism.
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Proof. We can prove this in two ways. One is to suppose that there were two pushout
squares:

A

��

// B

��
C // X

A

��

// B

��
C // X ′

Then there are unique maps f : X → X ′, g : X ′ → X from the universal property. In
detail, these maps fit into commutative diagrams

A

��

// B

��

��

C //

''

X
f

  
X ′

A

��

// B

��

��

C //

((

X ′

g

  
X

Then g ◦ f and f ◦ g are the identities of X,X ′ again by uniqueness of the map in the
definition of the pushout.

Alternatively, we can phrase pushouts in terms of initial objects. We could consider the
category of all diagrams as above,

A

��

// B

��
C // D

,

where A→ B,A→ C are fixed and D varies. The morphisms in this category of diagrams
consist of commutative diagrams. Then the initial object in this category is the pushout,
as one easily checks.

Often when studying categorical constructions, one can create a kind of “dual” construction
by reversing the direction of the arrows. This is exactly the relationship between the
pushout construction and the pullback construction to be described below. So suppose we
have two morphisms A→ C and B → C, forming a diagram

B

��
A // C.

1.4.17 Definition The pullback or fibered product of the above diagram is an object P
with two morphisms P → B and P → C such that the following diagram commutes:

P

��

// B

��
A // C
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Moreover, the object P is required to be universal in the following sense: given any P ′ and
maps P ′ → A and P ′ → B making the square commute, there is a unique map P ′ → P
making the following diagram commute:

P ′

  ''

��

P

��

// B

��
A // C

We shall also write P = B ×C A.

1.4.18 Example In the category Ens of sets, if we have sets A,B,C with maps f : A →
C, g : B → C, then the fibered product A×C B consists of pairs (a, b) ∈ A× B such that
f(a) = g(b).

1.4.19 Example (Requires prerequisites not developed yet) The next example may
be omitted without loss of continuity.

As said above, the fact that the tensor product of algebras is a pushout in the category
of commutative R-algebras allows for the correct notion of the “product” of schemes. We
now elaborate on this example: naively one would think that we could pick the underlying
space of the product scheme to just be the topological product of two Zariski topologies.
However, it is an easy exercise to check that the product of two Zariski topologies in general
is not Zariski! This motivates the need for a different concept.

Suppose we have a field k and two k-algebras A and B and let X = Spec(A)and Y =
Spec(B) be the affine k-schemes corresponding to A and B. Consider the following pullback
diagram:

X ×Spec(k) Y

��

// X

��
Y // Spec(k)

Now, since Spec is a contravariant functor, the arrows in this pullback diagram have been
flipped; so in fact, X ×Spec(k) Y is actually Spec(A⊗k B). This construction is motivated
by the following example: let A = k[x] and B = k[y]. Then Spec(A) and Spec(B) are
both affine lines Aid

k so we want a suitable notion of product that makes the product of
Spec(A) and Spec(B) the affine plane. The pullback construction is the correct one since
Spec(A)×Spec(k) Spec(B) = Spec(A⊗k B) = Spec(k[x, y]) = A2

k.

Colimits

We now want to generalize the pushout. Instead of a shape with A,B,C, we do something
more general. Start with a small category I: recall that smallness means that the objects
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of I form a set. I is to be called the indexing category. One is supposed to picture is that
I is something like the category

∗

��

// ∗

∗
or the category

∗⇒ ∗.

We will formulate the notion of a colimit which will specialize to the pushout when I is
the first case.

So we will look at functors
F : I → C,

which in the case of the three-element category, will just correspond to diagrams

A

��

// B

C

.

We will call a cone on F (this is an ambiguous term) an object X ∈ C equipped with maps
Fi → X,∀i ∈ I such that for all maps i→ i′ ∈ I, the diagram below commutes:

Fi

��

// X

Fi′

>> .

An example would be a cone on the three-element category above: then this is just a
commutative diagram

A //

��

B

��
C // D

.

1.4.20 Definition The colimit of the diagram F : I → C, written as colimF or colimI F
or lim−→I

F , if it exists, is a cone F → X with the property that if F → Y is any other cone,
then there is a unique map X → Y making the diagram

F

  

// X

��
Y

commute. (This means that the corresponding diagram with Fi replacing F commutes for
each i ∈ I.)
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We could form a category D where the objects are the cones F → X, and the morphisms
from F → X and F → Y are the maps X → Y that make all the obvious diagrams
commute. In this case, it is easy to see that a colimit of the diagram is just an initial
object in D.

In any case, we see:

1.4.21 Proposition colimF , if it exists, is unique up to unique isomorphism.

Let us go through some examples. We already looked at pushouts.

1.4.22 Example Consider the category I visualized as

∗, ∗, ∗, ∗.

So I consists of four objects with no non-identity morphisms. A functor F : I → Ens is
just a list of four sets A,B,C,D. The colimit is just the disjoint union A t B t C t D.
This is the universal property of the disjoint union. To map out of the disjoint union is
the same thing as mapping out of each piece.

1.4.23 Example Suppose we had the same category I but the functor F took values in
the category of abelian groups. Then F corresponds, again, to a list of four abelian groups.
The colimit is the direct sum. Again, the direct sum is characterized by the same universal
property.

1.4.24 Example Suppose we had the same I (∗, ∗, ∗, ∗) the functor took its value in the
category of groups. Then the colimit is the free product of the four groups.

1.4.25 Example Suppose we had the same I and the category C was of commutative
rings with unit. Then the colimit is the tensor product.

So the idea of a colimit unifies a whole bunch of constructions. Now let us take a different
example.

1.4.26 Example Take
I = ∗⇒ ∗.

So a functor I → Ens is a diagram
A⇒ B.

Call the two maps f, g : A → B. To get the colimit, we take B and mod out by the
equivalence relation generated by f(a) ∼ g(a). To hom out of this is the same thing as
homming out of B such that the pullbacks to A are the same.

This is the relation generated as above, not just as above. It can get tricky.

1.4.27 Definition When I is just a bunch of points ∗, ∗, ∗, . . . with no non-identity mor-
phisms, then the colimit over I is called the coproduct.
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We use the coproduct to mean things like direct sums, disjoint unions, and tensor products.
If {Ai, i ∈ I} is a collection of objects in some category, then we find the universal property
of the coproduct can be stated succinctly:

MorC(
⊔
I

Ai, B) =
∏

MorC(Ai, B).

1.4.28 Definition When I is ∗⇒ ∗, the colimit is called the coequalizer.

1.4.29 Theorem If C has all coproducts and coequalizers, then it has all colimits.

Proof. Let F : I → C be a functor, where I is a small category. We need to obtain an
object X with morphisms

Fi→ X, i ∈ I

such that for each f : i→ i′, the diagram below commutes:

Fi

��

// Fi′

}}
X

and such that X is universal among such diagrams.

To give such a diagram, however, is equivalent to giving a collection of maps

Fi→ X

that satisfy some conditions. So X should be thought of as a quotient of the coproduct
tiFi. Let us consider the coproduct ti∈I,fFi, where f ranges over all morphisms in the
category I that start from i. We construct two maps

tfFi⇒ tfFi,

whose coequalizer will be that of F . The first map is the identity. The second map sends
a factor

Limits

As in the example with pullbacks and pushouts and products and coproducts, one can
define a limit by using the exact same universal property above just with all the arrows
reversed.

1.4.30 Example The product is an example of a limit where the indexing category is a
small category I with no morphisms other than the identity. This example shows the power
of universal constructions; by looking at colimits and limits, a whole variety of seemingly
unrelated mathematical constructions are shown to be in the same spirit.
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Filtered colimits

Filtered colimits are colimits over special indexing categories I which look like totally
ordered sets. These have several convenient properties as compared to general colimits.
For instance, in the category of modules over a ring (to be studied in ??), we shall see that
filtered colimits actually preserve injections and surjections. In fact, they are exact. This
is not true in more general categories which are similarly structured.

1.4.31 Definition An indexing category is filtered if the following hold:

1. Given i0, i1 ∈ I, there is a third object i ∈ I such that both i0, i1 map into i. So
there is a diagram

i0

��
i

i1

@@

.

2. Given any two maps i0 ⇒ i1, there exists i and i1 → i such that the two maps i0 ⇒ i
are equal: intuitively, any two ways of pushing an object into another can be made
into the same eventually.

1.4.32 Example If I is the category

∗ → ∗ → ∗ → . . . ,

i.e. the category generated by the poset Z≥0, then that is filtered.

1.4.33 Example If G is a torsion-free abelian group, the category I of finitely generated
subgroups of G and inclusion maps is filtered. We don’t actually need the lack of torsion.

1.4.34 Definition Colimits over a filtered category are called filtered colimits.

1.4.35 Example Any torsion-free abelian group is the filtered colimit of its finitely gen-
erated subgroups, which are free abelian groups.

This gives a simple approach for showing that a torsion-free abelian group is flat.

1.4.36 Proposition If I is filtered2 and C = Ens,Ab,Grp, etc., and F : I → C is a
functor, then colimI F exists and is given by the disjoint union of Fi, i ∈ I modulo the
relation x ∈ Fi is equivalent to x′ ∈ Fi′ if x maps to x′ under Fi → Fi′. This is already an
equivalence relation.

The fact that the relation given above is transitive uses the filtering of the indexing set.
Otherwise, we would need to use the relation generated by it.

2Some people say filtering.
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1.4.37 Example Take Q. This is the filtered colimit of the free submodules Z(1/n).

Alternatively, choose a sequence of numbers m1,m2, . . . , such that for all p, n, we have
pn | mi for i� 0. Then we have a sequence of maps

Z m1→ Z m2→ Z→ . . . .

The colimit of this is Q. There is a quick way of seeing this, which is left to the reader.

When we have a functor F : I → Ens,Grp, R − Mod taking values in a “nice” category
(e.g. the category of sets, (left-) modules over a ring R, etc.), one can construct the colimit
by taking the union of the Fi, i ∈ I and quotienting by the equivalence relation x ∈ Fi ∼
x′ ∈ Fi′ if f : i → i′ sends x into x′. This is already an equivalence relation, as one can
check.

Another way of saying this is that we have the disjoint union of the Fi modulo the relation
that a ∈ Fi and b ∈ Fi′ are equivalent if and only if there is a later i′′ with maps i →
i′′, i′ → i′′ such that a, b both map to the same thing in Fi′′ .

One of the key properties of filtered colimits is that, in “nice” categories they commute
with finite limits.

1.4.38 Proposition In the category of sets, filtered colimits and finite limits commute
with each other.

The reason this result is so important is that, as we shall see, it will imply that in categories
such as the category of R-modules, filtered colimits preserve exactness.

Proof. Let us show that filtered colimits commute with (finite) products in the category of
sets. The case of an equalizer is similar, and finite limits can be generated from products
and equalizers.

So let I be a filtered category, and {Ai}i∈I , {Bi}i∈I be functors from I → Ens. We want
to show that

lim−→
I

(Ai ×Bi) = lim−→
I

Ai × lim−→
I

Bi.

To do this, note first that there is a map in the direction → because of the natural maps
lim−→I

(Ai × Bi) → lim−→I
Ai and lim−→I

(Ai × Bi) → lim−→I
Bi. We want to show that this is an

isomorphism.

Now we can write the left side as the disjoint union
⊔
I(Ai × Bi) modulo the equivalence

relation that (ai, bi) is related to (aj , bj) if there exist morphisms i → k, j → k sending
(ai, bi), (aj , bj) to the same object in Ak × Bk. For the left side, we have to work with
pairs: that is, an element of lim−→I

Ai × lim−→I
Bi consists of a pair (ai1 , bi2) with two pairs

(ai1 , bi2), (aj1 , bj2) equivalent if there exist morphisms i1, j1 → k1 and i2, j2 → k2 such that
both have the same image in Ak1 × Ak2 . It is easy to see that these amount to the same
thing, because of the filtering condition: we can always modify an element of Ai × Bj to
some Ak ×Bk for k receiving maps from i, j.
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1.4.39 Remark Let A be an abelian group, e : A → A an idempotent operator, i.e. one
such that e2 = e. Show that eA can be obtained as the filtered colimit of

A
e→ A

e→ A . . . .

The initial object theorem

We now prove a fairly nontrivial result, due to Freyd. This gives a sufficient condition
for the existence of initial objects. We shall use it in proving the adjoint functor theorem
below.

Let C be a category. Then we recall that A ∈ C if for each X ∈ C, there is a unique A→ X.
Let us consider the weaker condition that for each X ∈ C, there exists a map A→ X.

1.4.40 Definition Suppose C has equalizers. If A ∈ C is such that MorC(A,X) 6= ∅ for
each X ∈ C, then X is called weakly initial.

We now want to get an initial object from a weakly initial object. To do this, note first
that if A is weakly initial and B is any object with a morphism B → A, then B is weakly
initial too. So we are going to take our initial object to be a very small subobject of A.
It is going to be so small as to guarantee the uniqueness condition of an initial object. To
make it small, we equalize all endomorphisms.

1.4.41 Proposition If A is a weakly initial object in C, then the equalizer of all endo-
morphisms A→ A is initial for C.

Proof. Let A′ be this equalizer; it is endowed with a morphism A′ → A. Then let us recall
what this means. For any two endomorphisms A ⇒ A, the two pullbacks A′ ⇒ A are
equal. Moreover, if B → A is a morphism that has this property, then B factors uniquely
through A′.

Now A′ → A is a morphism, so by the remarks above, A′ is weakly initial: to each X ∈ C,
there exists a morphism A′ → X. However, we need to show that it is unique.

So suppose given two maps f, g : A′ ⇒ X. We are going to show that they are equal. If
not, consider their equalizer O. Then we have a morphism O → A′ such that the post-
compositions with f, g are equal. But by weak initialness, there is a map A→ O; thus we
get a composite

A→ O → A′.

We claim that this is a section of the embedding A′ → A. This will prove the result.
Indeed, we will have constructed a section A→ A′, and since it factors through O, the two
maps

A→ O → A′ ⇒ X

are equal. Thus, composing each of these with the inclusion A′ → A shows that f, g were
equal in the first place.

Thus we are reduced to proving:
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1.4.42 Lemma Let A be an object of a category C. Let A′ be the equalizer of all endo-
morphisms of A. Then any morphism A→ A′ is a section of the inclusion A′ → A.

Proof. Consider the canonical inclusion i : A′ → A. We are given some map s : A → A′;
we must show that si = idA′ . Indeed, consider the composition

A′
i→ A

s→ A′
i→ A.

Now i equalizes endomorphisms of A; in particular, this composition is the same as

A′
i→ A

id→ A;

that is, it equals i. So the map si : A′ → A has the property that isi = i as maps A′ → A.
But i being a monomorphism, it follows that si = idA′ .

1.4.43 Theorem (Freyd) Let C be a category admitting all small limits.3 Then C has
an initial object if and only if the following solution set condition holds: there is a set
{Xi, i ∈ I} of objects in C such that any X ∈ C can be mapped into by one of these.

The idea is that the family {Xi} is somehow weakly universal together.

Proof. If C has an initial object, we may just consider that as the family {Xi}: we can
hom out (uniquely!) from a universal object into anything, or in other words a universal
object is weakly universal.

Suppose we have a “weakly universal family” {Xi}. Then the product
∏
Xi is weakly

universal. Indeed, if X ∈ C, choose some i′ and a morphism Xi′ → X by the hypothesis.
Then this map composed with the projection from the product gives a map

∏
Xi → Xi′ →

X. Proposition 1.4.41 now implies that C has an initial object.

Completeness and cocompleteness

1.4.44 Definition A category C is said to be complete if for every functor F : I → C
where I is a small category, the limit limF exists (i.e. C has all small limits). If all colimits
exist, then C is said to be cocomplete.

If a category is complete, various nice properties hold.

1.4.45 Proposition If C is a complete category, the following conditions are true:

1. all (finite) products exist

2. all pullbacks exist

3. there is a terminal object

3We shall later call such a category complete.
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Proof. The proof of the first two properties is trivial since they can all be expressed as
limits; for the proof of the existence of a terminal object, consider the empty diagram
F : ∅ → C. Then the terminal object is just limF .

Of course, if one dualizes everything we get a theorem about cocomplete categories which
is proved in essentially the same manner. More is true however; it turns out that finite
(co)completeness are equivalent to the properties above if one requires the finiteness con-
dition for the existence of (co)products.

Continuous and cocontinuous functors

1.5. Yoneda’s lemma

add this section is barely fleshed out

Let C be a category. In general, we have said that there is no way to study an object in
a category other than by considering maps into and out of it. We will see that essentially
everything about X ∈ C can be recovered from these hom-sets. We will thus get an
embedding of C into a category of functors.

The functors hX

We now use the structure of a category to construct hom functors.

1.5.1 Definition Let X ∈ C. We define the contravariant functor hX : C→ Ens via

hX(Y ) = MorC(Y,X).

This is, indeed, a functor. If g : Y → Y ′, then precomposition gives a map of sets

hX(Y ′)→ hX(Y ), f 7→ f ◦ g

which satisfies all the usual identities.

As a functor, hX encodes all the information about how one can map into X. It turns out
that one can basically recover X from hX , though.
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The Yoneda lemma

Let X
f→ X ′ be a morphism in C. Then for each Y ∈ C, composition gives a map

MorC(Y,X)→ MorC(Y,X ′).

It is easy to see that this induces a natural transformation

hX → hX′ .

Thus we get a map of sets

MorC(X,X ′)→ Mor(hX , hX′),

where hX , hX′ lie in the category of contravariant functors C → Ens. In other words, we
have defined a covariant functor

C→ Fun(Cop,Ens).

This is called the Yoneda embedding. The next result states that the embedding is fully
faithful.

1.5.2 Theorem (Yoneda’s lemma) If X,X ′ ∈ C, then the map MorC(X,X ′)→ Mor(hX , hX′)
is a bijection. That is, every natural transformation hX → hX′ arises in one and only one
way from a morphism X → X ′.

1.5.3 Theorem (Strong Yoneda lemma)

Representable functors

We use the same notation of the preceding secction for a category C and X ∈ C, we let hX
be the contravariant functor C→ Ens given by Y 7→ MorC(Y,X).

1.5.4 Definition A contravariant functor F : C → Ens is representable if it is naturally
isomorphic to some hX .

The point of a representable functor is that it can be realized as maps into a specific object.
In fact, let us look at a specific feature of the functor hX . Consider the object α ∈ hX(X)
that corresponds to the identity. Then any morphism

Y → X

factors uniquely as
Y → X

α→ X

(this is completely trivial!) so that any element of hX(Y ) is a f∗(α) for precisely one
f : Y → X.
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1.5.5 Definition Let F : C→ Ens be a contravariant functor. A universal object for C is
a pair (X,α) where X ∈ C, α ∈ F (X) such that the following condition holds: if Y is any
object and β ∈ F (Y ), then there is a unique f : Y → X such that α pulls back to β under
f .

In other words, β = f∗(α).

So a functor has a universal object if and only if it is representable. Indeed, we just say
that the identity X → X is universal for hX , and conversely if F has a universal object
(X,α), then F is naturally isomorphic to hX (the isomorphism hX ' F being given by
pulling back α appropriately).

The article ? by Vistoli contains a good introduction to and several examples of this theory.
Here is one of them:

1.5.6 Example Consider the contravariant functor F : Ens → Ens that sends any set S
to its power set P(S) (i.e. its collection of subsets). This is a contravariant functor: if
f : S → T , there is a morphism

P(T )→ P(S), T ′ 7→ f−1(T ′).

This functor is representable. Indeed, the universal object can be taken as the pair

({0, 1} , {1}).

To understand this, note that a subset S; of S determines its characteristic function χS′ :
S → {0, 1} that takes the value 1 on S and 0 elsewhere. If we consider χS′ as a morphism
S → {0, 1}, we see that

S′ = χ−1
S′ ({1}).

Moreover, the set of subsets is in natural bijection with the set of characteristic functions,
which in turn are precisely all the maps S → {0, 1}. From this the assertion is clear.

We shall meet some elementary criteria for the representability of contravariant functors in
the next subsec. For now, we note4 that in algebraic topology, one often works with the ho-
motopy category of pointed CW complexes (where morphisms are pointed continuous maps
modulo homotopy), any contravariant functor that satisfies two relatively mild conditions
(a Mayer-Vietoris condition and a condition on coproducts), is automatically representable
by a theorem of Brown. In particular, this implies that the singular cohomology functors
Hn(−, G) (with coefficients in some group G) are representable; the representing objects
are the so-called Eilenberg-MacLane spaces K(G,n). See Hatcher (2002).

Limits as representable functors

add

4The reader unfamiliar with algebraic topology may omit these remarks.
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Criteria for representability

Let C be a category. We saw in the previous subsec that a representable functor must send
colimits to limits. We shall now see that there is a converse under certain set-theoretic
conditions. For simplicity, we start by stating the result for corepresentable functors.

1.5.7 Theorem ((Co)representability theorem) Let C be a complete category, and let
F : C → Ens be a covariant functor. Suppose F preserves limits and satisfies the solution
set condition: there is a set of objects {Yα} such that, for any X ∈ C and x ∈ F (X), there
is a morphism

Yα → X

carrying some element of F (Yα) onto x.

Then F is corepresentable.

Proof. To F , we associate the following category D. An object of D is a pair (x,X) where
x ∈ F (X) and X ∈ C. A morphism between (x,X) and (y, Y ) is a map

f : X → Y

that sends x into y (via F (f) : F (X)→ F (Y )). It is easy to see that F is corepresentable
if and only if there is an initla object in this category; this initial object is the “universal
object.”

We shall apply the initial object theorem, Theorem 1.4.43. Let us first verify that D is
complete; this follows because C is and F preserves limits. So, for instance, the product of
(x,X) and (y, Y ) is ((x, y), X×Y ); here (x, y) is the element of F (X)×F (Y ) = F (X×Y ).
The solution set condition states that there is a weakly initial family of objects, and the
initial object theorem now implies that there is an initial object.

1.6. Adjoint functors

According to MacLane, “Adjoint functors arise everywhere.” We shall see several examples
of adjoint functors in this book (such as Mor and the tensor product). The fact that a
functor has an adjoint often immediately implies useful properties about it (for instance,
that it commutes with either limits or colimits); this will lead, for instance, to conceptual
arguments behind the right-exactness of the tensor product later on.

Definition

Suppose C,D are categories, and let F : C→ D, G : D→ C be (covariant) functors.

1.6.1 Definition F,G are adjoint functors if there is a natural isomorphism

MorD(Fc, d) ' MorC(c,Gd)

whenever c ∈ C, d ∈ D. F is said to be the right adjoint, and G is the left adjoint.
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Here “natural” means that the two quantities are supposed to be considered as functors
Cop × D→ Ens.

1.6.2 Examples (a) There is a simple pair of adjoint functors between Ens and Ab. Here,
the first functor sends a set S to the free abelian group Z[S] = Z(S) (see Definition 11.6.1
for a discussion of free modules over arbitrary rings), while the second, U , is the “forgetful”
functor that sends an abelian group to its underlying set. Then Z[−] and U are adjoints.
That is, to give a group-homomorphism Z(S) → A for some abelian group A is the same
as giving a map of sets S → A. This is precisely the defining property of the free abelian
group.

(b) In fact, most “free” constructions are just left adjoints. For instance, recall the universal
property of the free group F (S) on a set S (see (Lang, 2002, I. §12)): to give a group-
homomorphism F (S)→ G for G any group is the same as choosing an image in G of each
s ∈ S. That is,

MorGrp(F (S), G) = MorEns(S,U(G)).

This states that the free functor S 7→ F (S) is left adjoint to the forgetful functor U from
Grp to Ens.

(c) The abelianization functor G 7→ Gab = G/[G,G] from Grp → Ab is left adjoint to
the inclusion Ab → Grp. That is, if G is a group and A an abelian group, there is a
natural correspondence between homomorphisms G → A and Gab → A. Note that Ab is
a subcategory of Grp such that the inclusion admits a left adjoint; in this situation, the
subcategory is called reflective.

Adjunctions

The fact that two functors are adjoint is encoded by a simple set of algebraic data between
them. To see this, suppose F : C → D, G : D → C are adjoint functors. For any object
c ∈ C, we know that

MorD(Fc, Fc) ' MorC(c,GFc),

so that the identity morphism Fc → Fc (which is natural in c!) corresponds to a map
c→ GFc that is natural in c, or equivalently a natural transformation

η : idC → GF.

Similarly, we get a natural transformation

ε : FG→ idD

where the map FGd → d corresponds to the identity Gd → Gd under the adjoint corre-
spondence. Here η is called the unit, and ε the counit.

These natural transformations η, ε are not simply arbitrary. We are, in fact, going to
show that they determine the isomorphism determine the isomorphism MorD(Fc, d) '
MorC(c,Gd). This will be a little bit of diagram-chasing.
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We know that the isomorphism MorD(Fc, d) ' MorC(c,Gd) is natural. In fact, this is the
key point. Let φ : Fc → d be any map. Then there is a morphism (c, Fc) → (c, d) in the
product category Cop×D; by naturality of the adjoint isomorphism, we get a commutative
square of sets

MorD(Fc, Fc)
adj //

φ∗
��

MorC(c,GFc)

G(φ)∗
��

MorD(Fc, d)
adj //MorC(c,Gd)

Here the mark adj indicates that the adjoint isomorphism is used. If we start with the
identity idFc and go down and right, we get the map c → Gd that corresponds under the
adjoint correspondence to Fc → d. However, if we go right and down, we get the natural
unit map η(c) : c→ GFc followed by G(φ).

Thus, we have a recipe for constructing a map c→ Gd given φ : Fc→ d:

1.6.3 Proposition (The unit and counit determines everything) Let (F,G) be a pair
of adjoint functors with unit and counit transformations η, ε.

Then given φ : Fc→ d, the adjoint map ψ : c→ Gd can be constructed simply as follows.
Namely, we start with the unit η(c) : c→ GFc and take

(1.6.3.1) ψ = G(φ) ◦ η(c) : c→ Gd

(here G(φ) : GFc→ Fd).

In the same way, if we are given ψ : c→ Gd and want to construct a map φ : Fc→ d, we
construct

(1.6.3.2) ε(d) ◦ F (ψ) : Fc→ FGd→ d.

In particular, we have seen that the unit and counit morphisms determine the adjoint
isomorphisms.

Since the adjoint isomorphisms MorD(Fc, d)→ MorC(c,Gd) and MorC(c,Gd)→ MorD(Fc, d)
are (by definition) inverse to each other, we can determine conditions on the units and
counits.

For instance, the natural transformation F ◦ η gives a natural transformation F ◦ η : F →
FGF , while the natural transformation ε ◦ F gives a natural transformation FGF → F .
(These are slightly different forms of composition!)

1.6.4 Lemma The composite natural transformation F → F given by (ε ◦ F ) ◦ (F ◦ η)
is the identity. Similarly, the composite natural transformation G → GFG → G given by
(G ◦ ε) ◦ (η ◦G) is the identity.

Proof. We prove the first assertion; the second is similar. Given φ : Fc→ d, we know that
we must get back to φ applying the two constructions above. The first step (going to a
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map ψ : c → Gd) is by (1.6.3.1) ψ = G(φ) ◦ η(c); the second step sends ψ to ε(d) ◦ F (ψ),
by (1.6.3.2). It follows that

φ = ε(d) ◦ F (G(φ) ◦ η(c)) = ε(d) ◦ F (G(φ)) ◦ F (η(c)).

Now suppose we take d = Fc and φ : Fc → Fc to be the identity. We find that F (G(φ))
is the identity FGFc→ FGFc, and consequently we find

idF (c) = ε(Fc) ◦ F (η(c)).

This proves the claim.

1.6.5 Definition Let F : C → D, G : D → C be covariant functors. An adjunction is the
data of two natural transformations

η : 1→ GF, ε : FG→ 1,

called the unit and counit, respectively, such that the composites (ε ◦ F ) ◦ (F ◦ ε) : F → F
and (G ◦ ε) ◦ (η ◦G) are the identity (that is, the identity natural transformations of F,G).

We have seen that a pair of adjoint functors gives rise to an adjunction. Conversely, an
adjunction between F,G ensures that F,G are adjoint, as one may check: one uses the
same formulas (1.6.3.1) and (1.6.3.2) to define the natural isomorphism.

For any set S, let F (S) be the free group on S. So, for instance, the fact that there is a
natural map of sets S → F (S), for any set S, and a natural map of groups F (G)→ G for
any group G, determines the adjunction between the free group functor from Ens to Grp,
and the forgetful functor Grp→ Ens.

As another example, we give a criterion for a functor in an adjunction to be fully faithful.

1.6.6 Proposition Let F,G be a pair of adjoint functors between categories C,D. Then
G is fully faithful if and only if the unit maps η : 1→ GF are isomorphisms.

Proof. We use the recipe (1.6.3.1). Namely, we have a map MorD(Fc, d) → MorC(c,Gd)
given by φ 7→ G(φ) ◦ η(c). This is an isomorphism, since we have an adjunction. As a
result, composition with η is an isomorphism of hom-sets if and only if φ 7→ G(φ) is an
isomorphism. From this the result is easy to deduce.

1.6.7 Example For instance, recall that the inclusion functor from Ab to Grp is fully
faithful (clear). This is a right adjoint to the abelianization functor G 7→ Gab. As a result,
we would expect the unit map of the adjunction to be an isomorphism, by Proposition 1.6.6.

The unit map sends an abelian group to its abelianization: this is obviously an isomorphism,
as abelianizing an abelian group does nothing.
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Adjoints and (co)limits

One very pleasant property of functors that are left (resp. right) adjoints is that they
preserve all colimits (resp. limits).

1.6.8 Proposition A left adjoint F : C→ D preserves colimits. A right adjoint G : D→ C
preserves limits.

As an example, the free functor from Ens to Ab is a left adjoint, so it preserves colimits.
For instance, it preserves coproducts. This corresponds to the fact that if A1, A2 are sets,
then Z[A1 tA2] is naturally isomorphic to Z[A1]⊕ Z[A2].

Proof. Indeed, this is mostly formal. Let F : C → D be a left adjoint functor, with right
adjoint G. Let f : I → C be a “diagram” where I is a small category. Suppose colimI f
exists as an object of C. The result states that colimI F ◦ f exists as an object of D
and can be computed as F (colimI f). To see this, we need to show that mapping out
of F (colimI f) is what we want—that is, mapping out of F (colimI f) into some d ∈ D—
amounts to giving compatible F (f(i))→ d for each i ∈ I. In other words, we need to show
that MorD(F (colimI f), d) = limI MorD(F (f(i)), d); this is precisely the defining property
of the colimit.

But we have

MorD(F (colim
I

f), d) = MorC(colim
I

f,Gd) = lim
I

MorC(fi,Gd) = lim
I

MorD(F (fi), d),

by using adjointness twice. This verifies the claim we wanted.

The idea is that one can easily map out of the value of a left adjoint functor, just as one
can map out of a colimit.

40



2. Number Systems

2.1. The natural numbers

Peano structures

2.1.1 Definition (Peano) A triple (P, 0, s) is called a Peano structure, if the following
axioms hold true:

(P1) 0 is an element of P .

(P2) s : P→ P is a mapping.

(P3) 0 is not in the image of s.

(P4) s is injective.

(P5) (Induction Axiom) Every inductive subset of P coincides with P, where by an inductive
subset of P one understands a set I ⊂ P having the following properties:

(I1) 0 is an element of I.

(I2) If n ∈ I, then s(n) ∈ I.

The element 0 is called zero or zero element of the Peano structure, the map s : P→ P the
successor map.

By Axiom (P3), 0 is not in the image of the successor map. But all other elements of the
Peano structure are, as our first result tells.

2.1.2 Proposition Let (P, 0, s) be a Peano structure. Then the image of s coincides with
the set P∗ := {n ∈ P | n 6= 0} of all non-zero elements, in signs s(P) = P∗.

Proof. Put I := {0} ∪ s(P). We show that I is an inductive set. By definition, 0 ∈ I.
Assume that n ∈ I. Then s(n) ∈ s(P) ⊂ I, so I is an inductive set indeed. By Axiom (P5),
I coincides with P, which entails the claim.

2.1.3 Definition If (P, 0, s) and (P′, 0′, s′) are two Peano structures, a morphism from
(P, 0, s) to (P′, 0′, s′) is a map f : P→ P′ with the following properties:

(P6) f(0) = 0′ ,

(P7) f ◦ s = s′ ◦ f .

One denotes such a morphism by f : (P, 0, s)→ (P′, 0′, s′).
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2.1.4 For each Peano structure (P, 0, s) the identity map idP is obviously a morphism from
(P, 0, s) to (P, 0, s). Moreover, if f : (P, 0, s) → (P′, 0′, s′) and g : (P′, 0′, s′) → (P′′, 0′′, s′′)
are two morphisms of systems of natural numbers, their composition as mappings g ◦ f
is a morphism from (P, 0, s) to (P′′, 0′′, s′′), because g ◦ f(0) = g(f(0)) = g(0′) = 0′′ and
g ◦ f ◦ s = g ◦ s′ ◦ f = s′′ ◦ g ◦ f . We denote by g ◦ f : (P, 0, s)→ (P′′, 0′′, s′′) the resulting
morphism and call it the composition of f : (P, 0, s) → (P′, 0′, s′) and g : (P′, 0′, s′) →
(P′′, 0′′, s′′).

2.1.5 Proposition The Peano structures as objects together with their morphisms and
the composition of morphisms form a category.

Proof. Since the composition of mappings is associative and the identity maps act as neutral
elements with respect to composition of mappings, the claim follows.

2.1.6 Theorem (Dedekind’s Iteration Theorem, (Dedekind, 1893, Satz 126))
Assume that (P, 0, s) is a Peano structure. Let X be a set, x0 a distinguished element of
X, and t : X → X a function. Then there exists a unique function f : P → X such that
f(0) = x0 and f ◦ s = t ◦ f .

Proof. Our proof follows (Mendelson, 2008, Proof of the Iteration Theorem). We first
introduce some new language. We will call a function g : A → X defined on a subset
A ⊂ P admissible, if it has the following properties:

(i) 0 ∈ A and g(0) = x0 .

(ii) For every n ∈ P the relation s(n) ∈ A entails n ∈ A and g(s(n)) = t(g(n)).

If in addition to these properties a given element n ∈ P lies in the domain of g, i.e. if n ∈ A,
we say that g : A→ X is n-admissible. We now prove a series of claims.

Claim 1. If g : A→ X is s(n)-admissible, then it is n-admissible.
By assumption, g is s(n)-admissible, hence (ii) entails n ∈ A. So g is n-admissible, too.

Claim 2. For each n ∈ P there exists an n-admissible function g : A→ X.
We show that the set I ⊂ P of all n ∈ P for which there exists an n-admissible function
is inductive. By the Induction Axiom (P5) this will then entail the claim. Obviously,
0 ∈ I, since the function {0} → X, 0 7→ x0 is 0-admissible. Now assume that n ∈ I,
and let g : A → X be an admissible function with n ∈ A. We define an s(n)-admissible
g∗ : A∗ → X as follows, where A∗ := A∪{s(n)}. Restricted to A, the function g∗ is defined
to be equal to g. If s(n) ∈ A we are done, and g∗ coincides with g. Otherwise s(n) /∈ A,
and we put g∗(s(n)) := t(g(n)). In any case, A∗ ⊂ P, s(n) ∈ A∗, and g∗ : A∗ → X satisfies
(i) and (ii) by construction.

Claim 3. If g : A→ X and h : B → X are two n-admissible functions, then g(n) = h(n).
Let I ⊂ P be the set of all n ∈ P such that for all n-admissible functions g : A → X and
h : B → X the relation g(n) = h(n) holds true. Obviously, 0 ∈ I, since any two admissible
functions g : A → X and h : B → X satisfy g(0) = x0 = h(0) by (i). Now assume n ∈ I,
and let g : A → X and h : B → X be two s(n)-admissible functions. Since s(n) ∈ A ∩ B,
one gets n ∈ A ∩ B by (ii), hence g and h are both n-admissible, too. By using (ii) again
one concludes g(s(n)) = t(g(n)) = t(h(n)) = h(s(n)). Hence s(n) ∈ I, so one obtains I = P
by the Induction Axiom. The claim follows.
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Claim 4. There exists an admissible function f : P→ X.
Given n ∈ P choose an n-admissible function g : A → X, and put f(n) := g(n). by the
previous claim the value f(n) does not depend on the particular choice of an n-admissible
g, hence f is well-defined. Let us show that f is admissible. Obviously, f(0) = x0 since
every admissible g satisfies g(0) = x0 by (i). Now let n ∈ P and choose an s(n)-admissible
g : A → X. Then one concludes by (ii) and the definition of f that n ∈ A and f(s(n)) =
g(s(n)) = t(g(n)) = t(f(n)). Hence f is admissible.

Claim 5. Any two admissible functions f1 : P→ X and f2 : P→ X coincide.
Let I be the set of all n ∈ P such that f1(n) = f2(n). Obviously, 0 ∈ I since f1(0) =
x0 = f2(0). Now let n ∈ I, or in other words assume f1(n) = f2(n). Then by (ii)
f1(s(n)) = t(f1(n)) = t(f2(n)) = f2(s(n)), which means s(n) ∈ I. Thus I is an inductive
set, so coincides with P by the Induction Axiom.

With the verification of Claim 4. and Claim 5. the proof is finished.

By the next two results, Peano structures are unique up isomorphism.

2.1.7 Corollary If (P, 0, s) and (P′, 0′, s′) are two Peano structures, there exists a unique
morphism f : (P, 0, s)→ (P′, 0′, s′).

Proof. The claim follows immediately from the preceding theorem when putting X := P′,
x0 := 0′ and t := s′.

2.1.8 Theorem Every morphism f : (P, 0, s) → (P′, 0′, s′) between two Peano structures
is an isomorphism.

Proof. Assume that we can show that f is bijective. Then the inverse map g := f−1

satisfies g(0′) = 0 and g ◦ s′ = g ◦ s′ ◦ f ◦ g = g ◦ f ◦ s ◦ g = s ◦ g, hence is a morphism of
Peano structures as well. So it suffices to show that f is bijective.

By Axiom (P5), surjectivity follows when the image of f is an inductive subset of P′. But
that holds true, since 0′ = f(0) is an element of f(P) and since for each element n′ ∈ P′ for
which there exists an n ∈ P with n′ = f(n) the relation s′(n′) = s′(f(n)) = f(s(n)) ∈ f(P)
holds true.

Now let K be the set of all n ∈ P for which {n} = f−1(f(n)). We show that this set
is inductive as well, which by Axiom (P5) implies that f is injective. First observe that
0 ∈ K. Namely, by Proposition 2.1.2, there exists for every non-zero k ∈ P an l ∈ P
with k = s(l), which entails f(k) = f(s(l)) = s(f(l)) 6= 0′. Now let n ∈ K. Assume
that k ∈ P is an element with f(k) = f(s(n)). Then k 6= 0 by Axiom (P3), because
f(k) = f(s(n)) = s′(f(n)) 6= 0′. By Proposition 2.1.2 one can therefore find an m ∈ P
such that s(m) = k. By the equality s′(f(m)) = f(s(m)) = f(k) = f(s(n)) = s′(f(n)) and
Axiom (P4) one concludes f(m) = f(n). By n ∈ K, the equality m = n follows, hence
k = s(m) = s(n) and s(n) ∈ K. The proof is finished.

2.1.9 So far we know that up to isomorphism there is at most one Peano structure. But we
do not yet know whether such a structure exists. We will show existence by a construction
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going back to John von Neumann ?. To this end recall the axiom of infinity of Zermelo–
Fraenkel set theory which says that there exists a set I with ∅ ∈ I and x ∪ {x} ∈ I for all
x ∈ I. We call a set I with these properties an inductive set. Fix an inductive set I and
denote by I ⊂ P(I) the set of all inductive subsets of I. Now put

N :=
⋂

I, 0 := ∅, and let s : N→ N, n 7→ n ∪ {n} .

Because N is inductive by the following proposition, the map s is well-defined, indeed. We
call the triple (N, 0, s) the (set-theoretic or von Neumann) system of natural numbers.

2.1.10 Proposition The set N is the smallest inductive set, i.e. N is inductive and con-
tained in every inductive set.

Proof. We first prove that the set N is inductive. Obviously ∅ ∈ N, since ∅ is an element
of each inductive subset of I. If n is an element of N, then it lies in each inductive subset
of I, which implies that n ∪ {n} is an element of each inductive subset of I, too, hence
n ∪ {n} ∈ N. Because N is inductive, the map s is well-defined.

It remains to show that N is contained in every inductive set. To verify this, let J be an
arbitrary inductive set and I the inductive set used in the definition of N. Then ∅ ∈ J ∩ I.
Moreover, if x ∈ J ∩ I, then x ∪ {x} ∈ J ∩ I as well, since both J and I are inductive. By
definition of N the relation N ⊂ J follows, hence N is the smallest inductive set indeed.

2.1.11 Remark The proposition entails in particular that the construction of N does not
depend on the initial choice of the inductive set I.

2.1.12 Lemma Let I be an inductive set, i an element of I, and n ∈ N. If i ∈ n, then i
is an element of N as well, and i ⊂ n.

Proof. Let J := {n ∈ N | ∀i ∈ I : i ∈ n =⇒ i ∈ N & i ⊂ n}. We show that J is an
inductive set which by Proposition 2.1.10 will entail the claim. Clearly, ∅ ∈ J , since ∅ does
not have any elements. Assume that x ∈ J , and consider x∪ {x}. If i ∈ I and i ∈ x∪ {x},
then i ∈ x or i = x. In the latter case, i ∈ J ⊂ N and i ⊂ x ∪ {x}. In the first case, i ∈ N
and i ⊂ x ⊂ x ∪ {x} by the inductive assumption x ∈ J . The proof is finished.

2.1.13 Theorem (von Neumann) The system of natural numbers (N, 0, s) is a Peano
structure.

Proof. By construction, 0 is an element of N and s : N→ N a function, hence Axioms (P1)
and (P2) hold true. Since n ∈ s(n) for every element n ∈ N, 0 is not in the image of s.
This gives Axiom (P3). Now assume that s(n) = s(m). Then m ∪ {m} = n ∪ {n}. This
implies that m ∈ n & n ∈ m holds true or that m = n. In the latter case we are done
with proving Axiom (P4). In the first case we are done with this as well, since then m ⊂ n
and n ⊂ m by Lemma 2.1.12. The Induction Axiom (P5) is an immediate consequence of
Proposition 2.1.10.
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Addition of natural numbers

2.1.14 Dedekind’s iteration theorem allows the definition of addition for the set of natural
numbers N. To this end fix some m ∈ N and let αm : N → N be the unique function
which satisfes αm(0) = m and αm(s(n)) = s(αm(n)) for all n ∈ N. Using this notation we
introduce addition of natural numbers as the function

+ : N× N→ N, (m,n) 7→ m+ n := αm(n) .

In the following proposition we state the fundamental properties of addition of natural
numbers.

2.1.15 Proposition The set N of natural numbers together with addition + : N×N→ N
and the element 0 becomes an abelian monoid which means that the following axioms are
satisfied:

(AMon1) Addition is associative that means

(l +m) + n = l + (m+ n) for all l,m, n ∈ N .

(AMon2) The element 0 is neutral with respect to addition which means that

0 + n = n+ 0 = n for all n ∈ N .

(AMon3) Addition is commutative that means

m+ n = n+m = n for all m,n ∈ N .

Proof. We first show that for all m,n ∈ N

(2.1.15.1) αs(m)(n) = αm(s(n)) .

For n = 0 this is clear since then both sides are equal to s(m). So assume that αs(m)(n) =
αm(s(n)) for some n ∈ N. Then

αs(m)(s(n)) = s(αs(m)(n)) = s(αm(s(n))) = αm(s(s(n))).

By the Induction Axiom Equation (2.1.15.1) therefore holds for all m,n ∈ N.

Next we prove associativity of +. To this end we have to show that ααl(m)(n) = αl(αm(n))
for all l,m, n ∈ N. For m = n = 0 we have ααl(0)(0) = αl(0) = αl(α0(0)). Now assume
that for some m ∈ N the relation ααl(m)(0) = αl(αm(0)) holds. Then

ααl(s(m))(0) = αs(αl(m))(0) = s(ααl(m)(0)) =

= s(αl(αm(0))) = αl(s(αm(0))) = αl(αm(s(0))) = αl(αs(m)(0)),

where in the last equality we have used Equation (2.1.15.1). By the Induction Axiom one
concludes that ααl(m)(0) = αl(αm(0)) for all l,m ∈ N. Now assume that for some n ∈ N
and all l,m ∈ N the relation ααl(m)(n) = αl(αm(n)) holds true. Then

ααl(m)(s(n)) = s(ααl(m)(n)) = s(αl(αm(n))) = αl(s(αm(n))) = αl(αm(s(n))).
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By the Induction Axiom associativity of + follows.

Before we verify commutativity let us first show that α0(n) = n for all n ∈ N. Together
with the the equality αn(0) = n this will entail that 0 is neutral with respect to addition.
By definition α0(0) = 0. So assume that α0(n) = n for some n ∈ N. Then α0(s(n)) =
s(α(n)) = s(n), hence α0(n) = n for all n ∈ N by the Induction Axiom.

In particular we have now proved that α0(n) = αn(0) for all n ∈ N. Next assume that
αm(n) = αn(m) for somem ∈ N and all n ∈ N. Then, using Equation (2.1.15.1), αs(m)(n) =
αm(s(n)) = s(αm(n)) = s(αn(m)) = αn(s(m)), hence commutativity of addition follows
by the Induction Axiom.

We have now finished the proof that (N,+, 0) is an abelian monoid.

2.1.16 Remark If one is given a triple (M,+, 0) where M is a set, + : M ×M → M a
map and 0 ∈M an element such that the above axioms (AMon1) to (AMon3) are fulfilled
with N replaced by M , then one calls M (together with + and 0) an abelian monoid.

Multiplication of natural numbers

2.1.17 Similarly like for addition, we use Dedekind’s iteration theorem to define multipli-
cation of natural numbers. Again fix some m ∈ N and let µm : N → N be the unique
function which satisfes µm(0) = 0 and µm(s(n)) = αm(µm(n)) for all n ∈ N. Multiplication
of natural numbers is then defined as the function

· : N× N→ N, (m,n) 7→ m · n := µm(n) .

The fundamental algebaric properties of natural number are expressed in the following
result.

2.1.18 Theorem The set N of natural numbers together with addition + : N × N → N,
multiplication · : N × N → N and the elements 0 and 1 := s(0) becomes a semiring that
means the following axioms hold true:

(SRing1) N together with addition + and the element 0 is an abelian monoid.

(SRing2) N together with multiplication · and the element 1 is a monoid, id est

(Mon1) Multiplication is associative that means

(l ·m) · n = l · (m · n) for all l,m, n ∈ N .

(Mon2) The element 1 is neutral with respect to multiplication that means

1 · n = n · 1 = n for all n ∈ N .

(SRing3) Multiplication distributes from the left and the right over addition that means

(DistL) l · (m+ n) = l ·m+ l · n for all l,m, n ∈ N, and
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(DistR) (m+ n) · l = m · l + n · l for all l,m, n ∈ N.

(SRing4) Multiplication by 0 annihilates N that is

0 · n = n · 0 = 0 for all n ∈ N .

(SRing5) Multiplication is commutative that is

m · n = n ·m for all m,n ∈ N .

Proof. By Proposition 2.1.15 Axiom (SRing1) holds true.

Let us show that 0 ·m = 0 for all m ∈ N. To this end observe first that 0 · 0 = µ0(0) = 0.
Assuming that 0 ·m = 0 for some m ∈ N we conclude that

0 · (s(m)) = µ0(s(m)) = α0(µ0(m)) = µ0(m) = 0,

where we have used that 0 is neutral with respect to addition. By induction, the claimed
equality 0 · m = 0 follows for all m ∈ N. Since by definition m · 0 = µm(0) = 0 for all
m ∈ N, we also have shown Axiom (SRing4).

Next we verify right distributivity. Obviously (m + n) · 0 = 0 = (m · 0) + (n · 0). Assume
that (m+ n) · l = (m · l) + (n · l) for some l ∈ N and all m,n ∈ N. Then, by the inductive
hypothesis and repeated application of associativity and commutativity of addition,

(m+ n) · (s(l)) = µαm(n)(s(l)) = ααm(n)(µαm(n)(l)) = (m+ n) + ((m+ n) · l) =

= (m+ n) + ((m · l) + (n · l)) = ((m+ n) + (m · l)) + (n · l) =

= (m+ (n+ (m · l))) + (n · l) = (m+ ((m · l) + n)) + (n · l) =

= ((m+ (m · l)) + n) + (n · l) = (m+ (m · l)) + (n+ (n · l)) =

= αm(µm(l)) + αn(µn(l)) = µm(s(l)) + µn(s(l)) = m · (s(l)) + n · (s(l)).

By the Induction Axiom right distributivity follows.

Next observe that n ·1 = µn(s(0)) = αn(µn(0)) = n+0 = n for all n ∈ N, which essentailly
says that 1 is right neutral with respect to multiplication.

To verify commutativity of · observe that we already proved m · 0 = 0 = 0 · m for all
m ∈ N. Assuming that m · n = n ·m for some n ∈ N and all m ∈ N we conclude, using
right distributivity and that 1 is right neutral,

m · (s(n)) = µm(s(n)) = αm(µm(n)) = m+ (m · n) = (m · 1) + (m · n) =

= m · (1 + n) = m · (n+ 1) = m · (αn(s(0))) = m · (s(αn(0))) = m · (s(n)).

By induction, this proves commutativity of multiplication.

Commutativity of multiplication now entails that multiplication also left distributes over
addition and that 1 is also left neutral with respect to multiplication.
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It remains to show associativity of multiplication. To this end first note that (l ·m) · 0 =
0 = l · 0 = l · (m · 0) for all l,m ∈ N. Assume that (l ·m) · n = l · (m · n) for some n ∈ N
and all l,m ∈ N. Then

(l ·m) · (s(n)) = µµl(m)(s(n)) = αµl(m)(µµl(m)(n)) = (l ·m) + ((l ·m) · n) =

= (l ·m) + (l · (m · n)) = l · (m+ (m · n)) = µl(αm(µm(n))) =

= µl(µm(s(n))) = l · (m · s(n)),

which by induction implies that multiplication is associative.

So all axioms of a semiring have been verified for N, and the proof is finished.

2.1.19 Definition As usual, the first nine non-zero natural numbers are denoted by the
following symbols:

1 := s(0), 2 := s(1), 3 := s(2), 4 := s(3), 5 := s(4),

6 := s(5), 7 := s(6), 8 := s(7), 9 := s(8).

2.1.20 Remark If one is given a quintuple (R,+, ·, 0, 1) where R is a set, + : R×R→ R
and · : R×R→ R are maps and 0, 1 ∈ R are elements such that the above axioms (SRing1)
to (SRing4) are fulfilled with N replaced by R, then one calls R (together with +, ·, 0 and 1)
a semiring. If in addition Axiom (SRing5) holds true, the semiring is called commutative.

2.1.21 From now one we will avoid using the symbols s, αn, and µm and replace them
by the standard notation involving only the addition symbol +, the multiplication symbol
·, and the number symbols. Let us write this down in more detail and rewrite the basic
terms involving s, αn, and µm in standard notation.

2.1.22 Lemma The following equations hold true for all natural numbers m and n:

s(n) = n+ 1 = 1 + n,(2.1.22.1)

αm(n) = m+ n = n+m,(2.1.22.2)

µm(n) = m · n = n ·m,(2.1.22.3)

αm(s(n)) = m+ (n+ 1) = (m+ 1) + n,(2.1.22.4)

µm(s(n)) = m+ (m · n).(2.1.22.5)

Proof. Compute n + 1 = αn(s(0)) = s(αn(0)) = s(n). Together with commutativity of
addition this equality entails the first equation.

Equations 2.1.22.2 and 2.1.22.3 are consequences of the definitions of + and · and commu-
tativity of these operations.

Equation (2.1.22.4) follows from Equations 2.1.22.2, 2.1.22.1 and 2.1.15.1.

The last equation is a rewrite of the equality µm(s(n)) = αm(µm(n)).
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2.2. The integers

Construction of Z

2.3. The real numbers

Complete ordered fields

2.3.1 Proposition For an ordered field (F,+, ·,≤) the following properties are equivalent:

(i) The nested interval property holds true in F that means

(ii) Every Cauchy sequence in F converges.

(iii) Every subset X ⊂ F which is bounded above has a supremum.

(iv) No Dedekind cut in F has a gap.
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11. Rings and Modules

Introduction

In this chapter we will introduce the notions of a ring and that of a module over a ring. The
focus of the present book will be on commutative rings, though, and the spaces represented
by them. Most of the chapter will be definitions.

We begin with a few historical remarks on the origin of commutative ring theory. Fermat’s
last theorem states that the equation

xn + yn = zn

has no nontrivial solutions in the integers, for n ≥ 3. We could try to prove this by factoring
the expression on the left hand side. We can write

(x+ y)(x+ ζy)(x+ ζ2y) . . . (x+ ζn−1y) = zn,

where ζ is a primitive nth root of unity. Unfortunately, the factors lie in Z[ζ], not the
integers Z. Though Z[ζ] is still a ring where we have notions of primes and factorization,
just as in Z, we will see that prime factorization is not always unique in Z[ζ]. (If it were
always unique, then we could at least one important case of Fermat’s last theorem rather
easily; see the introductory chapter of ? for an argument.)

For instance, consider the ring Z[
√
−5] of complex numbers of the form a+ b

√
−5, where

a, b ∈ Z. Then we have the two factorizations

6 = 2 · 3 = (1 +
√
−5)(1−

√
−5).

Both of these are factorizations of 6 into irreducible factors, but they are fundamentally
different.

In part, commutative algebra grew out of the need to understand this failure of unique
factorization more generally. We shall have more to say on factorization in the future, but
here we just focus on the formalism. The basic definition for studying this problem is that
of a ring, which we now introduce.

11.1. Rings and their ideals

Definition of Rings

Even though we shall mostly just work with commutative rings in this book, we will
introduce the general notion of rings which are allowed to be non-commutative.
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11.1.1 Definition A ring is a set R together with an addition map + : R × R → R,
a multiplication map · : R × R → R, and elements 0, 1 ∈ R that satisfy the following
conditions:

(Ring1) R together with 0 is an abelian group under addition which means the following
properties hold true:

(Grp1) Addition is associative that is (x+ y) + z = x+ (y + z) for all x, y, z ∈ R.

(Grp2) The element 0 is a zero or neutral element with respect to addition that
means 0 + x = x+ 0 = x for all x ∈ R.

(Grp3) For each x ∈ R there exists an additive inverse, i.e. an element −x ∈ R
such that x+ (−x) = (−x) + x = 0.

(Grp4) Addition is commutative that is x+ y = y + x for all x, y ∈ R.

(Ring2) R together with 1 is a monoid under multiplication, i.e. the following axioms are
satisfied:

(Mon1) Multiplication is associative that is (x · y) · z = x · (y · z) for all x, y, z ∈ R.

(Mon2) The element 1 is an identity element for multiplication that means 1 ·x =
x · 1 = x for all x ∈ R.

(Ring3) Multiplication distributes from the left and the right over addition which means
that
x · (y + z) = x · y + x · z and (x+ y) · z = x · z + y · z for all x, y, z ∈ R.

In addition, if the following axiom holds, the ring R is called commutative:

(Ring4) Multiplication is commutative that is x · y = y · x for all x, y ∈ R.

We shall typically write xy for x · y.

If R is a ring, an invertible element or unit is an element x ∈ R, such that there exists a
x−1 ∈ R, called (multiplicative) inverse of x, with

x · (x−1) = 1 and (x−1) · x = 1 .

Given a ring R, a subring is a subset S ⊂ R that contains the zero and identity elements,
is closed under addition and multiplication and is closed under forming additive inverses.
In other words, S ⊂ R is a subring, if 0, 1 ∈ S and if for all x, y ∈ S the elements x + y,
−x and xy are in S as well.

Following (Bourbaki, 1989, p. 98), a pseudo-ring (or in other words non-unital-ring) is a set
R together with binary operations + and · for which all above conditions (namely Axioms
(Ring1), (Mon1) and (Ring3)) are satisfied besides the unitality requirement (Mon2). A
pseudo-ring R is called commutative if Axiom (Ring4) is satisfied. A subset S of a pseudo-
ring R is called a sub-pseudo-ring, if it contains the zero element, is closed under addition
and multiplication, and is closed under forming additive inverses.
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If R is a pseudo-ring, the center of R is defined as the set of x ∈ R commuting with all
ring elements, i.e. as the set

Z(R) :=
{
x ∈ R | xy = yx for all y ∈ R

}
.

11.1.2 Proposition Let R be a pseudo-ring. Then

(i) 0 · x = x · 0 = 0 for all x ∈ R.

(ii) (−x)y = x(−y) = −(xy) for all x, y ∈ R.

(iii) A multiplicative identity element in R is uniquely determined.

(iv) Assume that R possesses an identity element. Then the inverse for an invertible x ∈ R
is uniquely determined.

Proof. ad (i). First compute using associativity, distributivity and that 0 is a zero element:

0 · x = (0 + 0) · x = (0 · x) + (0 · x) .

Adding −(0 ·x) on both sides gives 0 = 0 ·x. By an analogous argument we obtain 0 = x ·0.

ad (ii). By (i) we obtain

0 = 0 · y = (x+ (−x)) · y = xy + (−x)y ,

which entails (−x)y = −(xy). Similarly, one shows x(−y) = −(xy).

ad (iii). Assume that 1 and 1′ are two identity elements in R. Then

1 = 1 · 1′ = 1′ .

ad (iv). Let R be a ring with identity 1 and y, y′ ∈ R be two inverses of x. Then

y = y · 1 = y · (x · y′) = (y · x) · y′ = 1 · y′ = y′ .

11.1.3 Examples (a) The zero ring or trivial ring is the ring with underlying set {0}. Its
identity element coincides with 0, and it is obviously commutative.

(b) The simplest non-trivial example of a ring is the ring Z2 = {0, 1} which is commutative
as well. Note that as a consequence of the ring axioms and the fact that 0 6= 1 one has
−1 = 1 in Z2.

(c) The main example of a commutative ring is the ring of integers Z.

(d) The sets Q, R, and C of rational, real, and complex numbers, respectively, form all
commutative rings.

(e) The set H of quaternions is a ring which is not commutative.

11.1.4 Example The center Z(R) of a pseudo-ring R is a sub-pseudo-ring of R by Propo-
sition 11.1.2. It is commutative by definition. Moreover, if R possesses an identity element,
then Z(R) is even a subring.
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11.1.5 Examples The following are examples of function rings.

(a) Let X be a set and R a pseudo-ring. The set RX of functions f : X → R is a
pseudo-ring. Hereby, addition and multiplication of functions f, g : X → R are defined
pointwise: (f + g)(x) := f(x) + g(x) and (f · g)(x) := f(x) · g(x) for x ∈ R. Obviously, RX

with addition as binary operation then becomes an abelian group, where the zero function
0X : X → R, x 7→ 0 serves as neutral element, and the additive inverse −f of f ∈ RX is
given by (−f)(x) := −f(x) for x ∈ R. Associativity and commutativity of addition in RX

hold true because they hold pointwise over each x ∈ X. Likewise, multiplication in RX

is associative. The distributivity law holds in RX also, because it holds pointwise when
evaluating at x ∈ X. So RX becomes a pseudo-ring. If R is even a ring, the function
1X : X → R, x 7→ 1 serves as an identity element, so RX then is a ring as well.

(b) A sub-pseudo-ring of RX (independently of wether R is a ring or pseudo-ring) is given
by the subset

R(X) := {f ∈ RX | f(x) 6= 0 for at most finitely many x ∈ X},

since 0X ∈ R(X), since the sum and the product of two elements f, g ∈ R(X) lie again in
R(X), and since R(X) contains with an element f also its negative −f . Unless X is finite
and R a ring, the pseudo-ring R(X) is not unital or in other words not a ring.

(c) If X is a topological space and R = R, the subspace

C(X) := {f ∈ RX | f is continuous}

is a subring of RX , since the constant function 1X is continuous, and since the sum and
product of two real-valued functions on X is again continuous.

(d) If M is a smooth manifold, the subspace

C∞(M) := {f ∈ C(M) | f is smooth}

is a subring of C(M), since the constant function 1X is smooth, and since the sum and
product of two real-valued smooth functions on M is again smooth.

11.1.6 Example Let R be a commutative ring. One defines R[x], the ring of polynomials
in one variable over R, as follows. As a set, R[x] coincides with R(N). For an element
a ∈ R[x] denote by ak for every k ∈ N its k-th component, that means let a = (ak)k∈N.
Using this agreement, the sum and product of two elements a, b ∈ R[x] are defined by

(a+ b)k := (ak + bk) for all k ∈ N, and

(a · b)k :=
k∑
i=0

ak−ibi for all k ∈ N .

By Example 11.1.5 (b) , (R[x],+, 0N) is an abelian group with zero element 0N : N → R,
n 7→ 0.
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11.1.7 Example For any ring R, we can consider the polynomial ring R[x1, . . . , xn] which
consists of the polynomials in n variables with coefficients in R. This can be defined
inductively as (R[x1, . . . , xn−1])[xn], where the procedure of adjoining a single variable
comes from the previous ??.

We shall see a more general form of this procedure in Example 11.1.15.

The category of rings

The class of rings forms a category. Its morphisms are called ring homomorphisms.

11.1.8 Definition A morphism of pseudo-rings is a map f : R→ S between pseudo-rings
R and S that respects addition and multiplication. That is

(Ring5) f(x+ y) = f(y) + f(y) for all x, y ∈ R.

(Ring6) f(xy) = f(x)f(y) for all x, y ∈ R.

If R and S are rings, a morphism of pseudo-rings f : R→ S which preserves the identity el-
ements is called a ring homomorphism. In other words, f : R→ S is a ring homomorphism
if it satisfies in addition to Axioms (Ring5) and (Ring6) the axiom

(Ring7) f(1R) = 1S , where 1R and 1S are the respective identity elements.

The composition of two ring homorphisms is obviously again a ring homomorphism. More-
over, the identity map idR : R→ R on a ring R is a ring homomorphism, too. There is thus
a category Ring whose objects are rings and whose morphisms are ring homomorphisms.

11.1.9 Proposition Let f : R→ S be a morphism of pseudo-rings. Then

(i) f(0R) = 0S, where 0R and 0S are the respective zero elements.

11.1.10 The philosophy of Grothendieck, as expounded in his EGA ?, is that one should
always do things in a relative context. This means that instead of working with objects,
one should work with morphisms of objects. Motivated by this, we introduce:

11.1.11 Definition Given a commutative ring R, a unital R-algebra is a ring A together
with a morphism of rings (the structure morphism) R → Z(A) ⊂ A. In other words, the
structure morphism R→ A has image in the center of the ring A. A unital R-algebra A is
called commutative if A is a commutative ring.

A morphism between R-algebras is a ring homomorphism that is required to commute with
the structure morphisms. So if A is an R-algebra, then A is not only a ring, but there is a
way to multiply elements of A by elements of R. Namely, to multiply a ∈ A with x ∈ R,
take the image of x in A, and multiply that by a.

For instance, any ring is an algebra over any subring.

56



11. Rings and Modules 11.1. Rings and their ideals

We can think of an A-algebra as an arrow A→ R, and a morphism from A→ R to A→ S
as a commutative diagram

R // S

A

__ ??

This is a special case of the undercategory construction.

If B is an A-algebra and C a B-algebra, then C is an A-algebra in a natural way. Namely,
by assumption we are given morphisms of rings A → B and B → C, so composing them
gives the structure morphism A→ C of C as an A-algebra.

11.1.12 Example Every ring is a Z-algebra in a natural and unique way. There is a
unique map (of rings) Z → R for any ring R because a ring-homomorphism is required
to preserve the identity. In fact, Z is the initial object in the category of rings: this is a
restatement of the preceding discussion.

11.1.13 Example If R is a ring, the polynomial ring R[x] is an R-algebra in a natural
manner. Each element of R is naturally viewed as a “constant polynomial.”

11.1.14 Example The field of complex numbers C is an R-algebra.

Here is an example that generalizes the case of the polynomial ring.

11.1.15 Example If R is a ring and G a commutative monoid,1 then the set R[G] of
formal finite sums

∑
rigi with ri ∈ R, gi ∈ G is a commutative ring, called the monoid

ring or group ring when G is a group. Alternatively, we can think of elements of R[G]
as infinite sums

∑
g∈G rgg with R-coefficients, such that almost all the rg are zero. We can

define the multiplication law such that

(∑
rgg
)(∑

sgg
)

=
∑
h

∑
gg′=h

rgsg′

h.

This process is called convolution. We can think of the multiplication law as extended the
group multiplication law (because the product of the ring-elements corresponding to g, g′

is the ring element corresponding to gg′ ∈ G).

The case of G = Z≥0 is the polynomial ring. In some cases, we can extend this notion to
formal infinite sums, as in the case of the formal power series ring; see definition 40.2.5
below.

11.1.16 Remark The ring Z is an initial object in the category of rings. That is, for any
ring R, there is a unique morphism of rings Z→ R. We discussed this briefly earlier; show
more generally that A is the initial object in the category of A-algebras for any ring A.

1That is, there is a commutative multiplication on G with an identity element, but not necessarily with
inverses.
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11.1.17 Remark The ring where 0 = 1 (the zero ring) is a final object in the category
of rings. That is, every ring admits a unique map to the zero ring.

11.1.18 Remark Let C be a category and F : C → Sets a covariant functor. Recall
that F is said to be corepresentable if F is naturally isomorphic to X → homC(U,X)
for some object U ∈ C. For instance, the functor sending everything to a one-point set is
corepresentable if and only if C admits an initial object.

Prove that the functor Rings → Sets assigning to each ring its underlying set is repre-
sentable. (Hint: use a suitable polynomial ring.)

The category of rings is both complete and cocomplete. To show this in full will take more
work, but we can here describe what certain cases (including all limits) look like. As we
saw in remark 11.1.18, the forgetful functor Rings→ Sets is corepresentable. Thus, if we
want to look for limits in the category of rings, here is the approach we should follow: we
should take the limit first of the underlying sets, and then place a ring structure on it in
some natural way.

11.1.19 Example (Products) The product of two rings R1, R2 is the set-theoretic
product R1 × R2 with the multiplication law (r1, r2)(s1, s2) = (r1s1, r2s2). It is easy
to see that this is a product in the category of rings. More generally, we can easily define
the product of any collection of rings.

To describe the coproduct is more difficult: this will be given by the tensor product to be
developed in the sequel.

11.1.20 Example (Equalizers) Let f, g : R⇒ S be two ring-homomorphisms. Then we
can construct the equalizer of f, g as the subring of R consisting of elements x ∈ R such
that f(x) = g(x). This is clearly a subring, and one sees quickly that it is the equalizer in
the category of rings.

As a result, we find:

11.1.21 Proposition The category Rings is complete.

As we said, we will not yet show that Rings is cocomplete. But we can describe filtered
colimits. In fact, filtered colimits will be constructed just as in the set-theoretic fashion.
That is, the forgetful functor Rings → Sets commutes with filtered colimits (though not
with general colimits).

11.1.22 Example (Filtered colimits) Let I be a filtering category, F : I → Rings a
functor. We can construct lim−→I

F as follows. An object is an element (x, i) for i ∈ I and
x ∈ F (i), modulo equivalence; we say that (x, i) and (y, j) are equivalent if there is a k ∈ I
with maps i→ k, j → k sending x, y to the same thing in the ring F (k).

To multiply (x, i) and (y, j), we find some k ∈ I receiving maps from i, j, and replace x, y
with elements of F (k). Then we multiply those two in F (k). One easily sees that this
is a well-defined multiplication law that induces a ring structure, and that what we have
described is in fact the filtered colimit.
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Ideals

An ideal in a ring is analogous to a normal subgroup of a group. As we shall see, one may
quotient by ideals just as one quotients by normal subgroups. The idea is that one wishes
to have a suitable equivalence relation on a ring R such that the relevant maps (addition
and multiplication) factor through this equivalence relation. It is easy to check that any
such relation arises via an ideal.

11.1.23 Definition Let R be a ring. An ideal in R is a subset I ⊂ R that satisfies the
following.

1. 0 ∈ I.

2. If x, y ∈ I, then x+ y ∈ I.

3. If x ∈ I and y ∈ R, then xy ∈ I.

There is a simple way of obtaining ideals, which we now describe. Given elements x1, . . . , xn ∈
R, we denote by (x1, . . . , xn) ⊂ R the subset of linear combinations

∑
rixi, where ri ∈ R.

This is clearly an ideal, and in fact the smallest one containing all xi. It is called the ideal
generated by x1, . . . , xn. A principal ideal (x) is one generated by a single x ∈ R.

11.1.24 Example Ideals generalize the notion of divisibility. Note that in Z, the set of
elements divisible by n ∈ Z forms the ideal I = nZ = (n). We shall see that every ideal in
Z is of this form: Z is a principal ideal domain.

Indeed, one can think of an ideal as axiomatizing the notions that “divisibility” ought to
satisfy. Clearly, if two elements are divisible by something, then their sum and product
should also be divisible by it. More generally, if an element is divisible by something, then
the product of that element with anything else should also be divisible. In general, we will
extend (in the chapter on Dedekind domains) much of the ordinary arithmetic with Z to
arithmetic with ideals (e.g. unique factorization).

11.1.25 Example We saw in examples 11.1.5 that if X is a set and R a ring, then the
set RX of functions X → R is naturally a ring. If Y ⊂ X is a subset, then the subset of
functions vanishing on Y is an ideal.

11.1.26 Remark Show that the ideal (2, 1 +
√
−5) ⊂ Z[

√
−5] is not principal.

Operations on ideals

There are a number of simple operations that one may do with ideals, which we now
describe.

11.1.27 Definition The sum I + J of two ideals I, J ⊂ R is defined as the set of sums

{x+ y : x ∈ I, y ∈ J} .

59



11. Rings and Modules 11.1. Rings and their ideals

11.1.28 Definition The product IJ of two ideals I, J ⊂ R is defined as the smallest ideal
containing the products xy for all x ∈ I, y ∈ J . This is just the set{∑

xiyi : xi ∈ I, yi ∈ J
}
.

We leave the basic verification of properties as an exercise:

11.1.29 Remark Given ideals I, J ⊂ R, verify the following.

1. I + J is the smallest ideal containing I and J .

2. IJ is contained in I and J .

3. I ∩ J is an ideal.

11.1.30 Example In Z, we have the following for any m,n.

1. (m) + (n) = (gcd{m,n}),

2. (m)(n) = (mn),

3. (m) ∩ (n) = (lcm{m,n}).

11.1.31 Proposition For ideals I, J,K ⊂ R, we have the following.

1. Distributivity: I(J +K) = IJ + IK.

2. I ∩ (J +K) = I ∩ J + I ∩K if I ⊃ J or I ⊃ K.

3. If I + J = R, I ∩ J = IJ .

Proof. 1 and 2 are clear. For 3, note that (I + J)(I ∩ J) = I(I ∩ J) + J(I ∩ J) ⊂ IJ . Since
IJ ⊂ I ∩ J , the result follows.

11.1.32 Remark There is a contravariant functor Rings → Sets that sends each ring
to its set of ideals. Given a map f : R → S and an ideal I ⊂ S, we define an ideal
f−1(I) ⊂ R; this defines the functoriality. This functor is not representable, as it does not
send the initial object in Rings to the one-element set. We will later use a subfunctor of
this functor, the Spec construction, when we replace ideals with “prime” ideals.

Quotient rings

We next describe a procedure for producing new rings from old ones. If R is a ring and
I ⊂ R an ideal, then the quotient group R/I is a ring in its own right. If a + I, b + I are
two cosets, then the multiplication is (a+ I)(b+ I) = ab+ I. It is easy to check that this
does not depend on the coset representatives a, b. In other words, as mentioned earlier, the
arithmetic operations on R factor through the equivalence relation defined by I.

As one easily checks, this becomes to a multiplication

R/I ×R/I → R/I

which is commutative and associative, and whose identity element is 1 + I. In particular,
R/I is a ring, under multiplication (a+ I)(b+ I) = ab+ I.
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11.1.33 Definition R/I is called the quotient ring by the ideal I.

The process is analogous to quotienting a group by a normal subgroup: again, the point is
that the equivalence relation induced on the algebraic structure—either the group or the
ring—by the subgroup (or ideal)—is compatible with the algebraic structure, which thus
descends to the quotient.

The reduction map φ : R → R/I is a ring-homomorphism with a universal property.
Namely, for any ring B, there is a map

hom(R/I,B)→ hom(R,B)

on the hom-sets by composing with the ring-homomorphism φ; this map is injective and
the image consists of all homomorphisms R→ B which vanish on I. Stated alternatively,
to map out of R/I (into some ring B) is the same thing as mapping out of R while killing
the ideal I ⊂ R.

This is best thought out for oneself, but here is the detailed justification. The reason is
that any map R/I → B pulls back to a map R → R/I → B which annihilates I since
R→ R/I annihilates I. Conversely, if we have a map

f : R→ B

killing I, then we can define R/I → B by sending a + I to f(a); this is uniquely defined
since f annihilates I.

11.1.34 Remark If R is a commutative ring, an element e ∈ R is said to be idempotent
if e2 = e. Define a covariant functor Rings → Sets sending a ring to its idempotents.
Prove that it is corepresentable. (Answer: the corepresenting object is Z[X]/(X −X2).)

11.1.35 Remark Show that the functor assigning to each ring the set of elements anni-
hilated by 2 is corepresentable.

11.1.36 Remark If I ⊂ J ⊂ R, then J/I is an ideal of R/I, and there is a canonical
isomorphism

(R/I)/(J/I) ' R/J.

Zerodivisors

Let R be a commutative ring.

11.1.37 Definition If r ∈ R, then r is called a zerodivisor if there is s ∈ R, s 6= 0 with
sr = 0. Otherwise r is called a nonzerodivisor.

As an example, we prove a basic result on the zerodivisors in a polynomial ring.

11.1.38 Proposition Let A = R[x]. Let f = anx
n + · · ·+ a0 ∈ A. If there is a non-zero

polynomial g ∈ A such that fg = 0, then there exists r ∈ Rr {0} such that f · r = 0.
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So all the coefficients are zerodivisors.

Proof. Choose g to be of minimal degree, with leading coefficient bxd. We may assume
that d > 0. Then f · b 6= 0, lest we contradict minimality of g. We must have aig 6= 0 for
some i. To see this, assume that ai ·g = 0, then aib = 0 for all i and then fb = 0. Now pick
j to be the largest integer such that ajg 6= 0. Then 0 = fg = (a0 + a1x + · · · ajxj)g, and
looking at the leading coefficient, we get ajb = 0. So deg(ajg) < d. But then f · (ajg) = 0,
contradicting minimality of g.

11.1.39 Remark The product of two nonzerodivisors is a nonzerodivisor, and the product
of two zerodivisors is a zerodivisor. It is, however, not necessarily true that the sum of two
zerodivisors is a zerodivisor.

11.2. Further examples

We now illustrate a few important examples of commutative rings. The section is in large
measure an advertisement for why one might care about commutative algebra; nonetheless,
the reader is encouraged at least to skim this section.

Rings of holomorphic functions

The following subsec may be omitted without impairing understanding.

There is a fruitful analogy in number theory between the rings Z and C[t], the latter being
the polynomial ring over C in one variable (??). Why are they analogous? Both of these
rings have a theory of unique factorization: that is, factorization into primes or irreducible
polynomials. (In the latter, the irreducible polynomials have degree one.) Indeed we
know:

1. Any nonzero integer factors as a product of primes (possibly times −1).

2. Any nonzero polynomial factors as a product of an element of C∗ = C − {0} and
polynomials of the form t− a, a ∈ C.

There is another way of thinking of C[t] in terms of complex analysis. This is equal to
the ring of holomorphic functions on C which are meromorphic at infinity. Alternatively,
consider the Riemann sphere C∪{∞}; then the ring C[t] consists of meromorphic functions
on the sphere whose poles (if any) are at ∞.

This description admits generalizations. Let X be a Riemann surface. (Example: take the
complex numbers modulo a lattice, i.e. an elliptic curve.) Suppose that x ∈ X. Define Rx
to be the ring of meromorphic functions on X which are allowed poles only at x (so are
everywhere else holomorphic).
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11.2.1 Example Fix the notations of the previous discussion. Fix y 6= x ∈ X. Let Rx be
the ring of meromorphic functions on the Riemann surface X which are holomorphic on
X −{x}, as before. Then the collection of functions that vanish at y forms an ideal in Rx.

There are lots of other ideals. For instance, fix two points y0, y1 6= x; we look at the ideal
of Rx that vanish at both y0, y1.

For any Riemann surface X, the conclusion of Dedekind’s theorem (??) applies.
In other words, the ring Rx as defined in the example admits unique factorization of ideals.
We shall call such rings Dedekind domains in the future.

11.2.2 Example Keep the preceding notation.

Let f ∈ Rx, nonzero. By definition, f may have a pole at x, but no poles elsewhere. f
vanishes at finitely many points y1, . . . , ym. When X was the Riemann sphere, knowing
the zeros of f told us something about f . Indeed, in this case f is just a polynomial, and
we have a nice factorization of f into functions in Rx that vanish only at one point. In
general Riemann surfaces, this is not generally possible. This failure turns out to be very
interesting.

Let X = C/Λ be an elliptic curve (for Λ ⊂ C2 a lattice), and suppose x = 0. Suppose
we are given y1, y2, . . . , ym ∈ X that are nonzero; we ask whether there exists a function
f ∈ Rx having simple zeros at y1, . . . , ym and nowhere else. The answer is interesting, and
turns out to recover the group structure on the lattice.

11.2.3 Proposition A function f ∈ Rx with simple zeros only at the {yi} exists if and
only if y1 + y2 + · · ·+ yn = 0 (modulo Λ).

So this problem of finding a function with specified zeros is equivalent to checking that the
specific zeros add up to zero with the group structure.

In any case, there might not be such a nice function, but we have at least an ideal I
of functions that have zeros (not necessarily simple) at y1, . . . , yn. This ideal has unique
factorization into the ideals of functions vanishing at y1, functions vanishing at y2, so on.

Ideals and varieties

We saw in the previous subsec that ideals can be thought of as the vanishing of functions.
This, like divisibility, is another interpretation, which is particularly interesting in algebraic
geometry.

Recall the ring C[t] of complex polynomials discussed in the last subsec. More generally,
if R is a ring, we saw in ?? that the set R[t] of polynomials with coefficients in R is a ring.
This is a construction that can be iterated to get a polynomial ring in several variables
over R.
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11.2.4 Example Consider the polynomial ring C[x1, . . . , xn]. Recall that before we thought
of the ring C[t] as a ring of meromorphic functions. Similarly each element of the polyno-
mial ring C[x1, . . . , xn] gives a function Cn → C; we can think of the polynomial ring as
sitting inside the ring of all functions Cn → C.

A question you might ask: What are the ideals in this ring? One way to get an ideal is to
pick a point x = (x1, . . . , xn) ∈ Cn; consider the collection of all functions f ∈ C[x1, . . . , xn]
which vanish on x; by the usual argument, this is an ideal.

There are, of course, other ideals. More generally, if Y ⊂ Cn, consider the collection of
polynomial functions f : Cn → C such that f ≡ 0 on Y . This is easily seen to be an ideal
in the polynomial ring. We thus have a way of taking a subset of Cn and producing an
ideal. Let IY be the ideal corresponding to Y .

This construction is not injective. One can have Y 6= Y ′ but IY = IY ′ . For instance, if
Y is dense in Cn, then IY = (0), because the only way a continuous function on Cn can
vanish on Y is for it to be zero.

There is a much closer connection in the other direction. You might ask whether all ideals
can arise in this way. The quick answer is no—not even when n = 1. The ideal (x2) ⊂ C[x]
cannot be obtained in this way. It is easy to see that the only way we could get this as
IY is for Y = {0}, but IY in this case is just (x), not (x2). What’s going wrong in this
example is that (x2) is not a radical ideal.

11.2.5 Definition An ideal I ⊂ R is radical if whenever x2 ∈ I, then x ∈ I.

The ideals IY in the polynomial ring are all radical. This is obvious. You might now ask
whether this is the only obstruction. We now state a theorem that we will prove later.

11.2.6 Theorem (Hilbert’s Nullstellensatz) If I ⊂ C[x1, . . . , xn] is a radical ideal,
then I = IY for some Y ⊂ Cn. In fact, the canonical choice of Y is the set of points where
all the functions in Y vanish.2

This will be one of the highlights of the present course. But before we can get to it, there
is much to do.

11.2.7 Remark Assuming the Nullstellensatz, show that any maximal ideal in the poly-
nomial ring C[x1, . . . , xn] is of the form (x1 − a1, . . . , xn − an) for a1, . . . , an ∈ C. An ideal
of a ring is called maximal if the only ideal that contains it is the whole ring (and it itself
is not the whole ring).

As a corollary, deduce that if I ⊂ C[x1, . . . , xn] is a proper ideal (an ideal is called proper
if it is not equal to the entire ring), then there exists (x1, . . . , xn) ∈ Cn such that every
polynomial in I vanishes on the point (x1, . . . , xn). This is called the weak Nullstellen-
satz.

2Such a subset is called an algebraic variety.
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11.3. Modules over a ring

We will now establish some basic terminology about modules. Throughout this section, R
denotes always a ring.

Definitions

11.3.1 Definition A left R-module M is an abelian group (M,+) together with a map
· : R×M →M , which is usually called the scalar multiplication and written (x,m) 7→ xm,
such that

(Mod1) Scalar multiplication is associative, i.e. (xy)m = x(ym) for all x, y ∈ R andm ∈M .

(Mod2) The unit 1 ∈ R acts as identity that means 1 ·m = m for all m ∈M .

(Mod3) There are distributive laws on both sides:
(x+ y)m = xm+ ym and x(m+ n) = xm+ xn for all x, y ∈ R and m,n ∈M .

A right R-module N is an abelian group (N,+) together with a map · : N ×R→ N , which
is usually called scalar multiplication as well and written (n, y) 7→ ny, such that

(Mod 1)◦ Scalar multiplication is associative, i.e. n(xy) = (nx)y for all x, y ∈ R and n ∈ N .

(Mod 2)◦ The unit 1 ∈ R acts as identity that means n · 1 = n for all n ∈ N .

(Mod 3)◦ There are distributive laws on both sides:
n(x+ y) = nx+ ny and (m+ n)y = my + ny for all x, y ∈ R and m,n ∈ N .

By an R-module we always understand a left R-module if not explicitely mentioned differ-
ently.

11.3.2 Remark Another definition of a left R module can be given as follows. If M
is an abelian group, End(M) is the set of homomorphisms f : M → M . This can be
made into a (noncommutative) ring. Addition is defined pointwise, and multiplication is
by composition. The identity element is the identity function idM . If R is a ring and
R→ End(M) a homomorphism, then M is made into a left R-module, and vice versa.

11.3.3 Examples (a) If R is a ring, then R is a left R-module by multiplication on the
left, and a right R-module by multiplication on the right.

(b) A Z-module is the same thing as an abelian group.

11.3.4 Definition If M is a left (respectively right) R-module, a non-empty subset N ⊂
M is a submodule if it is an additive subgroup (meaning closed under addition and inversion)
and is closed under multiplication by elements of R, i.e. aN ⊂ N (respectively Na ⊂ N)
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for a ∈ R. A submodule is a left (respectively right) R-module in its own right. If N ⊂M
is a submodule, there is a commutative diagram:

R×M0

��

//M0

��
R×M //M

respectively N ×R

��

// N

��
M ×R //M ,

depending on whether M is a left or right R-module. Here the horizontal maps are multi-
plication by scalars.

11.3.5 Examples (a) Let R be a commutative ring; then an ideal in R is the same thing
as a submodule of R.

(b) If R is a commutative ring, an R-algebra is an R-module in an obvious way. More
generally, if R is a commutative ring and A is an R-algebra, any A-module becomes an
R-module by pulling back the multiplication map via R→ A.

Dual to submodules is the notion of a quotient module, which we define next.

11.3.6 Definition Suppose M is an R-module and N a submodule. Then the abelian
group M/N = {m + N ∈ P(M) | m ∈ M} (of cosets) is an R-module, called the quotient
module of M by by N . Multiplication is as follows. If one has a coset m + N ∈ M/N ,
one multiplies this by a ∈ R to get the coset ax+M0. This does not depend on the coset
representative.

The categorical structure on modules

So far, we have talked about modules, but we have not discussed morphisms between
modules, and have yet to make the class of modules over a given ring into a category. This
we do next.

Let us thus introduce a few more basic notions.

11.3.7 Definition Let R be a ring. Suppose M,N are R-modules. A map f : M → N is
a module-homomorphism if it preserves all the relevant structures. Namely, it must be
a homomorphism of abelian groups, f(x + y) = f(x) + f(y), and second it must preserve
multiplication:

f(ax) = af(x)

for a ∈ R, x ∈M .

A simple way of getting plenty of module-homomorphisms is simply to consider multipli-
cation by a fixed element of the ring.

11.3.8 Example If R is a commutative ring, M an R-module, and a ∈ R, then multiplica-
tion by a is a module-homomorphism M

a→M for any R-module M . Such homomorphisms
are called homotheties. When one considers modules over noncommutative rings, this is
no longer true.
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If M
f→ N and N

g→ P are module-homomorphisms, their composite M
g◦f→ P clearly is too.

Thus, for any commutative ring R, the class of R-modules and module-homomorphisms
forms a category.

11.3.9 Remark The initial object in this category is the zero module, and this is also the
final object.

In general, a category where the initial object and final object are the same (that is,
isomorphic) is called a pointed category. The common object is called the zero object. In
a pointed category C, there is a morphism X → Y for any two objects X,Y ∈ C: if ∗ is
the zero object, then we can take X → ∗ → Y . This is well-defined and is called the zero
morphism. One can easily show that the composition (on the left or the right) of a zero
morphism is a zero morphism (between a possibly different set of objects).

In the case of the category of modules, the zero object is clearly the zero module, and the
zero morphism M → N sends m 7→ 0 for each m ∈M .

11.3.10 Definition Let f : M → N be a module homomorphism. In this case, the kernel
Ker f of f is the set of elements m ∈ M with f(m) = 0. This is a submodule of M , as is
easy to see.

The image Im f of f (the set-theoretic image, i.e. the collection of all f(x), x ∈M) is also
a submodule of N .

The cokernel of f is defined by N/ Im(f).

11.3.11 Remark The universal property of the kernel is as follows. Let M
f→ N be a

morphism with kernel K ⊂ M . Let T → M be a map. Then T → M factors through the
kernel K →M if and only if its composition with f (a morphism T → N) is zero. That is,
an arrow T → K exists in the diagram (where the dotted arrow indicates we are looking
for a map that need not exist)

T

~~ ��
K //M

f // N

if and only if the composite T → N is zero. In particular, if we think of the hom-sets as
abelian groups (i.e. Z-modules)

homR(T,K) = ker (homR(T,M)→ homR(T,N)) .

In other words, one may think of the kernel as follows. If X
f→ Y is a morphism, then the

kernel ker(f) is the equalizer of f and the zero morphism X
0→ Y .

11.3.12 Remark What is the universal property of the cokernel?

11.3.13 Remark On the category of modules, the functor assigning to each module M its
underlying set is corepresentable (cf. remark 11.1.18). What is the corepresenting object?

67



11. Rings and Modules 11.3. Modules over a ring

We shall now introduce the notions of direct sum and direct product. Let I be a set, and
suppose that for each i ∈ I, we are given an R-module Mi.

11.3.14 Definition The direct product
∏
Mi is set-theoretically the cartesian product.

It is given the structure of an R-module by addition and multiplication pointwise on each
factor.

11.3.15 Definition The direct sum
⊕

IMi is the set of elements in the direct product
such that all but finitely many entries are zero. The direct sum is a submodule of the
direct product.

11.3.16 Example The direct product is a product in the category of modules, and the
direct sum is a coproduct. This is easy to verify: given maps fi : M →Mi, then we get get
a unique map f : M →

∏
Mi by taking the product in the category of sets. The case of a

coproduct is dual: given maps gi : Mi → N , then we get a map
⊕
Mi → N by taking the

sum g of the gi: on a family (mi) ∈
⊕
Mi, we take g(mi) =

∑
I gi(mi); this is well-defined

as almost all the mi are zero.

example 11.3.16 shows that the category of modules over a fixed commutative ring has
products and coproducts. In fact, the category of modules is both complete and cocom-
plete (see definition 1.4.44 for the definition). To see this, it suffices to show that (by
theorem 1.4.29 and its dual) that this category admits equalizers and coequalizers.

The equalizer of two maps

M
f,g

⇒ N

is easily checked to be the submodule of M consisting of m ∈ M such that f(m) = g(m),
or, in other words, the kernel of f − g. The coequalizer of these two maps is the quotient
module of N by the submodule {f(m)− g(m),m ∈M}, or, in other words, the cokernel
of f − g.

Thus:

11.3.17 Proposition If R is a ring, the category of R-modules is complete and cocom-
plete.

11.3.18 Example Note that limits in the category of R-modules are calculated in the
same way as they are for sets, but colimits are not. That is, the functor from R-modules to
Sets, the forgetful functor, preserves limits but not colimits. Indeed, we will see that the
forgetful functor is a right adjoint (proposition 11.6.3), which implies it preserves limits
(by proposition 1.6.8).

Exactness

Finally, we introduce the notion of exactness.
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11.3.19 Definition Let f : M → N be a morphism of R-modules. Suppose g : N → P is
another morphism of R-modules. The pair of maps is a complex if g◦f = 0 : M → N → P .
This is equivalent to the condition that Im(f) ⊂ Ker(g).

This complex is exact (or exact at N) if Im(f) = Ker(g). In other words, anything that is
killed when mapped to P actually comes from something in M .

We shall often write pairs of maps as sequences

A
f→ B

g→ C

and say that the sequence is exact if the pair of maps is, as in Definition 11.3.19. A longer
(possibly infinite) sequence of modules

A0 → A1 → A2 → . . .

will be called a complex if each set of three consecutive terms is a complex, and exact if
it is exact at each step.

11.3.20 Example The sequence 0→ A
f→ B is exact if and only if the map f is injective.

Similarly, A
f→ B → 0 is exact if and only if f is surjective. Thus, 0 → A

f→ B → 0 is
exact if and only if f is an isomorphism.

One typically sees this definition applied to sequences of the form

0→M ′
f→M

g→M ′′ → 0,

which, if exact, is called a short exact sequence. Exactness here means that f is injective,
g is surjective, and f maps onto the kernel of g. So M ′′ can be thought of as the quotient
M/M ′.

11.3.21 Example Conversely, if M is a module and M ′ ⊂M a submodule, then there is
a short exact sequence

0→M ′ →M →M/M ′ → 0.

So every short exact sequence is of this form.

Suppose F is a functor from the category of R-modules to the category of S-modules,
where R,S are rings. Then:

11.3.22 Definition 1. F is called additive if F preserves direct sums.

2. F is called exact if F is additive and preserves exact sequences.

3. F is called left exact if F is additive and preserves exact sequences of the form
0→M ′ →M →M ′′. Equivalently, F preserves kernels.

4. F is right exact if F is additive and F preserves exact sequences of the form M ′ →
M →M ′′ → 0, i.e. F preserves cokernels.
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The reader should note that much of homological algebra can be developed using the more
general setting of an abelian category, which axiomatizes much of the standard properties
of the category of modules over a ring. Such a generalization turns out to be necessary
when many natural categories, such as the category of chain complexes or the category of
sheaves on a topological space, are not naturally categories of modules. We do not go into
this here, cf. ?.

A functor F is exact if and only if it is both left and right exact. This actually requires
proof, though it is not hard. Namely, right-exactness implies that F preserves cokernels.
Left-exactness implies that F preserves kernels. F thus preserves images, as the image of
a morphism is the kernel of its cokernel. So if

A→ B → C

is a short exact sequence, then the kernel of the second map is equal to the image of the
first; we have just seen that this is preserved under F .

From this, one can check that left-exactness is equivalent to requiring that F preserve
finite limits (as an additive functor, F automatically preserves products, and we have just
seen that F is left-exact iff it preserves kernels). Similarly, right-exactness is equivalent to
requiring that F preserve finite colimits. So, in any category with finite limits and colimits,
we can talk about right or left exactness of a functor, but the notion is used most often for
categories with an additive structure (e.g. categories of modules over a ring).

11.3.23 Remark Suppose whenever 0→ A′ → A→ A′′ → 0 is short exact, then FA′ →
FA→ FA′′ → 0 is exact. Prove that F is right-exact. So we get a slightly weaker criterion
for right-exactness.

Do the same for left-exact functors.

Split exact sequences

Let f : A → B be a map of sets which is injective. Then there is a map g : A → B such

that the composite g◦f : A
f→ B

g→ A is the identity. Namely, we define g to be the inverse
of f on f(A) and arbitrarily on B − f(A). Conversely, if f : A → B admits an element
g : B → A such that g ◦ f = 1A, then f is injective. This is easy to see, as any a ∈ A can
be “recovered” from f(a) (by applying g).

In general, however, this observation does not generalize to arbitrary categories.

11.3.24 Definition Let C be a category. A morphism A
f→ B is called a split injection

if there is g : B → A with g ◦ f = 1A.

11.3.25 Remark (General nonsense) Suppose f : A → B is a split injection. Show
that f is a categorical monomorphism. (Idea: the map hom(C,A)→ hom(C,B) becomes
a split injection of sets thanks to g.)
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add: what is a categorical monomorphism? Maybe omit the exercise

In the category of sets, we have seen above that any monomorphism is a split injection.
This is not true in other categories, in general.

11.3.26 Remark Consider the morphism Z→ Z given by multiplication by 2. Show that
this is not a split injection: no left inverse g can exist.

We are most interested in the case of modules over a ring.

11.3.27 Proposition A morphism f : A → B in the category of R-modules is a split
injection if and only if:

1. f is injective.

2. f(A) is a direct summand in B.

The second condition means that there is a submodule B′ ⊂ B such that B = B′ ⊕ f(A)
(internal direct sum). In other words, B = B′ + f(A) and B′ ∩ f(A) = {0}.

Proof. Suppose the two conditions hold, and we have a module B′ which is a complement
to f(A). Then we define a left inverse

B
g→ A

by letting g|f(A) = f−1 (note that f becomes an isomorphism A→ f(A)) and g|B′ = 0. It
is easy to see that this is indeed a left inverse, though in general not a right inverse, as g
is likely to be non-injective.

Conversely, suppose f : A → B admits a left inverse g : B → A. The usual argument
(as for sets) shows that f is injective. The essentially new observation is that f(A) is a
direct summand in B. To define the complement, we take ker(g) ⊂ B. It is easy to see (as
g ◦ f = 1A) that ker(g) ∩ f(A) = {0}. Moreover, ker(g) + f(A) fills B: given b ∈ B, it is
easy to check that

b− f(g(b)) ∈ ker(g).

Thus we find that the two conditions are satisfied.

add: further explanation, exactness of filtered colimits

The five lemma

The five lemma will be a useful tool for us in proving that maps are isomorphisms. Often
this argument is used in inductive proofs. Namely, we will see that often “long exact
sequences” (extending infinitely in one or both directions) arise from short exact sequences
in a natural way. In such events, the five lemma will allow us to prove that certain
morphisms are isomorphisms by induction on the dimension.
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11.3.28 Theorem Suppose given a commutative diagram

A

��

// B

��

// C

��

// D

��

// E

��
A′ // B′ // C ′ // D′ // E′

such that the rows are exact and the four vertical maps A→ A′, B → B′, D → D′, E → E′

are isomorphisms. Then C → C ′ is an isomorphism.

This is the type of proof that goes by the name of “diagram-chasing,” and is best thought
out visually for oneself, even though we give a complete proof.

Proof. We have the diagram

A
k //

a
��

B
l //

b
��

C
m //

g

��

D
n //

d
��

E

e
��

F p
// G q

// H r
// I s

// J

where the rows are exact at B,C,D,G,H, I and the squares commute. In addition, suppose
that a, b, d, e are isomorphisms. We will show that g is an isomorphism.

We show that g is surjective:

Suppose that h ∈ H. Since d is surjective, there exists an element d ∈ D such that
r(h) = d(d) ∈ I. By the commutativity of the rightmost square, s(r(h)) = e(n(d)). The
exactness at I means that Im r = ker s, so hence e(n(d)) = s(r(h)) = 0. Because e is
injective, n(d) = 0. Then d ∈ Ker(n) = Im(m) by exactness at D. Therefore, there is
some c ∈ C such that m(c) = d. Now, d(m(c)) = d(d) = r(h) and by the commutativity
of squares, d(m(c)) = r(g(c)), so therefore r(g(c)) = r(h). Since r is a homomorphism,
r(g(c)− h) = 0. Hence g(c)− h ∈ ker r = Im q by exactness at H.

Therefore, there exists g ∈ G such that q(g) = g(c) − h. b is surjective, so there is some
b ∈ B such that b(b) = g and hence q(b(b)) = g(c)− h. By the commutativity of squares,
q(b(b)) = g(l(b)) = g(c) − h. Hence h = g(c) − g(l(b)) = g(c − l(b)), and therefore g is
surjective.

So far, we’ve used that b and g are surjective, e is injective, and exactness at D, H, I.

We show that g is injective:

Suppose that c ∈ C and g(c) = 0. Then r(g(c)) = 0, and by the commutativity of
squares, d(m(c)) = 0. Since d is injective, m(c) = 0, so c ∈ kerm = Im l by exactness
at C. Therefore, there is b ∈ B such that l(b) = c. Then g(l(b)) = g(c) = 0, and by the
commutativity of squares, q(b(b)) = 0. Therefore, b(b) ∈ ker q, and by exactness at G,
b(b) ∈ ker q = Im p.

There is now f ∈ F such that p(f) = b(b). Since a is surjective, this means that there
is a ∈ A such that f = a(a), so then b(b) = p(a(a)). By commutativity of squares,
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b(b) = p(a(a)) = b(k(a)), and hence b(k(a)−b) = 0. Since b is injective, we have k(a)−b = 0,
so k(a) = b. Hence b ∈ Im k = ker l by commutativity of squares, so l(b) = 0. However, we
defined b to satisfy l(b) = c, so therefore c = 0 and hence g is injective.

Here, we used that a is surjective, b, d are injective, and exactness at B,C,G.

Putting the two statements together, we see that g is both surjective and injective, so g
is an isomorphism. We only used that b, d are isomorphisms and that a is surjective, e is
injective, so we can slightly weaken the hypotheses; injectivity of a and surjectivity of e
were unnecessary.

11.4. Ideals in commutative rings

The notion of an ideal has already been defined. Now we will introduce additional termi-
nology related to the theory of ideals.

Prime and maximal ideals

Recall that the notion of an ideal generalizes that of divisibility. In elementary number
theory, though, one finds that questions of divisibility basically reduce to questions about
primes. The notion of a “prime ideal” is intended to generalize the familiar idea of a prime
number.

11.4.1 Definition An ideal I ⊂ R is said to be prime if

(PI1) 1 /∈ I (by convention, 1 is not a prime number).

(PI2) If xy ∈ I, either x ∈ I or y ∈ I.

11.4.2 Example If R = Z and p ∈ R, then (p) ⊂ Z is a prime ideal if and only if p or −p
is a prime number in N or if p is zero.

11.4.3 Example If R is any commutative ring, there are two obvious ideals. These ob-
vious ones are the zero ideal (0) consisting only of the zero element, and the unit element
(1) consisting of all of R.

11.4.4 Definition An ideal I ⊂ R is called maximal if

(MI1) 1 /∈ I.

(MI2) Any larger ideal contains 1 (i.e., is all of R).

11.4.5 Remark So a maximal ideal is a maximal element in the partially ordered set of
proper ideals. Recall that an ideal is called proper if it does not contain 1.

11.4.6 Remark Find the maximal ideals in C[t].
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11.4.7 Proposition A maximal ideal is prime.

Proof. First, a maximal ideal does not contain 1.

Let I ⊂ R be a maximal ideal. We need to show that if xy ∈ I, then one of x, y is in I.
If x /∈ I, then (I, x) = I + (x) (the ideal generated by I and x) strictly contains I, so by
maximality contains 1. In particular, 1 ∈ I + (x), so we can write

1 = a+ xb

where a ∈ I, b ∈ R. Multiply both sides by y:

y = ay + bxy.

Both terms on the right here are in I (a ∈ I and xy ∈ I), so we find that y ∈ I.

Given a ring R, what can we say about the collection of ideals in R? There are two obvious
ideals in R, namely (0) and (1). These are the same if and only if 0 = 1, i.e. R is the zero
ring. So for any nonzero commutative ring, we have at least two distinct ideals.

Next, we show that maximal ideals always do exist, except in the case of the zero ring.

11.4.8 Proposition Let R be a commutative ring. Let I ⊂ R be a proper ideal. Then I
is contained in a maximal ideal.

Proof. This requires the axiom of choice in the form of Zorn’s lemma. Let P be the
collection of all ideals J ⊂ R such that I ⊂ J and J 6= R. Then P is a poset with respect
to inclusion. P is nonempty because it contains I. Note that given a (nonempty) linearly
ordered collection of ideals Jα ∈ P , the union

⋃
Jα ⊂ R is an ideal: this is easily seen in

view of the linear ordering (if x, y ∈
⋃
Jα, then both x, y belong to some Jγ , so x+ y ∈ Jγ ;

multiplicative closure is even easier). The union is not all of R because it does not contain
1.

This implies that P has a maximal element by Zorn’s lemma. This maximal element
may be called M; it’s a proper element containing I. I claim that M is a maximal ideal,
because if it were contained in a larger ideal, that would be in P (which cannot happen by
maximality) unless it were all of R.

11.4.9 Corollary Let R be a nonzero commutative ring. Then R has a maximal ideal.

Proof. Apply the lemma to the zero ideal.

11.4.10 Corollary Let R be a nonzero commutative ring. Then x ∈ R is invertible if and
only if it belongs to no maximal ideal m ⊂ R.

Proof. Indeed, x is invertible if and only if (x) = 1. That is, if and only if (x) is not a
proper ideal; now proposition 11.4.8 finishes the argument.
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Fields and integral domains

Recall:

11.4.11 Definition A commutative ring R is called a field if 1 6= 0 and for every x ∈
R− {0} there exists an inverse x−1 ∈ R such that xx−1 = 1.

This condition has an obvious interpretation in terms of ideals.

11.4.12 Proposition A commutative ring with 1 6= 0 is a field iff it has only the two
ideals (1), (0).

Alternatively, a ring is a field if and only if (0) is a maximal ideal.

Proof. Assume R is a field. Suppose I ⊂ R. If I 6= (0), then there is a nonzero x ∈ I.
Then there is an inverse x−1. We have x−1x = 1 ∈ I, so I = (1). In a field, there is thus
no room for ideals other than (0) and (1).

To prove the converse, assume every ideal of R is (0) or (1). Then for each x ∈ R, (x) = (0)
or (1). If x 6= 0, the first cannot happen, so that means that the ideal generated by x is
the unit ideal. So 1 is a multiple of x, implying that x has a multiplicative inverse.

So fields also have an uninteresting ideal structure.

11.4.13 Corollary If R is a ring and I ⊂ R is an ideal, then I is maximal if and only if
R/I is a field.

Proof. The basic point here is that there is a bijection between the ideals of R/I and ideals
of R containing I.

Denote by φ : R→ R/I the reduction map. There is a construction mapping ideals of R/I
to ideals of R. This sends an ideal in R/I to its inverse image. This is easily seen to map
to ideals of R containing I. The map from ideals of R/I to ideals of R containing I is a
bijection, as one checks easily.

It follows that R/I is a field precisely if R/I has precisely two ideals, i.e. precisely if there
are precisely two ideals in R containing I. These ideals must be (1) and I, so this holds if
and only if I is maximal.

There is a similar characterization of prime ideals.

11.4.14 Definition A commutative ring R is an integral domain if for all x, y ∈ R,
x 6= 0 and y 6= 0 imply xy 6= 0.

11.4.15 Proposition An ideal I ⊂ R is prime iff R/I is a domain.

11.4.16 Remark Prove proposition 11.4.15.
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Any field is an integral domain. This is because in a field, nonzero elements are invertible,
and the product of two invertible elements is invertible. This statement translates in ring
theory to the statement that a maximal ideal is prime.

Finally, we include an example that describes what some of the prime ideals in a polynomial
ring look like.

11.4.17 Example Let R be a ring and P a prime ideal. We claim that PR[x] ⊂ R[x] is
a prime ideal.

Consider the map φ̃ : R[x]→ (R/P )[x] with φ̃(a0+· · ·+anxn) = (a0+P )+· · ·+(an+P )xn.
This is clearly a homomorphism because φ : R → R/P is, and its kernel consists of
those polynomials a0 + · · · + anx

n with a0, . . . , an ∈ P , which is precisely P [x]. Thus
R[x]/P [x] ' (R/P )[x], which is an integral domain because R/P is an integral domain.
Thus P [x] is a prime ideal.

However, if P is a maximal ideal, then P [x] is never a maximal ideal because the ideal
P [x]+(x) (the polynomials with constant term in P ) always strictly contains P [x] (because
if x ∈ P [x] then 1 ∈ P , which is impossible). Note that P [x] + (x) is the kernel of the
composition of φ̃ with evaluation at 0, i.e (ev0 ◦ φ̃) : R[x] → R/P , and this map is a
surjection and R/P is a field, so that P [x] + (x) is the maximal ideal in R[x] containing
P [x].

11.4.18 Remark Let R be a domain. Consider the set of formal quotients a/b, a, b ∈ R
with b 6= 0. Define addition and multiplication using usual rules. Show that the resulting
object K(R) is a ring, and in fact a field. The natural map R → K(R), r → r/1, has a
universal property. If R ↪→ L is an injection of R into a field L, then there is a unique
morphism K(R) → L of fields extending R → L. This construction will be generalized
when we consider localization. This construction is called the quotient field.

Note that a non-injective map R→ L will not factor through the quotient field!

11.4.19 Remark Let R be a commutative ring. Then the Jacobson radical of R is the
intersection

⋂
m of all maximal ideals m ⊂ R. Prove that an element x is in the Jacobson

radical if and only if 1− yx is invertible for all y ∈ R.

Prime avoidance

The following fact will come in handy occasionally. We will, for instance, use it much later
to show that an ideal consisting of zerodivisors on a module M is contained in associated
prime.

11.4.20 Theorem (Prime avoidance) Let I1, . . . , In ⊂ R be ideals. Let A ⊂ R be a
subset which is closed under addition and multiplication. Assume that at least n− 2 of the
ideals are prime. If A ⊂ I1 ∪ · · · ∪ In, then A ⊂ Ij for some j.

The result is frequently used in the following specific case: if an ideal I is contained in a
finite union

⋃
pi of primes, then I ⊂ pi for some i.
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Proof. Induct on n. If n = 1, the result is trivial. The case n = 2 is an easy argument: if
a1 ∈ Ar I1 and a2 ∈ Ar I2, then a1 + a2 ∈ Ar (I1 ∪ I2).

Now assume n ≥ 3. We may assume that for each j, A 6⊂ I1 ∪ · · · ∪ Îj ∪ · · · In.3 Fix
an element aj ∈ A r (I1 ∪ · · · ∪ Îj ∪ · · · In). Then this aj must be contained in Ij since
A ⊂

⋃
Ij . Since n ≥ 3, one of the Ij must be prime. We may assume that I1 is prime.

Define x = a1 + a2a3 · · · an, which is an element of A. Let’s show that x avoids all of the
Ij . If x ∈ I1, then a2a3 · · · an ∈ I1, which contradicts the fact that ai 6∈ Ij for i 6= j and
that I1 is prime. If x ∈ Ij for j ≥ 2. Then a1 ∈ Ij , which contradicts ai 6∈ Ij for i 6= j.

The Chinese remainder theorem

Let m,n be relatively prime integers. Suppose a, b ∈ Z; then one can show that the two
congruences x ≡ a mod m and x ≡ b mod n can be solved simultaneously in x ∈ Z. The
solution is unique, moreover, modulo mn. The Chinese remainder theorem generalizes this
fact:

11.4.21 Theorem (Chinese remainder theorem) Let I1, . . . In be ideals in a ring R
which satisfy Ii+Ij = R for i 6= j. Then we have I1∩· · ·∩In = I1 . . . In and the morphism
of rings

R→
⊕

R/Ii

is an epimorphism with kernel I1 ∩ · · · ∩ In.

Proof. First, note that for any two ideals I1 and I2, we have I1I2 ⊂ I1∩I2 and (I1 +I2)(I1∩
I2) ⊂ I1I2 (because any element of I1 + I2 multiplied by any element of I1 ∩ I2 will clearly
be a sum of products of elements from both I1 and I2). Thus, if I1 and I2 are coprime, i.e.
I1 + I2 = (1) = R, then (1)(I1 ∩ I2) = (I1 ∩ I2) ⊂ I1I2 ⊂ I1 ∩ I2, so that I1 ∩ I2 = I1I2.
This establishes the result for n = 2.

If the ideals I1, . . . , In are pairwise coprime and the result holds for n− 1, then

n−1⋂
i=1

Ii =

n−1∏
i=1

Ii.

Because In + Ii = (1) for each 1 ≤ i ≤ n− 1, there must be xi ∈ In and yi ∈ Ii such that
xi + yi = 1. Thus, zn =

∏n−1
i=1 yi =

∏n−1
i=1 (1 − xi) ∈

∏n−1
i=1 Ii, and clearly zn + In = 1 + In

since each xi ∈ In. Thus In +
∏n−1
i=1 Ii = In +

⋂n−1
i=1 Ii = (1), and we can now apply the

n = 2 case to conclude that
⋂n
i=1 Ii =

∏n
i=1 Ii.

Note that for any i, we can construct a zi with zi ∈ Ij for j 6= i and zi + Ii = 1 + Ii via the
same procedure.

Define φ : R→
⊕
R/Ii by φ(a) = (a+ I1, . . . , a+ In). The kernel of φ is

⋂n
i=1 Ii, because

a + Ii = 0 + Ii iff a ∈ Ii, so that φ(a) = (0 + I1, . . . , 0 + In) iff a ∈ Ii for all i, that is,
a ∈

⋂n
i=1 Ii. Combined with our previous result, the kernel of φ is

∏n
i=1 Ii.

3The hat means omit Ij .
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Finally, recall that we constructed zi ∈ R such that zi + Ii = 1 + Ii, and z + Ij = 0 + Ij
for all j 6= i, so that φ(zi) = (0 + I1, . . . , 1 + Ii, . . . , 0 + In). Thus, φ(a1z1 + · · ·+ anzn) =
(a1 + I1, . . . , an + In) for all ai ∈ R, so that φ is onto. By the first isomorphism theorem,
we have that R/I1 · · · In '

⊕n
i=1R/Ii.

11.5. Some special classes of domains

Principal ideal domains

11.5.1 Definition A ring R is a principal ideal domain or PID if R 6= 0, R is not a
field, R is a domain, and every ideal of R is principal.

These have the next simplest theory of ideals. Each ideal is very simple—it’s principal—
though there might be a lot of ideals.

11.5.2 Example Z is a PID. The only nontrivial fact to check here is that:

11.5.3 Proposition Any nonzero ideal I ⊂ Z is principal.

Proof. If I = (0), then this is obvious. Else there is n ∈ I − {0}; we can assume n > 0.
Choose n ∈ I as small as possible and positive. Then I claim that the ideal I is generated
by (n). Indeed, we have (n) ⊂ I obviously. If m ∈ I is another integer, then divide m by
n, to find m = nb+ r for r ∈ [0, n). We find that r ∈ I and 0 ≤ r < n, so r = 0, and m is
divisible by n. And I ⊂ (n).

So I = (n).

A module M is said to be finitely generated if there exist elements x1, . . . , xn ∈ M such
that any element of M is a linear combination (with coefficients in R) of the xi. (We shall
define this more formally below.) One reason that PIDs are so convenient is:

11.5.4 Theorem (Structure theorem) If M is a finitely generated module over a prin-
cipal ideal domain R, then M is isomorphic to a direct sum

M '
n⊕
i=1

R/ai,

for various ai ∈ R (possibly zero).

add: at some point, the proof should be added. This is important!
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Unique factorization domains

The integers Z are especially nice because of the fundamental theorem of arithmetic, which
states that every integer has a unique factorization into primes. This is not true for every
integral domain.

11.5.5 Definition An element of a domain R is irreducible if it cannot be written as
the product of two non-unit elements of R.

11.5.6 Example Consider the integral domain Z[
√
−5]. We saw earlier that

6 = 2 · 3 = (1 +
√
−5)(1−

√
−5),

which means that 6 was written as the product of two non-unit elements in different ways.
Z[
√
−5] does not have unique factorization.

11.5.7 Definition A domain R is a unique factorization domain or UFD if every
non-unit x ∈ R satisfies

1. x can be written as a product x = p1p2 · · · pn of irreducible elements pi ∈ R

2. if x = q1q2 · · · qm where qi ∈ R are irreducible then the pi and qi are the same up to
order and multiplication by units.

11.5.8 Example Z is a UFD, while Z[
√
−5] is not. In fact, many of our favorite domains

have unique factorization. We will prove that all PIDs are UFDs. In particular, in re-
mark 11.5.13 and remark 11.5.14, we saw that Z[i] and F [t] are PIDs, so they also have
unique factorization.

11.5.9 Theorem Every principal ideal domain is a unique factorization domain.

Proof. Suppose that R is a principal ideal domain and x is an element of R. We first
demonstrate that x can be factored into irreducibles. If x is a unit or an irreducible, then
we are done. Therefore, we can assume that x is reducible, which means that x = x1x2 for
non-units x1, x2 ∈ R. If there are irreducible, then we are again done, so we assume that
they are reducible and repeat this process. We need to show that this process terminates.

Suppose that this process continued infinitely. Then we have an infinite ascending chain of
ideals, where all of the inclusions are proper: (x) ⊂ (x1) ⊂ (x11) ⊂ · · · ⊂ R. We will show
that this is impossible because any infinite ascending chain of ideals I1 ⊂ I2 ⊂ · · · ⊂ R of
a principal ideal domain eventually becomes stationary, i.e. for some n, Ik = In for k ≥ n.
Indeed, let I =

⋃∞
i=1 Ii. This is an ideal, so it is principally generated as I = (a) for some

a. Since a ∈ I, we must have a ∈ IN for some N , which means that the chain stabilizes
after IN .

It remains to prove that this factorization of x is unique. We induct on the number of
irreducible factors n of x. If n = 0, then x is a unit, which has unique factorization up to
units. Now, suppose that x = p1 · · · pn = q1 · · · qm for some m ≥ n. Since p1 divides x, it
must divide the product q1 · · · qm and by irreducibility, one of the factors qi. Reorder the qi
so that p1 divides q1. However, q1 is irreducible, so this means that p1 and q1 are the same
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up to multiplication by a unit u. Canceling p1 from each of the two factorizations, we see
that p2 · · · pn = uq2 · · · qm = q′2 · · · qm. By induction, this shows that the factorization of x
is unique up to order and multiplication by units.

Euclidean domains

A euclidean domain is a special type of principal ideal domain. In practice, it will often
happen that one has an explicit proof that a given domain is euclidean, while it might not
be so trivial to prove that it is a UFD without the general implication below.

11.5.10 Definition An integral domain R is a euclidean domain if there is a function
| · | : R→ Z≥0 (called the norm) such that the following hold.

1. |a| = 0 iff a = 0.

2. For any nonzero a, b ∈ R there exist q, r ∈ R such that b = aq + r and |r| < |a|.

In other words, the norm is compatible with division with remainder.

11.5.11 Theorem A euclidean domain is a principal ideal domain.

Proof. Let R be an euclidean domain, I ⊂ R and ideal, and b be the nonzero element of
smallest norm in I. Suppose a ∈ I. Then we can write a = qb + r with 0 ≤ r < |b|, but
since b has minimal nonzero absolute value, r = 0 and b|a. Thus I = (b) is principal.

As we will see, this implies that any euclidean domain admits unique factorization.

11.5.12 Proposition Let F be a field. Then the polynomial ring F [t] is a euclidean
domain. In particular, it is a PID.

Proof. We define add:

11.5.13 Remark Prove that Z[i] is principal. (Define the norm as N(a+ ib) = a2 + b2.)

11.5.14 Remark Prove that the polynomial ring F [t] for F a field is principal.

It is not true that a PID is necessarily euclidean. Nevertheless, it was shown in ? that the
converse is “almost” true. Namely, ? defines the notion of an almost euclidean domain.
A domain R is almost euclidean if there is a function d : R→ Z≥0 such that

1. d(a) = 0 iff a = 0.

2. d(ab) ≥ d(a) if b 6= 0.

3. If a, b ∈ R− {0}, then either b | a or there is r ∈ (a, b) with d(r) < d(b).

It is easy to see by the same argument that an almost euclidean domain is a PID. (Indeed,
let R be an almost euclidean domain, and I ⊂ R a nonzero ideal. Then choose x ∈ I −{0}
such that d(x) is minimal among elements in I. Then if y ∈ I − {0}, either x | y or
(x, y) ⊂ I contains an element with smaller d. The latter cannot happen, so the former
does.) However, in fact:
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11.5.15 Proposition (?) A domain is a PID if and only if it is almost euclidean.

Proof. Indeed, let R be a PID. Then R is a UFD (theorem 11.5.9), so for any x ∈ R, there
is a factorization into prime elements, unique up to units. If x factors into n elements, we
define d(x) = n; we set d(0) = 0. The first two conditions for an almost euclidean domain
are then evident.

Let x = p1 . . . pm and y = q1 . . . qn be two elements of R, factored into irreducibles. Suppose
x - y. Choose a generator b of the (principal) ideal (x, y); then obviously y | b so d(y) ≤ d(b).
But if d(y) = d(b), then the number of factors of y and b is the same, so y | b would imply
that y and b are associates. This is a contradiction, and implies that d(y) < d(b).

11.5.16 Remark We have thus seen that a euclidean domain is a PID, and a PID is a
UFD. Both converses, however, fail. By Gauss’s lemma (??), the polynomial ring Z[X] has
unique factorization, though the ideal (2, X) is not principal.

In ?, it is shown that the ring Z[1+
√
−19

2 ] is a PID but not euclidean (i.e. there is no
euclidean norm on it).

According to ?, sec. 8.3, proposition 11.5.15 actually goes back to Hasse (and these norms
are sometimes called “Dedekind-Hasse norms”).

11.6. Basic properties of modules

Free modules

We now describe a simple way of constructing modules over a ring, and an important class
of modules.

11.6.1 Definition A module M is free if it is isomorphic to R(S) =
⊕

S R for some index
set S. The cardinality of S is called the rank of the free module.

11.6.2 Example R is the simplest example of a free module.

Free modules have a universal property. Namely, recall that if M is an R-module, then to
give a homomorphism

R→M

is equivalent to giving an element m ∈ M (the image of 1). By the universal product of
the direct sum (which is the coproduct in the category of modules), it follows that to give
a map ⊕

I

→M

is the same as giving a map of sets I →M . In particular:

81



11. Rings and Modules 11.6. Basic properties of modules

11.6.3 Proposition The functor S 7→
⊕

S R from Ens to R-modules is the left adjoint to
the forgetful functor U from R-modules to Ens.

The claim now is that the notion of “rank” is well-defined for a free module. To see this,
we will have to use the notion of a maximal ideal (definition 11.4.4) and corollary 11.4.13.
Indeed, suppose

⊕
I R and

⊕
J R are isomorphic; we must show that I and J have the same

cardinality. Choose a maximal ideal m ⊂ R. Then, by applying the functor M →M/mM ,
we find that the R/m-vector spaces⊕

I

R/m,
⊕
J

R/m

are isomorphic. By linear algebra, I and J have the same cardinality.

Free modules have a bunch of nice properties. The first is that it is very easy to map out
of a free module.

11.6.4 Example Let I be an indexing set, and M an R-module. Then to give a morphism⊕
I

R→M

is equivalent to picking an element of M for each i ∈ I. Indeed, given such a collection of
elements {mi}, we send the generator of

⊕
I R with a 1 in the ith spot and zero elsewhere

to mi.

11.6.5 Example In a domain, every principal ideal (other than zero) is a free module of
rank one.

Another way of saying this is that the free module
⊕

I R represents the functor on modules
sending M to the set M I . We have already seen a special case of this for I a one-element
set (remark 11.3.13).

The next claim is that free modules form a reasonably large class of the category of R-
modules.

11.6.6 Proposition Given an R-module M , there is a free module F and a surjection

F �M.

Proof. We let F to be the free R-module on the elements em, one for each m ∈ M . We
define the map

F →M

by describing the image of each of the generators em: we just send each em to m ∈M . It
is clear that this map is surjective.
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We close by making a few remarks on matrices. Let M be a free module of rank n, and fix an
isomorphism M ' Rn. Then we can do linear algebra with M , even though we are working
over a ring and not necessarily a field, at least to some extent. For instance, we can talk
about n-by-n matrices over the ring R, and then each of them induces a transformation,
i.e. a module-homomorphism, M →M ; it is easy to see that every module-homomorphism
between free modules is of this form. Moreover, multiplication of matrices corresponds to
composition of homomorphisms, as usual.

11.6.7 Example Let us consider the question of when the transformation induced by an
n-by-n matrix is invertible. The answer is similar to the familiar one from linear algebra
in the case of a field. Namely, the condition is that the determinant be invertible.

Suppose that an n× n matrix A over a ring R is invertible. This means that there exists
A−1 so that AA−1 = I, so hence 1 = det I = det(AA−1) = (detA)(detA−1), and therefore,
detA must be a unit in R.

Suppose instead that an n×n matrix A over a ring R has an invertible determinant. Then,
using Cramer’s rule, we can actually construct the inverse of A.

We next show that if R is a commutative ring, the category of modules over R contains
enough information to reconstruct R. This is a small part of the story of Morita equivalence,
which we shall not enter into here.

11.6.8 Example Suppose R is a commutative ring, and let C be the category of R-
modules. The claim is that C, as an abstract category, determines R. Indeed, the claim is
that R is canonically the ring of endomorphisms of the identity functor 1C .

Such an endomorphism is given by a natural transformation φ : 1C → 1C . In other words,
one requires for each R-module M , a homomorphism of R-modules φM : M → M such
that if f : M → N is any homomorphism of modules, then there is a commutative square

M

f
��

φM //M

��
N

φN // N.

Here is a simple way of obtaining such endomorphisms. Given r ∈ R, we consider the map
r : M → m which just multiplies each element by r. This is a homomorphism, and it is
clear that it is natural in the above sense. There is thus a map R → End(1C) (note that
multiplication corresponds to composition of natural transformations). This map is clearly
injective; different r, s ∈ R lead to different natural transformations (e.g. on the R-module
R).

The claim is that any natural transformation of 1C is obtained in this way. Namely,
let φ : 1C → 1C be such a natural transformation. On the R-module R, φ must be
multiplication by some element r ∈ R (because homR(R,R) is given by such homotheties).
Consequently, one sees by drawing commutative diagrams that φ : R⊕S → R⊕S is of this
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form for any set S. So φ is multiplication by r on any free R-module. Since any module
M is a quotient of a free module F , we can draw a diagram

F

��

φF // F

��
M

φM //M.

Since the vertical arrows are surjective, we find that φF must be given by multiplication
by r too.

Finitely generated modules

The notion of a “finitely generated” module is analogous to that of a finite-dimensional
vector space.

11.6.9 Definition An R-module M is finitely generated if there exists a surjection
Rn → M for some n. In other words, it has a finite number of elements whose “span”
contains M .

The basic properties of finitely generated modules follow from the fact that they are stable
under extensions and quotients.

11.6.10 Proposition Let 0→M ′ →M →M ′′ → 0 be an exact sequence. If M ′,M ′′ are
finitely generated, so is M .

Proof. Suppose 0 → M ′
f→ M

g→ M ′′ → 0 is exact. Then g is surjective, f is injective,
and ker(g) = im(f). Now suppose M ′ is finitely generated, say by {a1, . . . , as}, and M ′′ is
finitely generated, say by {b1, . . . , bt}. Because g is surjective, each g−1(bi) is non-empty.
Thus, we can fix some ci ∈ g−1(bi) for each i.

For any m ∈M , we have g(m) = r1b1 + · · ·+ rtbt for some ri ∈ R because g(m) ∈M ′′ and
M ′′ is generated by the bi. Thus g(m) = r1g(ci) + · · · rtg(ct) = g(r1c1 + · · · + rtct), and
because g is a homomorphism we have m− (r1c1 + · · ·+ rtct) ∈ ker(g) = im(f). But M ′ is
generated by the ai, so the submodule im(f) ⊂M is finitely generated by the di = f(ai).

Thus, any m ∈M has m− (r1c1 + · · ·+ rtct) = rt+1d1 + · · ·+ rt+sds for some r1, . . . , rt+s,
thus M is finitely generated by c1, . . . , ct, d1, . . . , ds.

The converse is false. It is possible for finitely generated modules to have submodules
which are not finitely generated. As we shall see in chapter 41, this does not happen over
noetherian rings.

11.6.11 Example Consider the ring R = C[X1, X2, . . . , ] and the ideal (X1, X2, . . . ). This
ideal is a submodule of the finitely generated R-module R, but it is not finitely generated.

11.6.12 Remark Show that a quotient of a finitely generated module is finitely generated.

11.6.13 Remark Consider a split exact sequence 0→M ′ →M →M ′′ → 0. In this case,
show that if M is finitely generated, so is M ′.
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Finitely presented modules

Over messy rings, the notion of a finitely presented module is often a good substitute
for that of a finitely generated one. In fact, we are going to see (??), that there is a
general method of reducing questions about finitely presented modules over arbitrary rings
to finitely generated modules over finitely generated Z-algebras.

Throughout, fix a ring R.

11.6.14 Definition An R-module M is finitely presented if there is an exact sequence

Rm → Rn →M → 0.

The point of this definition is that M is the quotient of a free module Rn by the “relations”
given by the images of the vectors in Rm. Since Rm is finitely generated, M can be
represented via finitely many generators and finitely many relations.

The reader should compare this with the definition of a finitely generated module; there
we only require an exact sequence

Rn →M → 0.

As usual, we establish the usual properties of finitely presented modules.

We start by showing that if a finitely presented module M is generated by finitely many
elements, the “module of relations” among these generators is finitely generated itself. The
condition of finite presentation only states that there is one such set of generators such
that the module of generators is finitely generated.

11.6.15 Proposition Suppose M is finitely presented. Then if Rm �M is a surjection,
the kernel is finitely generated.

Proof. Let K be the kernel of Rm �M . Consider an exact sequence

F ′ → F →M → 0

where F ′, F are finitely generated and free, which we can do as M is finitely presented.
Draw a commutative and exact diagram

F ′ // F //

��

M //

��

0

0 // K // Rm //M // 0

The dotted arrow F → Rm exists as F is projective. There is induced a map F ′ → K. We
get a commutative and exact diagram

F ′ //

f
��

F //

g

��

M //

��

0

0 // K // Rm //M // 0

,
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to which we can apply the snake lemma. There is an exact sequence

0→ coker(f)→ coker(g)→ 0,

which gives an isomorphism coker(f) ' coker(g). However, coker(g) is finitely generated,
as a quotient of Rm. Thus coker(f) is too. Since we have an exact sequence

0→ Im(f)→ K → coker(f)→ 0,

and Im(f) is finitely generated (as the image of a finitely generated object, F ′), we find by
proposition 11.6.10 that coker(f) is finitely generated.

11.6.16 Proposition Given an exact sequence

0→M ′ →M →M ′′ → 0,

if M ′,M ′′ are finitely presented, so is M .

In general, it is not true that if M is finitely presented, then M ′ and M ′′ are. For instance,
it is possible that a submodule of the free, finitely generated module R (i.e. an ideal),
might fail to be finitely generated. We shall see in chapter 41 that this does not happen
over a noetherian ring.

Proof. Indeed, suppose we have exact sequences

F ′1 → F ′0 →M ′ → 0

and
F ′′1 → F ′′0 →M ′′ → 0

where the F ’s are finitely generated and free. We need to get a similar sequence for M .
Let us stack these into a diagram

F ′1

��

F ′′1

��
F ′0

��

F ′′0

��
0 //M ′ //M //M ′′ // 0

However, now, using general facts about projective modules (??), we can splice these
presentations into a resolution

F ′1 ⊕ F ′′1 → F ′0 ⊕ F ′′0 →M → 0,

which proves the assertion.

11.6.17 Corollary The (finite) direct sum of finitely presented modules is finitely pre-
sented.

Proof. Immediate from proposition 11.6.16
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Modules of finite length

A much stronger condition on modules that of finite generation is that of finite length.
Here, basically any operation one does will eventually terminate.

Let R be a commutative ring, M an R-module.

11.6.18 Definition M is simple if M 6= 0 and M has no nontrivial submodules.

11.6.19 Remark A torsion-free abelian group is never a simple Z-module.

11.6.20 Proposition M is simple if and only if it is isomorphic to R/m for m ⊂ R a
maximal ideal.

Proof. Let M be simple. Then M must contain a cyclic submodule Rx generated by some
x ∈ M − {0}. So it must contain a submodule isomorphic to R/I for some ideal I, and
simplicity implies that M ' R/I for some I. If I is not maximal, say properly contained
in J , then we will get a nontrivial submodule J/I of R/I ' M . Conversely, it is easy to
see that R/m is simple for m maximal.

11.6.21 Remark (Schur’s lemma) Let f : M → N be a module-homomorphism, where
M,N are both simple. Then either f = 0 or f is an isomorphism.

11.6.22 Definition M is of finite length if there is a finite filtration 0 ⊂ M0 ⊂ · · · ⊂
Mn = M where each M i/M i−1 is simple.

11.6.23 Remark Modules of finite length are closed under extensions (that is, if 0 →
M ′ →M →M ′′ → 0 is an exact sequence, then if M ′,M ′′ are of finite length, so is M).

In the next result (which will not be used in this chapter), we shall use the notions of a
noetherian and an artinian module. These notions will be developed at length in ??, and
we refer the reader there for more explanation. A module is noetherian if every ascending
chain M1 ⊂M2 ⊂ . . . of submodules stabilizes, and it is artinian if every descending chain
stabilizes.

11.6.24 Proposition M is finite length iff M is both noetherian and artinian.

Proof. Any simple module is obviously both noetherian and artinian: there are two sub-
modules. So if M is finite length, then the finite filtration with simple quotients implies
that M is noetherian and artinian, since these two properties are stable under extensions
(proposition 41.1.7 and proposition 41.4.5 of chapter 41).

Suppose M 6= 0 is noetherian and artinian. Let M1 ⊂M be a minimal nonzero submodule,
which exists as M is artinian. This is necessarily simple. Then we have a filtration

0 = M0 ⊂M1.

If M1 = M , then the filtration goes up to M , and we have that M is of finite length. If
not, find a submodule M2 that contains M1 and is minimal among submodules containing
M1; then the quotient M2/M1 is simple. We have the filtration

0 = M0 ⊂M1 ⊂M2,
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which we can keep continuing until at some point we reach M . Note that since M is
noetherian, we cannot continue this strictly ascending chain forever.

11.6.25 Remark In particular, any submodule or quotient module of a finite length mod-
ule is of finite length. Note that the analog is not true for finitely generated modules unless
the ring in question is noetherian.

Our next goal is to show that the length of a filtration of a module with simple quotients
is well-defined. For this, we need:

11.6.26 Lemma Let 0 = M0 ⊂ M1 ⊂ · · · ⊂ Mn = M be a filtration of M with simple
quotients. Let N ⊂ M . Then the filtration 0 = M0 ∩N ⊂ M1 ∩N ⊂ · · · ⊂ N has simple
or zero quotients.

Proof. Indeed, for each i, (N ∩Mi)/(N ∩Mi−1) is a submodule of Mi/Mi−1, so is either
zero or simple.

11.6.27 Theorem (Jordan-Hölder) Let M be a module of finite length. In this case,
any two filtrations on M with simple quotients have the same length.

11.6.28 Definition This number is called the length of M and is denoted `(M).

Proof of theorem 11.6.27. Let us introduce a temporary definition: l(M) is the length of
the minimal filtration on M . We will show that any filtration of M (with simple quotients)
is of length l(M). This is the proposition in another form.

The proof of this claim is by induction on l(M). Suppose we have a filtration

0 = M0 ⊂M1 ⊂ · · · ⊂Mn = M

with simple quotients. We would like to show that n = l(M). By definition of l(M), there
is another filtration

0 = N0 ⊂ · · · ⊂ Nl(M) = M.

If l(M) = 0, 1, then M is zero or simple, which will necessarily imply that n = 0, 1
respectively. So we can assume l(M) ≥ 2. We can also assume that the result is known for
strictly smaller submodules of M .

There are two cases:

1. Mn−1 = Nl(M)−1. Then Mn−1 = Nl(M)−1 has l at most l(M) − 1. Thus by the
inductive hypothesis any two filtrations on Mn−1 have the same length, so n − 1 =
l(M)− 1, implying what we want.

2. We have Mn−1 ∩Nl(M)−1 (Mn−1, Nl(M)−1. Call this intersection K.

Now we have two filtrations of these modules Mn−1, Nl(M)−1 whose quotients are
simple. We can replace them such that the next term before them is K. To do this,
consider the filtrations

0 = M0 ∩K ⊂M1 ⊂ K ⊂ . . .Mn−1 ∩K = K ⊂Mn−1
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and
0 = N0 ∩K ⊂M1 ⊂ K ⊂ . . . Nl(M)−1 ∩K = K ⊂ Nl(M)−1.

These filtrations have simple or zero quotients by lemma 11.6.26, and sinceMn−1/K =
Mn−1/Mn−1 ∩Nl(M)−1 = M/Mn−1 is simple, and similarly for Nl(M)−1/K. We can
throw out redundancies to eliminate the zero terms. So we get two new filtrations of
Mn−1 and Nl(M)−1 whose second-to-last term is K.

By the inductive hypothesis any two filtrations on either of these proper submodules
Mn−1, Nl(M)−1 have the same length. Thus the lengths of the two new filtrations are
n− 1 and l(M)− 1, respectively. So we find that n− 1 = l(K) + 1 and l(M)− 1 =
l(K) + 1 by the inductive hypothesis. This implies what we want.

11.6.29 Remark Prove that the successive quotients Mi/Mi−1 are also determined (up
to permutation).
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12. Fields and Extensions

Introduction

In this chapter, we shall discuss the theory of fields. Recall that a field is an integral
domain for which all non-zero elements are invertible; equivalently, the only two ideals of
a field are (0) and (1) since any nonzero element is a unit. Consequently fields will be the
simplest cases of much of the theory developed later.

The theory of field extensions has a different feel from standard commutative algebra since,
for instance, any morphism of fields is injective. Nonetheless, it turns out that questions
involving rings can often be reduced to questions about fields. For instance, any integral
domain can be embedded in a field (its quotient field), and any local ring (that is, a ring
with a unique maximal ideal; we have not defined this term yet) has associated to it its
residue field (that is, its quotient by the maximal ideal). A knowledge of field extensions
will thus be useful.

12.1. Fields

Recall once again that:

12.1.1 Definition A field is an integral domain where every non-zero element is invertible.
Alternatively, it is a set k, endowed with binary operations of addition + and multiplication
·, which satisfy the usual axioms of associativity of + and ·, commutativity of + and ·, 0 and
1 being the neutral elements with respect to + and ·, respectively, the requirement 1 6= 0,
distributivity of · over +, existence of additive inverses, and existence of multiplicative
inverses for non-zero elements.

A subfield is a subset closed under these operations: equivalently, it is a subring that is
itself a field.

For a field k, we write k∗ for the subset k \ {0}. This generalizes the usual notation ?? R∗

that refers to the group of invertible elements in a ring R.
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Examples

To get started, let us begin by providing several examples of fields. The reader should
recall (corollary 11.4.13) that if R is a ring and I ⊂ R an ideal, then R/I is a field precisely
when I is maximal.

12.1.2 Example One of the most familiar examples of a field is the rational numbers Q.

12.1.3 Example If p is a prime number, then Z/(p) is a field, denoted Fp. Indeed, (p) is
a maximal ideal in Z. Thus, fields may be finite: Fp contains p elements.

12.1.4 Example (Quotients of the polynomial ring) In a principal ideal domain, ev-
ery prime ideal is principal. Now, by 11.5.12, if k is a field, then the polynomial ring k[x] is
a PID. It follows that if P ∈ k[x] is an irreducible polynomial (that is, a nonconstant poly-
nomial that does not admit a factorization into terms of smaller degrees), then k[x]/(P ) is
a field. It contains a copy of k in a natural way.

This is a very general way of constructing fields. For instance, the complex numbers C can
be constructed as R[x]/(x2 + 1).

12.1.5 Remark What is C[x]/(x2 + 1)?

12.1.6 Example (Quotient fields) Recall from remark 11.4.18 that, given an integral
domain A, there is an imbedding A ↪→ K(A) into a field K(A) formally constructed as
quotients a/b, a, b ∈ A (and b 6= 0) modulo an evident equivalence relation. This is called
the quotient field. The quotient field has the following universal property: given an
injection φ : A ↪→ K for a field K, there is a unique map ψ : K(A) → K making the
diagram commutative (i.e. a map of A-algebras). Indeed, it is clear how to define such a
map: we set

ψ(a/b) = φ(a)/φ(b),

where injectivity of φ assures that φ(b) 6= 0 if b 6= 0.

If the map is not injective, then such a factorization may not exist. Consider the imbedding
Z → Q into its quotient field, and consider the map Z → Fp: this last map goes from Z
into a field, but it does not factor through Q (as p is invertible in Q and zero in Fp!).

12.1.7 Example (Rational function field) If k is a field, then we can consider the field
k(x) of rational functions over k. This is the quotient field of the polynomial ring k[x];
in other words, it is the set of quotients F/G for F,G ∈ k[x] with the obvious equivalence
relation.

Here is a fancier example of a field.

12.1.8 Example Let X be a Riemann surface.1 Let C(X) denote the set of meromorphic
functions on X; clearly C(X) is a ring under multiplication and addition of functions.
It turns out that in fact C(X) is a field; this is because if a nonzero function f(z) is
meromorphic, so is 1/f(z). For example, let S2 be the Riemann sphere; then we know
from complex analysis that the ring of meromorphic functions C(S2) is the field of rational
functions C(z).

1Readers not familiar with Riemann surfaces may ignore this example.
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One reason fields are so nice from the point of view of most other chapters in this book is
that the theory of k-modules (i.e. vector spaces), for k a field, is very simple. Namely:

12.1.9 Proposition If k is a field, then every k-module is free.

Proof. Indeed, by linear algebra we know that a k-module (i.e. vector space) V has a basis
B ⊂ V , which defines an isomorphism from the free vector space on B to V .

12.1.10 Corollary Every exact sequence of modules over a field splits.

Proof. This follows from ?? and proposition 12.1.9, as every vector space is projective.

This is another reason why much of the theory in future chapters will not say very much
about fields, since modules behave in such a simple manner. Note that corollary 12.1.10 is
a statement about the category of k-modules (for k a field), because the notion of exactness
is inherently arrow-theoretic (i.e. makes use of purely categorical notions, and can in fact
be phrased within a so-called abelian category).

Henceforth, since the study of modules over a field is linear algebra, and since the ideal
theory of fields is not very interesting, we shall study what this chapter is really about:
extensions of fields.

The characteristic of a field

In the category of rings, there is an initial object Z: any ring R has a map from Z into
it in precisely one way. For fields, there is no such initial object. Nonetheless, there is a
family of objects such that every field can be mapped into in exactly one way by exactly
one of them, and in no way by the others.

Let F be a field. As Z is the initial object of the category of rings, there is a ring map
f : Z→ F , see 11.1.16. The image of this ring map is an integral domain (as a subring of
a field) hence the kernel of f is a prime ideal in Z, see 11.4.15. Hence the kernel of f is
either (0) or (p) for some prime number p, see 11.4.2.

In the first case we see that f is injective, and in this case we think of Z as a subring of F .
Moreover, since every nonzero element of F is invertible we see that it makes sense to talk
about p/q ∈ F for p, q ∈ Z with q 6= 0. Hence in this case we may and we do think of Q as
a subring of F . One can easily see that this is the smallest subfield of F in this case.

In the second case, i.e., when Ker(f) = (p) we see that Z/(p) = Fp is a subring of F .
Clearly it is the smallest subfield of F .

Arguing in this way we see that every field contains a smallest subfield which is either Q
or finite equal to Fp for some prime number p.

12.1.11 Definition The characteristic of a field F is 0 if Z ⊂ F , or is a prime p if p = 0
in F . The prime subfield of F is the smallest subfield of F which is either Q ⊂ F if the
characteristic is zero, or Fp ⊂ F if the characteristic is p > 0.
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It is easy to see that if E is a field containing k, then the characteristic of E is the same
as the characteristic of k.

12.1.12 Example The characteristic of Z/p is p, and that of Q is 0. This is obvious from
the definitions.

12.2. Field extensions

Preliminaries

In general, though, we are interested not so much in fields by themselves but in field
extensions. This is perhaps analogous to studying not rings but algebras over a fixed ring.
The nice thing for fields is that the notion of a “field over another field” just recovers the
notion of a field extension, by the next result.

12.2.1 Proposition If F is a field and R is any ring, then any ring homomorphism
f : F → R is either injective or the zero map (in which case R = 0).

Proof. Indeed, ker(f) is an ideal in F . But there are only two ideals in F , namely (0) and
(1). If f is identically zero, then 1 = f(1) = 0 in R, so R = 0 too.

12.2.2 Definition If F is a field contained in a field G, then G is said to be a field
extension of F . We shall write G/F to indicate that G is an extension of F .

So if F, F ′ are fields, and F → F ′ is any ring-homomorphism, we see by proposition 12.2.1
that it is injective,2 and F ′ can be regarded as an extension of F , by a slight abuse
of notation. Alternatively, a field extension of F is just an F -algebra that happens to
be a field. This is completely different than the situation for general rings, since a ring
homomorphism is not necessarily injective.

Let k be a field. There is a category of field extensions of k. An object of this category is
an extension E/k, that is a (necessarily injective) morphism of fields

k → E,

while a morphism between extensions E/k,E′/k is a k-algebra morphism E → E′; alter-
natively, it is a commutative diagram

E // E′

k

??__ .

12.2.3 Definition A tower of field extensions E′/E/k consists of an extension E/k and
an extension E′/E.

2The zero ring is not a field!
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It is easy to see that any morphism E → E′ in the category of k-extensions gives a tower.

Let us give a few examples of field extensions.

12.2.4 Example Let k be a field, and P ∈ k[x] an irreducible polynomial. We have seen
that k[x]/(P ) is a field (12.1.7). Since it is also a k-algebra in the obvious way, it is an
extension of k.

12.2.5 Example If X is a Riemann surface, then the field of meromorphic functions
C(X) (see example 12.1.8) is an extension field of C, because any element of C induces a
meromorphic—indeed, holomorphic—constant function on X.

Let F/k be a field extension. Let S ⊂ F be any subset. Then there is a smallest subexten-
sion of F (that is, a subfield of F containing k) that contains S. To see this, consider the
family of subfields of F containing S and k, and take their intersection; one easily checks
that this is a field. It is easy to see, in fact, that this is the set of elements of F that can be
obtained via a finite number of elementary algebraic operations (addition, multiplication,
subtraction, and division) involving elements of k and S.

12.2.6 Definition If F/k is an extension and S ⊂ F , we write k(S) for the smallest
subextension of F containing S. We will say that S generates the extension k(S)/k.

For instance, C is generated by i over R.

12.2.7 Remark Show that C does not have a countable set of generators over Q.

Let us now classify extensions generated by one element.

12.2.8 Proposition (Simple extensions of a field) If an extension F/k is generated
by one element, then it is F is k-isomorphic either to the rational function field k(t)/k or
to one of the extensions k[t]/(P ) for P ∈ k[t] irreducible.

We will see that many of the most important cases of field extensions are generated by one
element, so this is actually useful.

Proof. Let α ∈ F be such that F = k(α); by assumption, such an α exists. There is a
morphism of rings

k[t]→ F

sending the indeterminate t to α. The image is a domain, so the kernel is a prime ideal.
Thus, it is either (0) or (P ) for P ∈ k[t] irreducible.

If the kernel is (P ) for P ∈ k[t] irreducible, then the map factors through k[t]/(P ), and
induces a morphism of fields k[t]/(P )→ F . Since the image contains α, we see easily that
the map is surjective, hence an isomorphism. In this case, k[t]/(P ) ' F .

If the kernel is trivial, then we have an injection k[t]→ F . One may thus define a morphism
of the quotient field k(t) into F ; given a quotient R(t)/Q(t) with R(t), Q(t) ∈ k[t], we map
this to R(α)/Q(α). The hypothesis that k[t]→ F is injective implies that Q(α) 6= 0 unless
Q is the zero polynomial. The quotient field of k[t] is the rational function field k(t), so
we get a morphism k(t) → F whose image contains α. It is thus surjective, hence an
isomorphism.
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Finite extensions

If F/E is a field extension, then evidently F is also a vector space over E (the scalar action
is just multiplication in F ).

12.2.9 Definition The dimension of F considered as an E-vector space is called the de-
gree of the extension and is denoted [F : E]. If [F : E] <∞ then F is said to be a finite
extension.

12.2.10 Example C is obviously a finite extension of R (of degree 2).

Let us now consider the degree in the most important special example, that given by
proposition 12.2.8, in the next two examples.

12.2.11 Example (Degree of a simple transcendental extension) If k is any field,
then the rational function field k(t) is not a finite extension. The elements {tn, n ∈ Z} are
linearly independent over k.

In fact, if k is uncountable, then k(t) is uncountably dimensional as a k-vector space.
To show this, we claim that the family of elements {1/(t− α), α ∈ k} ⊂ k(t) is linearly
independent over k. A nontrivial relation between them would lead to a contradiction:
for instance, if one works over C, then this follows because 1

t−α , when considered as a
meromorphic function on C, has a pole at α and nowhere else. Consequently any sum∑
ci

1
t−αi for the ci ∈ k∗, and αi ∈ k distinct, would have poles at each of the αi. In

particular, it could not be zero.

(Amusingly, this leads to a quick if suboptimal proof of the Hilbert Nullstellensatz; see ??.)

12.2.12 Example (Degree of a simple algebraic extension) Consider a monogenic
field extension E/k of the form in 12.1.7, say E = k[t]/(P ) for P ∈ k[t] an irreducible
polynomial. Then the degree [E : k] is just the degree degP . Indeed, without loss of
generality, we can assume P monic, say

(12.2.12.1) P = tn + a1t
n−1 + · · ·+ a0.

It is then easy to see that the images of 1, t, . . . , tn−1 in k[t]/(P ) are linearly independent
over k, because any relation involving them would have degree strictly smaller than that
of P , and P is the element of smallest degree in the ideal (P ).

Conversely, the set S =
{

1, t, . . . , tn−1
}

(or more properly their images) spans k[t]/(P ) as
a vector space. Indeed, we have by (12.2.12.1) that tn lies in the span of S. Similarly, the
relation tP (t) = 0 shows that the image of tn+1 lies in the span of {1, t, . . . , tn}—by what
was just shown, thus in the span of S. Working upward inductively, we find that the image
of tM for M ≥ n lies in the span of S.

This confirms the observation that [C : R] = 2, for instance. More generally, if k is a field,
and α ∈ k is not a square, then the irreducible polynomial x2 − α ∈ k[x] allows one to
construct an extension k[x]/(x2 − α) of degree two. We shall write this as k(

√
α). Such

extensions will be called quadratic, for obvious reasons.

The basic fact about the degree is that it is multiplicative in towers.
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12.2.13 Proposition (Multiplicativity) Suppose given a tower F/E/k. Then

[F : k] = [F : E][E : k].

Proof. Let α1, . . . , αn ∈ F be an E-basis for F . Let β1, . . . , βm ∈ E be a k-basis for E.
Then the claim is that the set of products {αiβj , 1 ≤ i ≤ n, 1 ≤ j ≤ m} is a k-basis for F .
Indeed, let us check first that they span F over k.

By assumption, the {αi} span F over E. So if f ∈ F , there are ai ∈ E with

f =
∑

aiαi,

and, for each i, we can write ai =
∑
bijβj for some bij ∈ k. Putting these together, we find

f =
∑
i,j

bijαiβj ,

proving that the {αiβj} span F over k.

Suppose now that there existed a nontrivial relation∑
i,j

cijαiβj = 0

for the cij ∈ k. In that case, we would have

∑
i

αi

∑
j

cijβj

 = 0,

and the inner terms lie in E as the βj do. Now E-linear independence of the {αi} shows
that the inner sums are all zero. Then k-linear independence of the {βj} shows that the
cij all vanish.

We sidetrack to a slightly tangential definition:

12.2.14 Definition A field extensions K of Q is said to be a number field if it is a finite
extension of Q.

Number fields are the basic objects in algebraic number theory. We shall see later that, for
the analog of the integers Z in a number field, something kind of like unique factorization
still holds (though strict unique factorization generally does not!).

Algebraic extensions

Consider a field extension F/E.

12.2.15 Definition An element α ∈ F is said to be algebraic over E if α is the root of
some polynomial with coefficients in E. If all elements of F are algebraic then F is said
to be an algebraic extension.
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By proposition 12.2.8, the subextension E(α) is isomorphic either to the rational function
field E(t) or to a quotient ring E[t]/(P ) for P ∈ E[t] an irreducible polynomial. In the
latter case, α is algebraic over E (in fact, it satisfies the polynomial P !); in the former case,
it is not.

12.2.16 Example C is algebraic over R.

12.2.17 Example Let X be a compact Riemann surface, and f ∈ C(X) − C any non-
constant meromorphic function on X (see example 12.1.8). Then it is known that C(X) is
algebraic over the subextension C(f) generated by f . We shall not prove this.

We now show that there is a deep connection between finiteness and being algebraic.

12.2.18 Proposition A finite extension is algebraic. In fact, an extension E/k is alge-
braic if and only if every subextension k(α)/k generated by some α ∈ E is finite.

In general, it is very false that an algebraic extension is finite.

Proof. Let E/k be finite, say of degree n. Choose α ∈ E. Then the elements {1, α, . . . , αn}
are linearly dependent over E, or we would necessarily have [E : k] > n. A relation of
linear dependence now gives the desired polynomial that α must satisfy.

For the last assertion, note that a monogenic extension k(α)/k is finite if and only α is
algebraic over k, by example 12.2.11 and example 12.2.12. So if E/k is algebraic, then each
k(α)/k, α ∈ E, is a finite extension, and conversely.

We can extract a corollary of the last proof (really of example 12.2.11 and example 12.2.12):
a monogenic extension is finite if and only if it is algebraic. We shall use this observation
in the next result.

12.2.19 Corollary Let k be a field, and let α1, α2, . . . , αn be elements of some extension
field such that each αi is finite over k. Then the extension k(α1, . . . , αn)/k is finite. That
is, a finitely generated algebraic extension is finite.

Proof. Indeed, each k(α1, . . . , αi+1)/k(α1, . . . , αi) is monogenic and algebraic, hence fi-
nite.

The set of complex numbers that are algebraic over Q are simply called the algebraic
numbers. For instance,

√
2 is algebraic, i is algebraic, but π is not. It is a basic fact

that the algebraic numbers form a field, although it is not obvious how to prove this from
the definition that a number is algebraic precisely when it satisfies a nonzero polynomial
equation with rational coefficients (e.g. by polynomial equations).

12.2.20 Corollary Let E/k be a field extension. Then the elements of E algebraic over
k form a field.

Proof. Let α, β ∈ E be algebraic over k. Then k(α, β)/k is a finite extension by corol-
lary 12.2.19. It follows that k(α + β) ⊂ k(α, β) is a finite extension, which implies that
α+ β is algebraic by proposition 12.2.18.
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Many nice properties of field extensions, like those of rings, will have the property that
they will be preserved by towers and composita.

12.2.21 Proposition (Towers) Let E/k and F/E be algebraic. Then F/k is algebraic.

Proof. Choose α ∈ F . Then α is algebraic over E. The key observation is that α is
algebraic over a finitely generated subextension of k. That is, there is a finite set S ⊂ E
such that α is algebraic over k(S): this is clear because being algebraic means that a
certain polynomial in E[x] that α satisfies exists, and as S we can take the coefficients of
this polynomial.

It follows that α is algebraic over k(S). In particular, k(S, α)/k(S) is finite. Since S is a
finite set, and k(S)/k is algebraic, corollary 12.2.19 shows that k(S)/k is finite. Together
we find that k(S, α)/k is finite, so α is algebraic over k.

The method of proof in the previous argument—that being algebraic over E was a property
that descended to a finitely generated subextension of E—is an idea that recurs throughout
algebra, and will be put to use more generality in ??.

Minimal polynomials

Let E/k be a field extension, and let α ∈ E be algebraic over k. Then α satisfies a
(nontrivial) polynomial equation in k[x]. Consider the set of polynomials P (x) ∈ k[x] such
that P (α) = 0; by hypothesis, this set does not just contain the zero polynomial. It is easy
to see that this set is an ideal. Indeed, it is the kernel of the map

k[x]→ E, x 7→ α.

Since k[x] is a PID, there is a generator m(x) ∈ k[x] of this ideal. If we assume m monic,
without loss of generality, then m is uniquely determined.

12.2.22 Definition m(x) as above is called the minimal polynomial of α over k.

The minimal polynomial has the following characterization: it is the monic polynomial, of
smallest degree, that annihilates α. (Any nonconstant multiple of m(x) will have larger
degree, and only multiples of m(x) can annihilate α.) This explains the name minimal.

Clearly the minimal polynomial is irreducible. This is equivalent to the assertion that the
ideal in k[x] consisting of polynomials annihilating α is prime. But this follows from the
fact that the map k[x]→ E, x 7→ α is a map into a domain (even a field), so the kernel is
a prime ideal.

12.2.23 Proposition The degree of the minimal polynomial is [k(α) : k].

Proof. This is just a restatement of the argument in ??: the observation is that if m(x) is
the minimal polynomial of α, then the map

k[x]/(m(x))→ k(α), x 7→ α

is an isomorphism as in the aforementioned proof, and we have counted the degree of such
an extension (see example 12.2.12).
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So the observation of the above proof is that if α ∈ E is algebraic, then k(α) ⊂ E is
isomorphic to k[x]/(m(x)).

Algebraic closure

Now we want to define a “universal” algebraic extension of a field. Actually, we should be
careful: the algebraic closure is not a universal object. That is, the algebraic closure is not
unique up to unique isomorphism: it is only unique up to isomorphism. But still, it will
be very handy, if not functorial.

12.2.24 Definition Let F be a field. An algebraic closure of F is a field F containing
F such that:

(AC1) F is algebraic over F .

(AC2) F is algebraically closed (that is, every non-constant polynomial in F [X] has a
root in F ).

The “fundamental theorem of algebra” states that C is algebraically closed. While the
easiest proof of this result uses Liouville’s theorem in complex analysis, we shall give a
mostly algebraic proof below (??).

We now prove the basic existence result.

12.2.25 Theorem Every field has an algebraic closure.

The proof will mostly be a red herring to the rest of the chapter. However, we will want
to know that it is possible to embed a field inside an algebraically closed field, and we will
often assume it done.

Proof. Let K be a field and Σ be the set of all monic irreducibles in K[x]. Let A = K[{xf :
f ∈ Σ}] be the polynomial ring generated by indeterminates xf , one for each f ∈ Σ. Then
let a be the ideal of A generated by polynomials of the form f(xf ) for each f ∈ Σ.

Claim 1. a is a proper ideal.

Proof of claim 1. Suppose a = (1), so there exist finitely many polynomials fi ∈ Σ and
gi ∈ A such that 1 = f1(xf1)g1 + · · · + fk(xfk)gk. Each gi uses some finite collection of
indeterminates Vi{xfi1 , . . . , xfiki }. This notation is ridiculous, so we simplify it.

We can take the union of all the Vi, together with the indeterminates xf1 , . . . , xfk to
get a larger but still finite set of indeterminates V = {xf1 , . . . , xfn} for some n ≥ k
(ordered so that the original xf1 , . . . , xfk agree the first k elements of V ). Now we can
regard each gi as a polynomial in this new set of indeterminates V . Then, we can write
1 = f1(xf1)g1 + · · ·+ fn(xfn)gn where for each i > k, we let gi = 0 (so that we’ve adjoined
a few zeroes to the right hand side of the equality). Finally, we define xi = xfi , so that we
have 1 = f1(x1)g1(x1, . . . , xn) + · · ·+ fn(xn)gn(x1, . . . , xn).
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Suppose n is the minimal integer such that there exists an expression of this form, so that

b = (f1(x1), . . . , fn−1(xn−1))

is a proper ideal of B = K[x1, . . . , xn−1], but

(f1(x1), . . . , fn(xn))

is the unit ideal in B[xn]. Let B̂ = B/b (observe that this ring is nonzero). We have a
composition of maps

B[xn]→ B̂[xn]→ B̂[xn]/(f̂n(xn))

where the first map is reduction of coefficients modulo b, and the second map is the quotient

by the principal ideal generated by the image f̂n(xn) of fn(xn) in B̂[xn]. We know B̂ is a

nonzero ring, so since fn is monic, the top coefficient of f̂n(xn) is still 1 ∈ B̂. In particular,
the top coefficient cannot be nilpotent. Furthermore, since fn was irreducible, it is not a

constant polynomial, so by the characterization of units in polynomial rings, f̂n(xn) is not

a unit, so it does not generate the unit ideal. Thus the quotient B̂[xn]/(f̂n(xn)) should not
be the zero ring.

On the other hand, observe that each fi(xi) is in the kernel of this composition, so in fact
the entire ideal (f1(x1), . . . , fn(xn)) is contained in the kernel. But this ideal is the unit
ideal, so all of B[xn] is in the kernel of this composition. In particular, 1 ∈ B[xn] is in the

kernel, and since ring maps preserve identity, this forces 1 = 0 in B̂[xn]/(f̂n(xn)), which
makes this the the zero ring. This contradicts our previous observation, and proves the
claim that a is a proper ideal.

Now, given claim 1, there exists a maximal ideal m of A containing a. Let K1 = A/m.
This is an extension field of K via the inclusion given by

K → A→ A/m

(this map is automatically injective as it is a map between fields). Furthermore every f ∈ Σ
has a root in K1. Specifically, the coset xf + m in A/m = K1 is a root of f since

f(xf + m) = f(xf ) + m = 0.

Inductively, given Kn for some n ≥ 1, repeat the construction with Kn in place of K to
get an extension field Kn+1 of Kn in which every irreducible f ∈ Kn[x] has a root. Let
L =

⋃∞
n=1Kn.

Claim 2. Every f ∈ L[x] splits completely into linear factors in L.

Proof of claim 2. We induct on the degree of f . In the base case, when f itself is linear,
there is nothing to prove. Inductively, suppose every polynomial in L[x] of degree less than
n splits completely into linear factors, and suppose

f = a0 + a1x+ · · ·+ anx
n ∈ L[x]
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has degree n. Then each ai ∈ Kni for some ni, so let n = maxni and regard f as a
polynomial in Kn[x]. If f is reducible in Kn[x], then we have a factorization f = gh
with the degree of g, h strictly less than n. Therefore, inductively, they both split into
linear factors in L[x], so f must also. On the other hand, if f is irreducible, then by our
construction, it has a root a ∈ Kn+1, so we have f = (x − a)g for some g ∈ Kn+1[x] of
degree n − 1. Again inductively, we can split g into linear factors in L, so clearly we can
do the same with f also. This completes the proof of claim 2.

Let K̄ be the set of algebraic elements in L. Clearly K̄ is an algebraic extension of K. If
f ∈ K̄[x], then we have a factorization of f in L[x] into linear factors

f = b(x− a1)(x− a2) · · · (x− an).

for b ∈ K̄ and, a priori, ai ∈ L. But each ai is a root of f , which means it is algebraic
over K̄, which is an algebraic extension of K; so by transitivity of ”being algebraic,” each
ai is algebraic over K. So in fact we conclude that ai ∈ K̄ already, since K̄ consisted of
all elements algebraic over K. Therefore, since K̄ is an algebraic extension of K such that
every f ∈ K̄[x] splits into linear factors in K̄, K̄ is the algebraic closure of K.

add: two algebraic closures are isomorphic

Let K be an algebraically closed field. Then the ring K[x] has a very simple ideal structure.
Since every polynomial P ∈ K[x] has a root, it follows that there is always a decomposition
(by dividing repeatedly)

P = c(x− α1) . . . (x− αn),

where c is the constant term and the {αi} ⊂ k are the roots of P . In particular:

12.2.26 Proposition For K algebraically closed, the only irreducible polynomials in K[x]
are the linear polynomials c(x− α), c, α ∈ K (and c 6= 0).

In particular, two polynomials in K[x] are relatively prime (i.e., generate the unit ideal)
if and only if they have no common roots. This follows because the maximal ideals of K[x]
are of the form (x−α), α ∈ K. So if F,G ∈ K[x] have no common root, then (F,G) cannot
be contained in any (x− α) (as then they would have a common root at α).

If k is not algebraically closed, then this still gives information about when two polynomials
in k[x] generate the unit ideal.

12.2.27 Definition If k is any field, we say that two polynomials in k[x] are relatively
prime if they generate the unit ideal in k[x].

12.2.28 Proposition Two polynomials in k[x] are relatively prime precisely when they
have no common roots in an algebraic closure k of k.

Proof. The claim is that any two polynomials P,Q generate (1) in k[x] if and only if
they generate (1) in k[x]. This is a piece of linear algebra: a system of linear equations
with coefficients in k has a solution if and only if it has a solution in any extension of k.
Consequently, we can reduce to the case of an algebraically closed field, in which case the
result is clear from what we have already proved.
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12.3. Separability and normality

Separable extensions

Throughout, F ⊂ K is a finite field extension. We fix once and for all an algebraic closure
F for F and an embedding of F in M .

12.3.1 Definition For an element α ∈ K with minimal polynomial q ∈ F [x], we say q
and α are separable if q has distinct roots (in some algebraic closure F !), and we say K
is separable if this holds for all α ∈ K.

By proposition 12.2.28, separability of a polynomial P ∈ F [x] is equivalent to (P, P ′) = 1
in F [x]. Indeed, this follows from the fact that P has no multiple roots if and only if P, P ′

have no common roots.

12.3.2 Lemma q(x) ∈ F [x] is separable if and only if gcd(q, q′) = 1, where q′ is the formal
derivative of q.

Purely inseparable extensions

12.3.3 Definition For an element α ∈ K with minimal polynomial q, we say α is purely
inseparable if q has only one root. We say K is splitting if each q splits in K.

12.3.4 Definition If K = F (α) for some α with minimal polynomial q(x) ∈ F [x], then

by 12.4.3, q(x) = r(xp
d
), where p = charF (or 1 if charF = 0) and r is separable; in this

case we also denote degs(K/F ) = deg(r), degi(K/F ) = pd.

12.4. Galois theory

Definitions

Throughout, F ⊂ K is a finite field extension. We fix once and for all an algebraic closure
M for both and an embedding of F in M . When necessary, we write K = F (α1, . . . , αn),
and K0 = F,Ki = F (α1, . . . , αi), qi the minimal polynomial of αi over Fi−1, Qi that over
F .

12.4.1 Definition Aut(K/F ) denotes the group of automorphisms of K which fix F
(pointwise!). Emb(K/F ) denotes the set of embeddings of K into M respecting the chosen
embedding of F .

12.4.2 Definition By deg(K/F ) we mean the dimension of K as an F -vector space.
We denote Ks/F the set of elements of K whose minimal polynomials over F have dis-
tinct roots; by 12.4.13 this is a subfield, and deg(Ks/F ) = degs(K/F ) and deg(K/Ks) =
degi(K/F ) by definition.
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Theorems

12.4.3 Lemma If charF = 0 then Ks = K. If charF = p > 0, then for any irreducible
q(x) ∈ K[x], there is some d ≥ 0 and polynomial r(x) ∈ K[x] such that q(x) = r(xp

d
), and

r is separable and irreducible.

Proof. By formal differentiation, q′(x) has positive degree unless each exponent is a multiple
of p; in characteristic zero this never occurs. If this is not the case, since q is irreducible,
it can have no factor in common with q′ and therefore has distinct roots by 12.3.2.

If p > 0, let d be the largest integer such that each exponent of q is a multiple of pd, and
define r by the above equation. Then by construction, r has at least one exponent which
is not a multiple of p, and therefore has distinct roots.

12.4.4 Corollary In the statement of 12.4.3, q and r have the same number of roots.

Proof. α is a root of q if and only if αp
d

is a root of r; i.e. the roots of q are the roots of
xp

d−β, where β is a root of r. But if α is one such root, then (x−α)p
d

= xp
d−αpd = xp

d−β
since charK = p, and therefore α is the only root of xp

d − β.

12.4.5 Lemma The correspondence which to each g ∈ Emb(K/F ) assigns the n-tuple
(g(α1), . . . , g(αn)) of elements of M is a bijection from Emb(K/F ) to the set of tuples of
βi ∈M , such that βi is a root of qi over K(β1, . . . , βi−1).

Proof. First take K = F (α) = F [x]/(q), in which case the maps g : K → M over F are
identified with the elements β ∈M such that q(β) = 0 (where g(α) = β).

Now, considering the tower K = Kn/Kn−1/ . . . /K0 = F , each extension of which is prim-
itive, and a given embedding g, we define recursively g1 ∈ Emb(K1/F ) by restriction and
subsequent gi by identifying Ki−1 with its image and restricting g to Ki. By the above
paragraph each gi corresponds to the image βi = gi(αi), each of which is a root of qi.
Conversely, given such a set of roots of the qi, we define g recursively by this formula.

12.4.6 Corollary |Emb(K/F )| =
∏n
i=1 degs(qi).

Proof. This follows immediately by induction from 12.4.5 by 12.4.4.

12.4.7 Lemma For any f ∈ Emb(K/F ), the map Aut(K/F ) → Emb(K/F ) given by
σ 7→ f ◦ σ is injective.

Proof. This is immediate from the injectivity of f .

12.4.8 Corollary Aut(K/F ) is finite.

Proof. By 12.4.7, Aut(K/F ) injects into Emb(K/F ), which by 12.4.6 is finite.

12.4.9 Proposition The inequality

|Aut(K/F )| ≤ |Emb(K/F )|

is an equality if and only if the qi all split in K.
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Proof. The inequality follows from 12.4.7 and from 12.4.8. Since both sets are finite,
equality holds if and only if the injection of 12.4.7 is surjective (for fixed f ∈ Emb(K/F )).

If surjectivity holds, let β1, . . . , βn be arbitrary roots of q1, . . . , qn in the sense of 12.4.5,
and extract an embedding g : K →M with g(αi) = βi. Since the correspondence f 7→ f ◦σ
(σ ∈ Aut(K/F )) is a bijection, there is some σ such that g = f ◦ σ, and therefore f and g
have the same image. Therefore the image of K in M is canonical, and contains β1, . . . , βn
for any choice thereof.

If the qi all split, let g ∈ Emb(K/F ) be arbitrary, so the g(αi) are roots of qi in M as in
12.4.5. But the qi have all their roots in K, hence in the image f(K), so f and g again
have the same image, and f−1 ◦ g ∈ Aut(K/F ). Thus g = f ◦ (f−1 ◦ g) shows that the map
of 12.4.7 is surjective.

12.4.10 Corollary Define

D(K/F ) =

n∏
i=1

degs(Ki/Ki−1).

Then the chain of equalities and inequalities

|Aut(K/F )| ≤ |Emb(K/F )| = D(K/F ) ≤ deg(K/F )

holds; the first inequality is an equality if and only if each qi splits in K, and the second if
and only if each qi is separable.

Proof. The statements concerning the first inequality are just 12.4.9; the interior equality
is just 12.4.6; the latter inequality is obvious from the multiplicativity of the degrees of
field extensions; and the deduction for equality follows from the definition of degs.

12.4.11 Corollary The qi respectively split and are separable in K if and only if the Qi
do and are.

Proof. The ordering of the αi is irrelevant, so we may take each i = 1 in turn. Then
Q1 = q1 and if either of the equalities in 12.4.10 holds then so does the corresponding
statement here. Conversely, clearly each qi divides Qi, so splitting or separability for the
latter implies that for the former.

12.4.12 Corollary Let α ∈ K have minimal polynomial q; if the Qi are respectively split,
separable, and purely inseparable over F then q is as well.

Proof. We may take α as the first element of an alternative generating set for K/F . The
numerical statement of 12.4.10 does not depend on the particular generating set, hence the
conditions given hold of the set containing α if and only if they hold of the canonical set
α1, . . . , αn.

For purely inseparable, if the Qi all have only one root then |Emb(K/F )| = 1 by 12.4.10,
and taking α as the first element of a generating set as above shows that q must have only
one root as well for this to hold.
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12.4.13 Corollary Ks is a field and deg(Ks/F ) = D(K/F ).

Proof. Assume charF = p > 0, for otherwise Ks = K. Using 12.4.3, write each Qi =

Ri(x
pdi ), and let βi = αp

di

i . Then the βi have Ri as minimal polynomials and the αi satisfy

si = xp
di − βi over K ′ = F (β1, . . . , βn). Therefore the αi have minimal polynomials over

K ′ dividing the si and hence those polynomials have but one distinct root.

By 12.4.12, the elements of K ′ are separable, and those of K ′ purely inseparable over K ′.
In particular, since these minimal polynomials divide those over F , none of these elements
is separable, so K ′ = Ks.

The numerical statement follows by computation:

deg(K/K ′) =
n∏
i=1

pdi =
n∏
i=1

deg(Ki/Ki−1)

degs(Ki/Ki−1)
=

deg(K/F )

D(K/F )
.

12.4.14 Theorem The following inequality holds:

|Aut(K/F )| ≤ |Emb(K/F )| = degs(K/F ) ≤ deg(K/F ).

Equality holds on the left if and only if K/F is splitting; it holds on the right if and only
if K/F is separable.

Proof. The numerical statement combines 12.4.10 and 12.4.13. The deductions combine
12.4.11 and 12.4.12.

Definitions

Throughout, we will denote as before K/F a finite field extension, and G = Aut(K/F ), H
a subgroup of G. L/F is a subextension of K/F .

12.4.15 Definition When K/F is separable and splitting, we say it is Galois and write
G = Gal(K/F ), the Galois group of K over F .

12.4.16 Definition The fixed field of H is the field KH of elements fixed by the action
of H on K. Conversely, GL is the fixing subgroup of L, the subgroup of G whose elements
fix L.

Theorems

12.4.17 Lemma A polynomial q(x) ∈ K[x] which splits in K lies in KH [x] if and only
if its roots are permuted by the action of H. In this case, the sets of roots of the irre-
ducible factors of q over KH are the orbits of the action of H on the roots of q (counting
multiplicity).
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Proof. Since H acts by automorphisms, we have σq(x) = q(σx) as a functional equation
on K, so σ permutes the roots of q. Conversely, since the coefficients of σ are the elemen-
tary symmetric polynomials in its roots, H permuting the roots implies that it fixes the
coefficients.

Clearly q is the product of the polynomials qi whose roots are the orbits of the action of H
on the roots of q, counting multiplicities, so it suffices to show that these polynomials are
defined over KH and are irreducible. Since H acts on the roots of the qi by construction,
the former is satisfied. If some qi factored over KH , its factors would admit an action of H
on their roots by the previous paragraph. The roots of qi are distinct by construction, so
its factors do not share roots; hence the action on the roots of qi would not be transitive,
a contradiction.

12.4.18 Corollary Let q(x) ∈ K[x]; if it is irreducible, then H acts transitively on its
roots; conversely, if q is separable and H acts transitively on its roots, then q(x) ∈ KH [x]
is irreducible.

Proof. Immediate from 12.4.17.

12.4.19 Lemma If K/F is Galois, so is K/L, and Gal(K/L) = GL..

Proof. K/F Galois means that the minimal polynomial over F of every element of K
is separable and splits in K; the minimal polynomials over L = KH divide those over
F , and therefore this is true of K/L as well; hence K/L is likewise a Galois extension.
Gal(K/L) = Aut(K/L) consists of those automorphisms σ of K which fix L; since F ⊂ L
we have a fortiori that σ fixes F , hence Gal(K/L) ⊂ G and consists of the subgroup which
fixes L; i.e. GL.

12.4.20 Corollary If K/F and L/F are Galois, then the action of G on elements of L
defines a surjection of G onto Gal(L/F ). Thus GL is normal in G and Gal(L/F ) ∼= G/GL.
Conversely, if N ⊂ G is normal, then KN/F is Galois.

Proof. L/F is splitting, so by 12.4.17 the elements of G act as endomorphisms (hence
automorphisms) of L/F , and the kernel of this action is GL. By 12.4.19, we have GL =
Gal(K/L), so |GL| = |Gal(K/L)| = [K : L] = [K : F ]/[L : F ], or rearranging and using
thatK/F is Galois, we get |G|/|GL| = [L : F ] = |Gal(L/F )|. Thus the mapG→ Gal(L/F )
is surjective and thus the induced map G/GL → Gal(L/F ) is an isomorphism.

Conversely, let N be normal and take α ∈ KN . For any conjugate β of α, we have
β = g(α) for some g ∈ G; let n ∈ N . Then n(β) = (ng)(α) = g(g−1ng)(α) = g(α) = β,
since g−1ng ∈ N by normality of N . Thus β ∈ KN , so KN is splitting, i.e., Galois.

12.4.21 Proposition If K/F is Galois and H = GL, then KH = L.

Proof. By 12.4.19, K/L and K/KH are both Galois. By definition, Gal(K/L) = GL = H;
since H fixes KH we certainly have H < Gal(K/KH), but since L ⊂ KH we have a fortiori
that Gal(K/KH) < Gal(K/L) = H, so Gal(K/KH) = H as well. It follows from 12.4.14
that deg(K/L) = |H| = deg(K/KH), so that KH = L.
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12.4.22 Lemma If K is a finite field, then K∗ is cyclic.

Proof. K is then a finite extension of Fp for p = charK, hence has order pn, n = deg(K/Fp).
Thus αp

n
= α for all α ∈ K, since |K∗| = pn − 1. It follows that every element of K is

a root of qn(x) = xp
n − x. For any d < n, the elements of order at most pd − 1 satisfy

qd(x), which has pd roots. It follows that there are at least pn(p− 1) > 0 elements of order
exactly pn − 1, so K∗ is cyclic.

12.4.23 Corollary If K is a finite field, then Gal(K/F ) is cyclic, generated by the Frobe-
nius automorphism.

Proof. First take F = Fp. Then the map fi(α) = αp
i

is an endomorphism, injective since
K is a field, and surjective since it is finite, hence an automorphism. Since every α satisfies
αp

n
= α, fn = 1, but by 12.4.22, fn−1 is nontrivial (applied to the generator). Since

n = deg(K/F ), f = f1 generates Gal(K/F ).

If F is now arbitrary, by 12.4.21 we have Gal(K/F ) = Gal(K/Fp)F , and every subgroup
of a cyclic group is cyclic.

12.4.24 Corollary If K is finite, K/F is primitive.

Proof. No element of G fixes the generator α of K∗, so it cannot lie in any proper subfield.
Therefore F (α) = K.

12.4.25 Proposition If F is infinite and K/F has only finitely many subextensions, then
it is primitive.

Proof. We proceed by induction on the number of generators of K/F .

If K = F (α) we are done. If not, K = F (α1, . . . , αn) = F (α1, . . . , αn−1)(αn) = F (β, αn)
by induction, so we may assume n = 2. There are infinitely many subfields F (α1 + tα2),
with t ∈ F , hence two of them are equal, say for t1 and t2. Thus, α1 + t2α2 ∈ F (α1 + t1α2).
Then (t2 − t1)α2 ∈ F (α1 + t1α2), hence α2 lies in this field, hence α1 does. Therefore
K = F (α1 + t1α2).

12.4.26 Corollary If K/F is separable, it is primitive, and the generator may be taken
to be a linear combination of any finite set of generators of K/F .

Proof. We may embed K/F in a Galois extension M/F by adjoining all the conjugates of
its generators. Subextensions of K/F are as well subextensions of K ′/F and by 12.4.21
the map H 7→ (K ′)H is a surjection from the subgroups of G to the subextensions of K ′/F ,
which are hence finite in number. By 12.4.24 we may assume F is infinite. The result now
follows from 12.4.25.

12.4.27 Corollary If K/F is Galois and H ⊂ G, then if L = KH , we have H = GL.

Proof. Let α be a primitive element for K/L. The polynomial
∏
h∈H(x − h(α)) is fixed

by H, and therefore has coefficients in L, so α has |H| conjugate roots over L. But since
α is primitive, we have K = L(α), so the minimal polynomial of α has degree deg(K/L),
which is the same as the number of its roots. Thus |H| = deg(K/L). Since H ⊂ GL and
|GL| = deg(K/L), we have equality.
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12.4.28 Theorem The correspondences H 7→ KH , L 7→ GL define inclusion-reversing
inverse maps between the set of subgroups of G and the set of subextensions of K/F , such
that normal subgroups and Galois subfields correspond.

Proof. This combines 12.4.21, 12.4.27, and 12.4.20.

12.5. Transcendental Extensions

There is a distinguished type of transcendental extension: those that are “purely transcen-
dental.”

12.5.1 Definition A field extension E′/E is purely transcendental if it is obtained by
adjoining a set B of algebraically independent elements. A set of elements is algebraically
independent over E if there is no nonzero polynomialP with coefficients in E such that
P (b1, b2, · · · bn) = 0 for any finite subset of elements b1, . . . , bn ∈ B.

12.5.2 Example The field Q(π) is purely transcendental; in particular, Q(π) ∼= Q(x) with
the isomorphism fixing Q.

Similar to the degree of an algebraic extension, there is a way of keeping track of the
number of algebraically independent generators that are required to generate a purely
transcendental extension.

12.5.3 Definition Let E′/E be a purely transcendental extension generated by some set
of algebraically independent elements B. Then the transcendence degree trdeg(E′/E) =
#(B) and B is called a transcendence basis for E′/E (we will see later that trdeg(E′/E)
is independent of choice of basis).

In general, let F/E be a field extension, we can always construct an intermediate extension
F/E′/E such that F/E′ is algebraic and E′/E is purely transcendental. Then if B is
a transcendence basis for E′, it is also called a transcendence basis for F . Similarly,
trdeg(F/E) is defined to be trdeg(E′/E).

12.5.4 Theorem Let F/E be a field extension, a transcendence basis exists.

Proof. Let A be an algebraically independent subset of F . Now pick a subset G ⊂ F that
generates F/E, we can find a transcendence basis B such that A ⊂ B ⊂ G. Define a
collection of algebraically independent sets B whose members are subsets of G that contain
A. The set can be partially ordered inclusion and contains at least one element, A. The
union of elements of B is algebraically independent since any algebraic dependence relation
would have occurred in one of the elements of B since the polynomial is only allowed to be
over finitely many variables. The union also satisfies A ⊂

⋃
B ⊂ G so by Zorn’s lemma,

there is a maximal element B ∈ B. Now we claim F is algebraic over E(B). This is because
if it wasn’t then there would be a transcendental element f ∈ G (since E(G) = F )such
that B ∪ {f} wold be algebraically independent contradicting the maximality of B. Thus
B is our transcendence basis.
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Now we prove that the transcendence degree of a field extension is independent of choice
of basis.

12.5.5 Theorem Let F/E be a field extension. Any two transcendence bases for F/E
have the same cardinality. This shows that the trdeg(E/F ) is well defined.

Proof. Let B and B′ be two transcendence bases. Without loss of generality, we can assume
that #(B′) ≤ #(B). Now we divide the proof into two cases: the first case is that B is
an infinite set. Then for each α ∈ B′, there is a finite set Bα such that α is algebraic over
E(Bα) since any algebraic dependence relation only uses finitely many indeterminates.
Then we define B∗ =

⋃
α∈B′ Bα. By construction, B∗ ⊂ B, but we claim that in fact the

two sets are equal. To see this, suppose that they are not equal, say there is an element
β ∈ B \ B∗. We know β is algebraic over E(B′) which is algebraic over E(B∗). Therefor
β is algebraic over E(B∗), a contradiction. So #(B) ≤

∑
α∈B′ #(Bα). Now if B′ is finite,

then so is B so we can assume B′ is infinite; this means

(12.5.5.1) #(B) ≤
∑
α∈B′

#(Bα) = #(
∐

Bα) ≤ #(B′ × Z) = #(B′)

with the inequality #(
∐
Bα) ≤ #(B′×Z) given by the correspondence bαi 7→ (α, i) ∈ B′×Z

with Bα = {bα1 , bα2 · · · bαnα} Therefore in the infinite case, #(B) = #(B′).

Now we need to look at the case where B is finite. In this case, B′ is also finite, so
suppose B = {α1, · · ·αn} and B′ = {β1, · · ·βm} with m ≤ n. We perform induction on
m: if m = 0 then F/E is algebraic so B = so n = 0, otherwise there is an irreducible
polynomial f ∈ E[x, y1, · · · yn] such that f(β1, α1, · · ·αn) = 0. Since β1 is not algebraic
over E, f must involve some yi so without loss of generality, assume f uses y1. Let B∗ =
{β1, α2, · · ·αn}. We claim that B∗ is a basis for F/E. To prove this claim, we see that we
have a tower of algebraic extensions F/E(B∗, α1)/E(B∗) since α1 is algebraic over E(B∗).
Now we claim that B∗ (counting multiplicity of elements) is algebraically independent
over E because if it weren’t, then there would be an irreducible g ∈ E[x, y2, · · · yn] such
that g(β1, α2, · · ·αn) = 0 which must involve x making β1 algebraic over E(α2, · · ·αn)
which would make α1 algebraic over E(α2, · · ·αn) which is impossible. So this means
that {α2, · · ·αn} and {β2, · · ·βm} are bases for F over E(β1) which means by induction,
m = n.

12.5.6 Example Consider the field extension Q(e, π) formed by adjoining the numbers
e and π. This field extension has transcendence degree at least 1 since both e and π are
transcendental over the rationals. However, this field extension might have transcendence
degree 2 if e and π are algebraically independent. Whether or not this is true is unknown
and the problem of determining trdeg(Q(e, π)) is an open problem.

12.5.7 Example let E be a field and F = E(t)/E. Then {t} is a transcendence basis
since F = E(t). However, {t2} is also a transcendence basis since E(t)/E(t2) is algebraic.
This illustrates that while we can always decompose an extension F/E into an algebraic
extension F/E′ and a purely transcendental extension E′/E, this decomposition is not
unique and depends on choice of transcendence basis.
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12.5.8 Remark If we have a tower of fields G/F/E, then trdeg(G/E) = trdeg(F/E) +
trdeg(G/F ).

12.5.9 Example Let X be a compact Riemann surface. Then the function field C(X)
(see example 12.1.8) has transcendence degree one over C. In fact, any finitely generated
extension of C of transcendence degree one arises from a Riemann surface. There is even
an equivalence of categories between the category of compact Riemann surfaces and (non-
constant) holomorphic maps and the opposite category of finitely generated extensions of
C and morphisms of C-algebras. See ?.

There is an algebraic version of the above statement as well. Given an (irreducible) al-
gebraic curve in projective space over an algebraically closed field k (e.g. the complex
numbers), one can consider its “field of rational functions:” basically, functions that look
like quotients of polynomials, where the denominator does not identically vanish on the
curve. There is a similar anti-equivalence of categories between smooth projective curves
and non-constant morphisms of curves and finitely generated extensions of k of transcen-
dence degree one. See ?.

Linearly Disjoint Field Extensions

Let k be a field, K and L field extensions of k. Suppose also that K and L are embedded
in some larger field Ω.

12.5.10 Definition The compositum ofK and L writtenKL is k(K∪L) = L(K) = K(L).

12.5.11 Definition K and L are said to be linearly disjoint over k if the following map
is injective:

(12.5.11.1) θ : K ⊗k L→ KL

defined by x⊗ y 7→ xy.
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13. Three important functors

There are three functors that will be integral to our study of commutative algebra in the
future: localization, the tensor product, and hom. While localization is an exact functor,
the tensor product and hom are not. The failure of exactness in those cases leads to the
theory of flatness and projectivity (and injectivity), and eventually the derived functors
Tor and Ext that crop up in commutative algebra.

13.1. Localization

Localization is the process of making invertible a collection of elements in a ring. It is a
generalization of the process of forming a quotient field of an integral domain.

Geometric intuition

We first start off with some of the geometric intuition behind the idea of localization.
Suppose we have a Riemann surface X (for example, the Riemann sphere). Let A(U) be
the ring of holomorphic functions over some neighborhood U ⊂ X. Now, for holomorphicity
to hold, all that is required is that a function doesn’t have a pole inside of U , thus when
U = X, this condition is the strictest and as U gets smaller functions begin to show up
that may not arise from the restriction of a holomorphic function over a larger domain. For
example, if we want to study holomorphicity “near a point z0” all that we should require
is that the function doesn’t pole at z0. This means that we should consider quotients
of holomorphic functions f/g where g(z0) 6= 0. This process of inverting a collection of
elements is expressed through the algebraic construction known as “localization.”

Localization at a multiplicative subset

Let R be a commutative ring. We start by constructing the notion of localization in the
most general sense.

We have already implicitly used this definition, but nonetheless, we make it formally:

13.1.1 Definition A subset S ⊂ R is a multiplicative subset if 1 ∈ S and if x, y ∈ S
implies xy ∈ S.

We now define the notion of localization. Formally, this means inverting things. This will
give us a functor from R-modules to R-modules.
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13.1.2 Definition If M is an R-module, we define the module S−1M as the set of formal
fractions

{m/s,m ∈M, s ∈ S}

modulo an equivalence relation: where m/s ∼ m′/s′ if and only if

t(s′m−m′s) = 0

for some t ∈ S. The reason we need to include the t in the definition is that otherwise the
relation would not be transitive (i.e. would not be an equivalence relation).

So two fractions agree if they agree when clearing denominators and multiplication.

It is easy to check that this is indeed an equivalence relation. Moreover S−1M is an abelian
group with the usual addition of fractions

m

s
+
m′

s′
=
s′m+ sm′

ss′

and it is easy to check that this is a legitimate abelian group.

13.1.3 Definition Let M be an R-module and S ⊂ R a multiplicative subset. The abelian
group S−1M is naturally an R-module. We define

x(m/s) = (xm)/s, x ∈ R.

It is easy to check that this is well-defined and makes it into a module.

Finally, we note that localization is a functor from the category of R-modules to itself.

Indeed, given f : M → N , there is a naturally induced map S−1M
S−1f→ S−1N .

We now consider the special case when the localized module is the initial ring itself. Let
M = R. Then S−1R is an R-module, and it is in fact a commutative ring in its own right.
The ring structure is quite tautological:

(x/s)(y/s′) = (xy/ss′).

There is a map R→ S−1R sending x→ x/1, which is a ring-homomorphism.

13.1.4 Definition For S ⊂ R a multiplicative set, the localization S−1R is a commutative
ring as above. In fact, it is an R-algebra; there is a natural map φ : R → S−1R sending
r → r/1.

We can, in fact, describe φ : R→ S−1R by a universal property. Note that for each s ∈ S,
φ(s) is invertible. This is because φ(s) = s/1 which has a multiplicative inverse 1/s. This
property characterizes S−1R.

For any commutative ring B, hom(S−1R,B) is naturally isomorphic to the subset of
hom(R,B) that send S to units. The map takes S−1R→ B to the pull-back R→ S−1R→
B. The proof of this is very simple. Suppose that f : R → B is such that f(s) ∈ B is
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invertible for each s ∈ S. Then we must define S−1R → B by sending r/s to f(r)f(s)−1.
It is easy to check that this is well-defined and that the natural isomorphism as claimed is
true.

Let R be a ring, M an R-module, S ⊂ R a multiplicatively closed subset. We defined a
ring of fractions S−1R and an R-module S−1M . But in fact this is a module over the ring
S−1R. We just multiply (x/t)(m/s) = (xm/st).

In particular, localization at S gives a functor from R-modules to S−1R-modules.

13.1.5 Remark (exercise) Let R be a ring, S a multiplicative subset. Let T be the
R-algebra R[{xs}s∈S ]/({sxs − 1}). This is the polynomial ring in the variables xs, one for
each s ∈ S, modulo the ideal generated by sxs = 1. Prove that this R-algebra is naturally
isomorphic to S−1R, using the universal property.

13.1.6 Remark (exercise) Define a functor Rings → Sets sending a ring to its set of
units, and show that it is corepresentable (use Z[X,X−1]).

Local rings

A special case of great importance in the future is when the multiplicative subset is the
complement of a prime ideal, and we study this in the present subsec. Such localizations
will be “local rings” and geometrically correspond to the process of zooming at a point.

13.1.7 Example Let R be an integral domain and let S = R−{0}. This is a multiplicative
subset because R is a domain. In this case, S−1R is just the ring of fractions by allowing
arbitrary nonzero denominators; it is a field, and is called the quotient field. The most
familiar example is the construction of Q as the quotient field of Z.

We’d like to generalize this example.

13.1.8 Example Let R be arbitrary and p is a prime ideal. This means that 1 /∈ p and
x, y ∈ R− p implies that xy ∈ R− p. Hence, the complement S = R− p is multiplicatively
closed. We get a ring S−1R.

13.1.9 Definition This ring is denoted Rp and is called the localization at p. If M is
an R-module, we write Mp for the localization of M at R− p.

This generalizes the previous example (where p = (0)).

There is a nice property of the rings Rp. To elucidate this, we start with a lemma.

13.1.10 Lemma Let R be a nonzero commutative ring. The following are equivalent:

1. R has a unique maximal ideal.

2. If x ∈ R, then either x or 1− x is invertible.
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13.1.11 Definition In this case, we call R local. A local ring is one with a unique
maximal ideal.

Proof of the lemma. First we prove (2) =⇒ (1).

Assume R is such that for each x, either x or 1− x is invertible. We will find the maximal
ideal. Let M be the collection of noninvertible elements of R. This is a subset of R, not
containing 1, and it is closed under multiplication. Any proper ideal must be a subset of
M, because otherwise that proper ideal would contain an invertible element.

We just need to check that M is closed under addition. Suppose to the contrary that
x, y ∈M but x+ y is invertible. We get (with a = x/(x+ y))

1 =
x

x+ y
+

y

x+ y
= a+ (1− a).

Then one of a, 1 − a is invertible. So either x(x + y)−1 or y(x + y)−1 is invertible, which
implies that either x, y is invertible, contradiction.

Now prove the reverse direction. Assume R has a unique maximal ideal M. We claim that
M consists precisely of the noninvertible elements. To see this, first note that M can’t
contain any invertible elements since it is proper. Conversely, suppose x is not invertible,
i.e. (x) ( R. Then (x) is contained in a maximal ideal by 11.4.8, so (x) ⊂ M since M is
unique among maximal ideals. Thus x ∈M.

Suppose x ∈ R; we can write 1 = x+ (1− x). Since 1 /∈M, one of x, 1− x must not be in
M, so one of those must not be invertible. So (1) =⇒ (2). The lemma is proved.

Let us give some examples of local rings.

13.1.12 Example Any field is a local ring because the unique maximal ideal is (0).

13.1.13 Example Let R be any commutative ring and p ⊂ R a prime ideal. Then Rp is
a local ring.

We state this as a result.

13.1.14 Proposition Rp is a local ring if p is prime.

Proof. Let m ⊂ Rp consist of elements x/s for x ∈ p and s ∈ R− p. It is left as an exercise
(using the primality of p) to the reader to see that whether the numerator belongs to p is
independent of the representation x/s used for it.

Then I claim that m is the unique maximal ideal. First, note that m is an ideal; this
is evident since the numerators form an ideal. If x/s, y/s′ belong to m with appropriate
expressions, then the numerator of

xs′ + ys

ss′

belongs to p, so this sum belongs to m. Moreover, m is a proper ideal because 1
1 is not of

the appropriate form.
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I claim that m contains all other proper ideals, which will imply that it is the unique
maximal ideal. Let I ⊂ Rp be any proper ideal. Suppose x/s ∈ I. We want to prove
x/s ∈ m. In other words, we have to show x ∈ p. But if not x/s would be invertible, and
I = (1), contradiction. This proves locality.

13.1.15 Remark (exercise) Any local ring is of the form Rp for some ring R and for
some prime ideal p ⊂ R.

13.1.16 Example Let R = Z. This is not a local ring; the maximal ideals are given by
(p) for p prime. We can thus construct the localizations Z(p) of all fractions a/b ∈ Q where
b /∈ (p). Here Z(p) consists of all rational numbers that don’t have powers of p in the
denominator.

13.1.17 Remark (exercise) A local ring has no idempotents other than 0 and 1. (Recall
that e ∈ R is idempotent if e2 = e.) In particular, the product of two rings is never local.

It may not yet be clear why localization is such a useful process. It turns out that many
problems can be checked on the localizations at prime (or even maximal) ideals, so certain
proofs can reduce to the case of a local ring. Let us give a small taste.

13.1.18 Proposition Let f : M → N be a homomorphism of R-modules. Then f is
injective if and only if for every maximal ideal m ⊂ R, we have that fm : Mm → Nm is
injective.

Recall that, by definition, Mm is the localization at R−m.

There are many variants on this (e.g. replace with surjectivity, bijectivity). This is a
general observation that lets you reduce lots of commutative algebra to local rings, which
are easier to work with.

Proof. Suppose first that each fm is injective. I claim that f is injective. Suppose x ∈
M − {0}. We must show that f(x) 6= 0. If f(x) = 0, then fm(x) = 0 for every maximal
ideal m. Then by injectivity it follows that x maps to zero in each Mm. We would now like
to get a contradiction.

Let I = {a ∈ R : ax = 0 ∈M}. This is proper since x 6= 0. So I is contained in some
maximal ideal m. Then x maps to zero in Mm by the previous paragraph; this means that
there is s ∈ R−m with sx = 0 ∈M . But s /∈ I, contradiction.

Now let us do the other direction. Suppose f is injective and m a maximal ideal; we prove fm
injective. Suppose fm(x/s) = 0 ∈ Nm. This means that f(x)/s = 0 in the localized module,
so that f(x) ∈M is killed by some t ∈ R−m. We thus have f(tx) = t(f(x)) = 0 ∈M . This
means that tx = 0 ∈ M since f is injective. But this in turn means that x/s = 0 ∈ Mm.
This is what we wanted to show.
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Localization is exact

Localization is to be thought of as a very mild procedure.

The next result says how inoffensive localization is. This result is a key tool in reducing
problems to the local case.

13.1.19 Proposition Suppose f : M → N, g : N → P and M → N → P is exact. Let
S ⊂ R be multiplicatively closed. Then

S−1M → S−1N → S−1P

is exact.

Or, as one can alternatively express it, localization is an exact functor.

Before proving it, we note a few corollaries:

13.1.20 Corollary If f : M → N is surjective, then S−1M → S−1N is too.

Proof. To say that A → B is surjective is the same as saying that A → B → 0 is exact.
From this the corollary is evident.

Similarly:

13.1.21 Corollary If f : M → N is injective, then S−1M → S−1N is too.

Proof. To say that A → B is injective is the same as saying that 0 → A → B is exact.
From this the corollary is evident.

Proof of the proposition. We adopt the notation of the proposition. If the composite g ◦ f
is zero, clearly the localization S−1M → S−1N → S−1P is zero too. Call the maps
S−1M → S−1N,S−1N → S−1P as φ, ψ. We know that ψ ◦ φ = 0 so ker(ψ) ⊃ im(φ).
Conversely, suppose something belongs to ker(ψ). This can be written as a fraction

x/s ∈ ker(ψ)

where x ∈ N, s ∈ S. This is mapped to

g(x)/s ∈ S−1P,

which we’re assuming is zero. This means that there is t ∈ S with tg(x) = 0 ∈ P . This
means that g(tx) = 0 as an element of P . But tx ∈ N and its image of g vanishes, so tx
must come from something in M . In particular,

tx = f(y) for some y ∈M.

In particular,
x

s
=
tx

ts
=
f(y)

ts
= φ(y/ts) ∈ im(φ).

This proves that anything belonging to the kernel of ψ lies in im(φ).
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Nakayama’s lemma

We now state a very useful criterion for determining when a module over a local ring is
zero.

13.1.22 Lemma (Nakayama’s lemma) If R is a local ring with maximal ideal m. Let
M be a finitely generated R-module. If mM = M , then M = 0.

Note that mM is the submodule generated by products of elements of m and M .

13.1.23 Remark Once one has the theory of the tensor product, this equivalently states
that if M is finitely generated, then

M ⊗R R/m = M/mM 6= 0.

So to prove that a finitely generated module over a local ring is zero, you can reduce to
studying the reduction to R/m. This is thus a very useful criterion.

Nakayama’s lemma highlights why it is so useful to work over a local ring. Thus, it is useful
to reduce questions about general rings to questions about local rings. Before proving it,
we note a corollary.

13.1.24 Corollary Let R be a local ring with maximal ideal m, and M a finitely generated
module. If N ⊂M is a submodule such that N + mN = M , then N = M .

Proof. Apply Nakayama above (lemma 13.1.22) to M/N .

We shall prove more generally:

13.1.25 Proposition Suppose M is a finitely generated R-module, J ⊂ R an ideal. Sup-
pose JM = M . Then there is a ∈ 1 + J such that aM = 0.

If J is the maximal ideal of a local ring, then a is a unit, so that M = 0.

Proof. Suppose M is generated by {x1, . . . , xn} ⊂ M . This means that every element of
M is a linear combination of elements of xi. However, each xi ∈ JM by assumption. In
particular, each xi can be written as

xi =
∑

aijxj , where aij ∈ m.

If we let A be the matrix {aij}, then A sends the vector (xi) into itself. In particular, I−A
kills the vector (xi).

Now I − A is an n-by-n matrix in the ring R. We could, of course, reduce everything
modulo J to get the identity; this is because A consists of elements of J . It follows that
the determinant must be congruent to 1 modulo J .

In particular, a = det(I − A) lies in 1 + J . Now by familiar linear algebra, aI can be
represented as the product of A and the matrix of cofactors; in particular, aI annihilates
the vector (xi), so that aM = 0.
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Before returning to the special case of local rings, we observe the following useful fact from
ideal theory:

13.1.26 Proposition Let R be a commutative ring, I ⊂ R a finitely generated ideal such
that I2 = I. Then I is generated by an idempotent element.

Proof. We know that there is x ∈ 1 + I such that xI = 0. If x = 1 + y, y ∈ I, it follows
that

yt = t

for all t ∈ I. In particular, y is idempotent and (y) = I.

13.1.27 Remark (exercise) 13.1.26 fails if the ideal is not finitely generated.

13.1.28 Remark (exercise) Let M be a finitely generated module over a ring R. Sup-
pose f : M → M is a surjection. Then f is an isomorphism. To see this, consider M as
a module over R[t] with t acting by f ; since (t)M = M , argue that there is a polynomial
Q(t) ∈ R[t] such that Q(t)t acts as the identity on M , i.e. Q(f)f = 1M .

13.1.29 Remark (exercise) Give a counterexample to the conclusion of Nakayama’s
lemma when the module is not finitely generated.

13.1.30 Remark (exercise) Let M be a finitely generated module over the ring R. Let
I be the Jacobson radical of R (cf. 11.4.19). If IM = M , then M = 0.

13.1.31 Remark (exercise) [A converse to Nakayama’s lemma] Suppose conversely that
R is a ring, and a ⊂ R an ideal such that aM 6= M for every nonzero finitely generated
R-module. Then a is contained in every maximal ideal of R.

13.1.32 Remark (exercise) Here is an alternative proof of Nakayama’s lemma. Let R
be local with maximal ideal m, and let M be a finitely generated module with mM = M .
Let n be the minimal number of generators for M . If n > 0, pick generators x1, . . . , xn.
Then write x1 = a1x1 + · · ·+anxn where each ai ∈ m. Deduce that x1 is in the submodule
generated by the xi, i ≥ 2, so that n was not actually minimal, contradiction.

Let M,M ′ be finitely generated modules over a local ring (R,m), and let φ : M → M ′

be a homomorphism of modules. Then Nakayama’s lemma gives a criterion for φ to be a
surjection: namely, the map φ : M/mM → M ′/mM ′ must be a surjection. For injections,
this is false. For instance, if φ is multiplication by any element of m, then φ is zero but
φ may yet be injective. Nonetheless, we give a criterion for a map of free modules over a
local ring to be a split injection.

13.1.33 Proposition Let R be a local ring with maximal ideal m. Let F, F ′ be two finitely
generated free R-modules, and let φ : F → F ′ be a homomorphism. Then φ is a split
injection if and only if the reduction φ

F/mF
φ→ F ′/mF ′

is an injection.
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Proof. One direction is easy. If φ is a split injection, then it has a left inverse ψ : F ′ → F
such that ψ ◦ φ = 1F . The reduction of ψ as a map F ′/mF ′ → F/mF is a left inverse to
φ, which is thus injective.

Conversely, suppose φ injective. Let e1, . . . , er be a “basis” for F , and let f1, . . . , fr be
the images under φ in F ′. Then the reductions f1, . . . , fr are linearly independent in the
R/m-vector space F ′/mF ′. Let us complete this to a basis of F ′/mF ′ by adding elements
g1, . . . , gs ∈ F ′/mF ′, which we can lift to elements g1, . . . , gs ∈ F ′. It is clear that F ′ has
rank r + s since its reduction F ′/mF ′ does.

We claim that the set {f1, . . . , fr, g1, . . . , gs} is a basis for F ′. Indeed, we have a map

Rr+s → F ′

of free modules of rank r+s. It can be expressed as an r+s-by-r+s matrix M ; we need to
show that M is invertible. But if we reduce modulo m, it is invertible since the reductions
of f1, . . . , fr, g1, . . . , gs form a basis of F ′/mF ′. Thus the determinant of M is not in m, so
by locality it is invertible. The claim about F ′ is thus proved.

We can now define the left inverse F ′ → F of φ. Indeed, given x ∈ F ′, we can write it
uniquely as a linear combination

∑
aifi +

∑
bjgj by the above. We define ψ(

∑
aifi +∑

bjgj) =
∑
aiei ∈ F . It is clear that this is a left inverse

We next note a slight strenghtening of the above result, which is sometimes useful. Namely,
the first module does not have to be free.

13.1.34 Proposition Let R be a local ring with maximal ideal m. Let M,F be two finitely
generated R-modules with F free, and let φ : M → F ′ be a homomorphism. Then φ is a
split injection if and only if the reduction φ

M/mM
φ→ F/mF

is an injection.

It will in fact follow that M is itself free, because M is projective (see ?? below) as it is a
direct summand of a free module.

Proof. Let L be a “free approximation” to M . That is, choose a basis x1, . . . , xn for M/mM
(as an R/m-vector space) and lift this to elements x1, . . . , xn ∈M . Define a map

L = Rn →M

by sending the ith basis vector to xi. Then L/mL → M/mM is an isomorphism. By
Nakayama’s lemma, L→M is surjective.

Then the composite map L → M → F is such that the L/mL → F/mF is injective, so
L → F is a split injection (by proposition 13.1.33). It follows that we can find a splitting
F → L, which when composed with L→M is a splitting of M → F .

13.1.35 Remark (exercise) Let A be a local ring, and B a ring which is finitely gener-
ated and free as an A-module. Suppose A → B is an injection. Then A → B is a split
injection. (Note that any nonzero morphism mapping out of a field is injective.)
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13.2. The functor hom

In any category, the morphisms between two objects form a set.1 In many categories, how-
ever, the hom-sets have additional structure. For instance, the hom-sets between abelian
groups are themselves abelian groups. The same situation holds for the category of modules
over a commutative ring.

13.2.1 Definition Let R be a commutative ring and M,N to be R-modules. We write
homR(M,N) for the set of all R-module homomorphisms M → N . homR(M,N) is an
R-module because one can add homomorphisms f, g : M → N by adding them pointwise:
if f, g are homomorphisms M → N , define f + g : M → N via (f + g)(m) = f(m) + g(m);
similarly, one can multiply homomorphisms f : M → N by elements a ∈ R: one sets
(af)(m) = a(f(m)).

Recall that in any category, the hom-sets are functorial. For instance, given f : N → N ′,
post-composition with f defines a map homR(M,N)→ homR(M,N ′) for any M . Similarly
precomposition gives a natural map homR(N ′,M)→ homR(N,M). In particular, we get a
bifunctor hom, contravariant in the first variable and covariant in the second, of R-modules
into R-modules.

Left-exactness of hom

We now discuss the exactness properties of this construction of forming hom-sets. The
following result is basic and is, in fact, a reflection of the universal property of the kernel.

13.2.2 Proposition If M is an R-module, then the functor

N → homR(M,N)

is left exact (but not exact in general).

This means that if
0→ N ′ → N → N ′′

is exact, then
0→ homR(M,N ′)→ homR(M,N)→ homR(M,N ′′)

is exact as well.

Proof. First, we have to show that the map homR(M,N ′) → homR(M,N) is injective;
this is because N ′ → N is injective, and composition with N ′ → N can’t kill any nonzero
M → N ′. Similarly, exactness in the middle can be checked easily, and follows from 11.3.11;
it states simply that a map M → N has image landing inside N ′ (i.e. factors through N ′)
if and only if it composes to zero in N ′′.

1Strictly speaking, this may depend on your set-theoretic foundations.
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This functor homR(M, ·) is not exact in general. Indeed:

13.2.3 Example Suppose R = Z, and consider the R-module (i.e. abelian group) M =
Z/2Z. There is a short exact sequence

0→ 2Z→ Z→ Z/2Z→ 0.

Let us apply homR(M, ·). We get a complex

0→ hom(Z/2Z, 2Z)→ hom(Z/2Z,Z)→ hom(Z/2Z,Z/2Z)→ 0.

The second-to-last term is Z/2Z; everything else is zero. Thus the sequence is not exact,
and in particular the functor homZ(Z/2,−) is not an exact functor.

We have seen that homming out of a module is left-exact. Now, we see the same for
homming into a module.

13.2.4 Proposition If M is a module, then homR(−,M) is a left-exact contravariant
functor.

We write this proof in slightly more detail than proposition 13.2.2, because of the con-
travariance.

Proof. We want to show that hom(·,M) is a left-exact contravariant functor, which means
that if A

u−→ B
v−→ C → 0 is exact, then so is

0→ hom(C,M)
v−→ hom(B,M)

u−→ hom(A,M)

is exact. Here, the bold notation refers to the induced maps of u, v on the hom-sets: if
f ∈ hom(B,M) and g ∈ hom(C,M), we define u and v via v(g) = g ◦ v and u(f) = f ◦ u.

Let us show first that v is injective. Suppose that g ∈ hom(C,M). If v(g) = g ◦v = 0 then
(g ◦ v)(b) = 0 for all b ∈ B. Since v is a surjection, this means that g(C) = 0 and hence
g = 0. Therefore, v is injective, and we have exactness at hom(C,M).

Since v ◦ u = 0, it is clear that u ◦ u = 0.

Now, suppose that f ∈ ker(u) ⊂ hom(B,M). Then u(f) = f ◦ u = 0. Thus f : B →
M factors through B/ im(u). However, im(u) = ker(v), so f factors through B/ ker(v).
Exactness shows that there is an isomorphism B/ ker(v) ' C. In particular, we find that
f factors through C. This is what we wanted.

13.2.5 Remark (exercise) Come up with an example where homR(−,M) is not exact.

13.2.6 Remark (exercise) Over a field, hom is always exact.
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Projective modules

Let M be an R-module for a fixed commutative ring R. We have seen that homR(M,−)
is generally only a left-exact functor. Sometimes, however, we do have exactness. We
axiomatize this with the following.

13.2.7 Definition An R-module M is called projective if the functor homR(M, ·) is
exact.2

One may first observe that a free module is projective. Indeed, let F = RI for an indexing
set. Then the functor N → homR(F,N) is naturally isomorphic to N → N I . It is easy to
see that this functor preserves exact sequences (that is, if 0→ A → B → C → 0 is exact,
so is 0 → AI → BI → CI → 0). Thus F is projective. One can also easily check that a
direct summand of a projective module is projective.

It turns out that projective modules have a very clean characterization. They are precisely
the direct summands in free modules.

add: check this

13.2.8 Proposition The following are equivalent for an R-module M :

1. M is projective.

2. Given any map M → N/N ′ from M into a quotient of R-module N/N ′, we can lift
it to a map M → N .

3. There is a module M ′ such that M ⊕M ′ is free.

Proof. The equivalence of 1 and 2 is just unwinding the definition of projectivity, because we
just need to show that homR(M, ·) preserves surjective maps, i.e. quotients. (homR(M, ·)
is already left-exact, after all.) To say that homR(M,N) → homR(M,N/N ′) is surjective
is just the statement that any map M → N/N ′ can be lifted to M → N .

Let us show that 2 implies 3. Suppose M satisfies 2. Then choose a surjection P � M
where P is free, by proposition 11.6.6. Then we can write M ' P/P ′ for a submodule
P ′ ⊂ P . The isomorphism map M → P/P ′ leads by 2 to a lifting M → P . In particular,
there is a section of P → M , namely this lifting. Since a section leads to a split exact
sequence by ??, we find then that P ' ker(P → M) ⊕ im(M → P ) ' ker(P → M) ⊕M ,
verifying 3 since P is free.

Now let us show that 3 implies 2. Suppose M ⊕M ′ is free, isomorphic to P . Then a map
M → N/N ′ can be extended to

P → N/N ′

by declaring it to be trivial on M ′. But now P → N/N ′ can be lifted to N because P is
free, and we have observed that a free module is projective above; alternatively, we just lift
the image of a basis. This defines P → N . We may then compose this with the inclusion
M → P to get the desired map M → P → N , which is a lifting of M → N/N ′.

2It is possible to define a projective module over a noncommutative ring. The definition is the same,
except that the hom-sets are no longer modules, but simply abelian groups.
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Of course, the lifting P → N of a given map P → N/N ′ is generally not unique, and in
fact is unique precisely when homR(P,N ′) = 0.

So projective modules are precisely those with the following lifting property. Consider a
diagram

P

��
M //M ′′ // 0

where the bottom row is exact. Then, if P is projective, there is a lifting P →M making
commutative the diagram

P

��}}
M //M ′′ // 0

13.2.9 Corollary Let M be a module. Then there is a surjection P � M , where P is
projective.

Proof. Indeed, we know (11.6.6) that we can always get a surjection from a free module.
Since free modules are projective by 13.2.8, we are done.

13.2.10 Remark (exercise) Let R be a principal ideal domain, F ′ a submodule of a free
module F . Show that F ′ is free. (Hint: well-order the set of generators of F , and climb
up by transfinite induction.) In particular, any projective modules is free.

Example: the Serre-Swan theorem

We now briefly digress to describe an important correspondence between projective modules
and vector bundles. The material in this section will not be used in the sequel.

Let X be a compact space. We shall not recall the topological notion of a vector bundle
here.

We note, however, that if E is a (complex) vector bundle, then the set Γ(X,E) of global
sections is naturally a module over the ring C(X) of complex-valued continuous functions
on X.

13.2.11 Proposition If E is a vector bundle on a compact Hausdorff space X, then there
is a surjection ON � E for some N .

Here ON denotes the trivial bundle.

It is known that in the category of vector bundles, every epimorphism splits. In particular,
it follows that E can be viewed as a direct summand of the bundle ON . Since Γ(X,E) is
then a direct summand of Γ(X,ON ) = C(X)N , we find that Γ(X,E) is a direct summand
of a projective C(X)-module. Thus:

13.2.12 Proposition Γ(X,E) is a finitely generated projective C(X)-module.
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13.2.13 Theorem (Serre-Swan) The functor E 7→ Γ(X,E) induces an equivalence of
categories between vector bundles on X and finitely generated projective modules over C(X).

Injective modules

We have given a complete answer to the question of when the functor homR(M,−) is
exact. We have shown that there are a lot of such projective modules in the category of
R-modules, enough that any module admits a surjection from one such. However, we now
have to answer the dual question: when is the functor homR(−, Q) exact?

Let us make the dual definition:

13.2.14 Definition An R-module Q is injective if the functor homR(−, Q) is exact.

Thus, a module Q over a ring R is injective if whenever M → N is an injection, and one has
a map M → Q, it can be extended to N → Q: in other words, homR(N,Q)→ homR(M,Q)
is surjective. We can visualize this by a diagram

0 //M //

��

N

~~
Q

where the dotted arrow always exists if Q is injective.

The notion is dual to projectivity, in some sense, so just as every module M admits an
epimorphic map P →M for P projective, we expect by duality that every module admits
a monomorphic map M → Q for Q injective. This is in fact true, but will require some
work. We start, first, with a fact about injective abelian groups.

13.2.15 Theorem A divisible abelian group (i.e. one where the map x → nx for any
n ∈ N is surjective) is injective as a Z-module (i.e. abelian group).

Proof. The actual idea of the proof is rather simple, and similar to the proof of the Hahn-
Banach theorem. Namely, we extend bit by bit, and then use Zorn’s lemma.

The first step is that we have a subgroup M of a larger abelian group N . We have a map
of f : M → Q for Q some divisible abelian group, and we want to extend it to N .

Now we can consider the poset of pairs (f̃ ,M ′) where M ′ ⊃ M , and f̃ : M ′ → N is a
map extending f . Naturally, we make this into a poset by defining the order as “(f̃ ,M ′) ≤
(f̃ ′,M ′′) if M ′′ contains M ′ and f̃ ′ is an extension of f̃ . It is clear that every chain has an
upper bound, so Zorn’s lemma implies that we have a submodule M ′ ⊂ N containing M ,
and a map f̃ : M ′ → N extending f , such that there is no proper extension of f̃ . From
this we will derive a contradiction unless M ′ = N .

So suppose we have M ′ 6= N , for M ′ the maximal submodule to which f can be extended, as
in the above paragraph. Pick m ∈ N−M ′, and consider the submodule M ′+Zm ⊂ N . We
are going to show how to extend f̃ to this bigger submodule. First, suppose Zm∩M ′ = {0},
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i.e. the sum is direct. Then we can extend f̃ because M ′+Zm is a direct sum: just define
it to be zero on Zm.

The slightly harder part is what happens if Zm ∩ M ′ 6= {0}. In this case, there is an
ideal I ⊂ Z such that n ∈ I if and only if nm ∈ M ′. This ideal, however, is principal; let
g ∈ Z− {0} be a generator. Then gm = p ∈ M ′. In particular, f̃(gm) is defined. We can
“divide” this by g, i.e. find u ∈ Q such that gu = f̃(gm).

Now we may extend to a map f̃ ′ from Zm+M ′ into Q as follows. Choose m′ ∈M ′, k ∈ Z.
Define f̃ ′(m′ + km) = f̃(m′) + ku. It is easy to see that this is well-defined by the choice
of u, and gives a proper extension of f̃ . This contradicts maximality of M ′ and completes
the proof.

13.2.16 Remark (exercise) theorem 13.2.15 works over any principal ideal domain.

13.2.17 Remark (exercise) [Baer] Let N be an R-module such that for any ideal I ⊂ R,
any morphism I → N can be extended to R→ N . Then N is injective. (Imitate the above
argument.)

From this, we may prove:

13.2.18 Theorem Any R-module M can be imbedded in an injective R-module Q.

Proof. First of all, we know that any R-module M is a quotient of a free R-module. We
are going to show that the dual (to be defined shortly) of a free module is injective. And
so since every module admits a surjection from a free module, we will use a dualization
argument to prove the present theorem.

First, for any abelian group G, define the dual group as G∨ = homZ(G,Q/Z). Du-
alization is clearly a contravariant functor from abelian groups to abelian groups. By
proposition 13.2.4 and theorem 13.2.15, an exact sequence of groups

0→ A→ B → C → 0

induces an exact sequence
0→ C∨ → B∨ → A∨ → 0.

In particular, dualization is an exact functor:

13.2.19 Proposition Dualization preserves exact sequences (but reverses the order).

Now, we are going to apply this to R-modules. The dual of a left R-module is acted
upon by R. The action, which is natural enough, is as follows. Let M be an R-module,
and f : M → Q/Z be a homomorphism of abelian groups (since Q/Z has in general no
R-module structure), and r ∈ R; then we define rf to be the map M → Q/Z defined via

(rf)(m) = f(rm).
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It is easy to check that M∨ is thus made into an R-module.3 In particular, dualization
into Q/Z gives a contravariant exact functor from R-modules to R-modules.

Let M be as before, and now consider the R-module M∨. By proposition 11.6.6, we can
find a free module F and a surjection

F →M∨ → 0.

Now dualizing gives an exact sequence of R-modules

0→M∨∨ → F∨.

However, there is a natural map (of R-modules) M →M∨∨: given m ∈M , we can define
a functional hom(M,Q/Z) → Q/Z by evaluation at m. One can check that this is a
homomorphism. Moreover, this morphism M →M∨∨ is actually injective: if m ∈M were
in the kernel, then by definition every functional M → Q/Z must vanish on m. It is easy
to see (using Z-injectivity of Q/Z) that this cannot happen if m 6= 0: we could just pick a
nontrivial functional on the monogenic subgroup Zm and extend to M .

We claim now that F∨ is injective. This will prove the theorem, as we have the composite
of monomorphisms M ↪→M∨∨ ↪→ F∨ that embeds M inside an injective module.

13.2.20 Lemma The dual of a free R-module F is an injective R-module.

Proof. Let 0→ A→ B be exact; we have to show that

homR(B,F∨)→ homR(A,F∨)→ 0.

is exact. Now we can reduce to the case where F is the R-module R itself. Indeed, F
is a direct sum of R’s by assumption, and taking hom’s turns them into direct products;
moreover the direct product of exact sequences is exact.

So we are reduced to showing that R∨ is injective. Now we claim that

(13.2.20.1) homR(B,R∨) = homZ(B,Q/Z).

In particular, homR(−, R∨) is an exact functor because Q/Z is an injective abelian group.
The proof of eq. (13.2.20.1) is actually “trivial.” For instance, a R-homomorphism f : B →
R∨ induces f̃ : B → Q/Z by sending b→ (f(b))(1). One checks that this is bijective.

3If R is noncommutative, this would not work: instead M∨ would be an right R-module. For commutative
rings, we have no such distinction between left and right modules.
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The small object argument

There is another, more set-theoretic approach to showing that any R-module M can be
imbedded in an injective module. This approach, which constructs the injective module by
a transfinite colimit of push-outs, is essentially analogous to the “small object argument”
that one uses in homotopy theory to show that certain categories (e.g. the category of
CW complexes) are model categories in the sense of Quillen; see ?. While this method
is somewhat abstract and more complicated than the one of section 13.2, it is also more
general. Apparently this method originates with Baer, and was revisited by Cartan &
Eilenberg (1999) and by Grothendieck (1957). There, Grothendieck uses it to show that
many other abelian categories have enough injectives.

We first begin with a few remarks on smallness. Let {Bα}, α ∈ A be an inductive system
of objects in some category C, indexed by an ordinal A. Let us assume that C has (small)
colimits. If A is an object of C, then there is a natural map

(13.2.20.2) lim−→ hom(A,Bα)→ hom(A, lim−→Bα)

because if one is given a map A → Bβ for some β, one naturally gets a map from A into
the colimit by composing with Bβ → lim−→Bα. (Note that the left colimit is one of sets!)

In general, the map eq. (13.2.20.2) is neither injective or surjective.

13.2.21 Example Consider the category of sets. Let A = N and Bn = {1, . . . , n} be the
inductive system indexed by the natural numbers (where Bn → Bm, n ≤ m is the obvious
map). Then lim−→Bn = N, so there is a map

A→ lim−→Bn,

which does not factor as
A→ Bm

for any m. Consequently, lim−→ hom(A,Bn)→ hom(A, lim−→Bn) is not surjective.

13.2.22 Example Next we give an example where the map fails to be injective. Let
Bn = N/ {1, 2, . . . , n}, that is, the quotient set of N with the first n elements collapsed to
one element. There are natural maps Bn → Bm for n ≤ m, so the {Bn} form an inductive
system. It is easy to see that the colimit lim−→Bn = {∗}: it is the one-point set. So it follows
that hom(A, lim−→Bn) is a one-element set.

However, lim−→ hom(A,Bn) is not a one-element set. Consider the family of maps A → Bn
which are just the natural projections N→ N/ {1, 2, . . . , n} and the family of maps A→ Bn
which map the whole of A to the class of 1. These two families of maps are distinct at each
step and thus are distinct in lim−→ hom(A,Bn), but they induce the same map A→ lim−→Bn.

Nonetheless, if A is a finite set, it is easy to see that for any sequence of sets B1 → B2 → . . . ,
we have

lim−→ hom(A,Bn) = hom(A, lim−→Bn).
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Proof. Let f : A → lim−→Bn. The range of A is finite, containing say elements c1, . . . , cr ∈
lim−→Bn. These all come from some elements in BN for N large by definition of the colimit.

Thus we can define f̃ : A→ BN lifting f at a finite stage.

Next, suppose two maps fn : A → Bm, gn : A → Bm define the same map A → lim−→Bn.
Then each of the finitely many elements of A gets sent to the same point in the colimit.
By definition of the colimit for sets, there is N ≥ m such that the finitely many elements
of A get sent to the same points in BN under f and g. This shows that lim−→ hom(A,Bn)→
hom(A, lim−→Bn) is injective.

The essential idea is that A is “small” relative to the long chain of compositions B1 →
B2 → . . . , so that it has to factor through a finite step.

Let us generalize this.

13.2.23 Definition Let C be a category, I a class of maps, and ω an ordinal. An object
A ∈ C is said to be ω-small (with respect to I) if whenever {Bα} is an inductive system
parametrized by ω with maps in I, then the map

lim−→ hom(A,Bα)→ hom(A, lim−→Bα)

is an isomorphism.

Our definition varies slightly from that of ?, where only “nice” transfinite sequences {Bα}
are considered.

In our applications, we shall begin by restricting ourselves to the category of R-modules
for a fixed commutative ring R. We shall also take I to be the set of monomorphisms, or
injections.4 Then each of the maps

Bβ → lim−→Bα

is an injection, so it follows that hom(A,Bβ) → hom(A, lim−→Bα) is one, and in particular
the canonical map

(13.2.23.1) lim−→ hom(A,Bα)→ hom(A, lim−→Bα)

is an injection. We can in fact interpret the Bα’s as subobjects of the big module lim−→Bα,
and think of their union as lim−→Bα. (This is not an abuse of notation if we identify Bα with
the image in the colimit.)

We now want to show that modules are always small for “large” ordinals ω. For this, we
have to digress to do some set theory:

13.2.24 Definition Let ω be a limit ordinal, and κ a cardinal. Then ω is κ-filtered if
every collection C of ordinals strictly less than ω and of cardinality at most κ has an upper
bound strictly less than ω.

4There are, incidentally, categories, such as the category of rings, where a categorical epimorphism may
not be a surjection of sets.
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13.2.25 Example A limit ordinal (e.g. the natural numbers ω0) is κ-filtered for any finite
cardinal κ.

13.2.26 Proposition Let κ be a cardinal. Then there exists a κ-filtered ordinal ω.

Proof. If κ is finite, example 13.2.25 shows that any limit ordinal will do. Let us thus
assume that κ is infinite.

Consider the smallest ordinal ω whose cardinality is strictly greater than that of κ. Then
we claim that ω is κ-filtered. Indeed, if C is a collection of at most κ ordinals strictly
smaller than ω, then each of these ordinals is of size at most κ. Thus the union of all the
ordinals in C (which is an ordinal) is of size at most κ, so is strictly smaller than ω, and
it provides an upper bound as in the definition.

13.2.27 Proposition Let M be a module, κ the cardinality of the set of its submodules.
Then if ω is κ-filtered, then M is ω-small (with respect to injections).

The proof is straightforward, but let us first think about a special case. If M is finite, then
the claim is that for any inductive system {Bα} with injections between them, parametrized
by a limit ordinal, any map M → lim−→Bα factors through one of the Bα. But this is clear.
M is finite, so since each element in the image must land inside one of the Bα, so all of M
lands inside some finite stage.

Proof. We need only show that the map eq. (13.2.23.1) is a surjection when ω is κ-filtered.
Let f : A → lim−→Bα be a map. Consider the subobjects {f−1(Bα)} of A, where Bα is

considered as a subobject of the colimit. If one of these, say f−1(Bβ), fills A, then the map
factors through Bβ.

So suppose to the contrary that all of the f−1(Bα) were proper subobjects of A. However,
we know that ⋃

f−1(Bα) = f−1
(⋃

Bα

)
= A.

Now there are at most κ different subobjects of A that occur among the f−1(Bα), by
hypothesis. Thus we can find a set A of cardinality at most κ such that as α′ ranges over
A, the f−1(Bα′) range over all the f−1(Bα).

However, A has an upper bound ω̃ < ω as ω is κ-filtered. In particular, all the f−1(Bα′)
are contained in f−1(Bω̃). It follows that f−1(Bω̃) = A. In particular, the map f factors
through Bω̃.

From this, we will be able to deduce the existence of lots of injectives. Let us recall
the criterion of Baer (remark 13.2.17): a module Q is injective if and only if in every
commutative diagram

a

��

// Q

R

??
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for a ⊂ R an ideal, the dotted arrow exists. In other words, we are trying to solve an
extension problem with respect to the inclusion a ↪→ R into the module M .

If M is an R-module, then in general we may have a semi-complete diagram as above. In
it, we can form the push-out

a

��

// Q

��
R // R⊕a Q

.

Here the vertical map is injective, and the diagram commutes. The point is that we can
extend a→ Q to R if we extend Q to the larger module R⊕a Q.

The point of the small object argument is to repeat this procedure transfinitely many
times.

13.2.28 Theorem Let M be an R-module. Then there is an embedding M ↪→ Q for Q
injective.

Proof. We start by defining a functor M on the category of R-modules. Given N , we
consider the set of all maps a→ N for a ⊂ R an ideal, and consider the push-out

(13.2.28.1)
⊕

a //

��

N

��⊕
R // N ⊕⊕

a

⊕
R

where the direct sum of copies of R is taken such that every copy of an ideal a corresponds
to one copy of R. We define M(N) to be this push-out. Given a map N → N ′, there is
a natural morphism of diagrams eq. (13.2.28.1), so M is a functor. Note furthermore that
there is a natural transformation

N →M(N),

which is always an injection.

The key property of M is that if a→ N is any morphism, it can be extended to R→M(N),
by the very construction of M(N). The idea will now be to apply M a transfinite number
of times and to use the small object property.

We define for each ordinal ω a functor Mω on the category of R-modules, together with
a natural injection N →Mω(N). We do this by transfinite induction. First, M1 = M is
the functor defined above. Now, suppose given an ordinal ω, and suppose Mω′ is defined
for ω′ < ω. If ω has an immediate predecessor ω̃, we let

Mω = M ◦Mω̃.

If not, we let Mω(N) = lim−→ω′<ω
Mω′(N). It is clear (e.g. inductively) that the Mω(N)

form an inductive system over ordinals ω, so this is reasonable.

Let κ be the cardinality of the set of ideals in R, and let Ω be a κ-filtered ordinal. The
claim is as follows.
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13.2.29 Lemma For any N , MΩ(N) is injective.

If we prove this, we will be done. In fact, we will have shown that there is a functorial
embedding of a module into an injective. Thus, we have only to prove this lemma.

Proof. By Baer’s criterion (remark 13.2.17), it suffices to show that if a ⊂ R is an ideal,
then any map f : a → MΩ(N) extends to R → MΩ(N). However, we know since Ω is a
limit ordinal that

MΩ(N) = lim−→
ω<Ω

Mω(N),

so by proposition 13.2.27, we find that

homR(a,MΩ(N)) = lim−→
ω<Ω

homR(a,Mω(N)).

This means in particular that there is some ω′ < Ω such that f factors through the
submodule Mω′(N), as

f : a→Mω′(N)→MΩ(N).

However, by the fundamental property of the functor M, we know that the map a →
Mω′(N) can be extended to

R→M(Mω′(N)) = Mω′+1(N),

and the last object imbeds in MΩ(N). In particular, f can be extended to MΩ(N).

Split exact sequences

add: additive functors preserve split exact seq Suppose that 0 //L
ψ //M

f //N //0
is a split short exact sequence. Since HomR(D, ·) is a left-exact functor, we see that

0 //HomR(D,L)
ψ′ //HomR(D,M)

f ′ //HomR(D,N)

is exact. In addition, HomR(D,L ⊕N) ∼= HomR(D,L) ⊕ HomR(D,N). Therefore, in the
case that we start with a split short exact sequence M ∼= L⊕N , applying HomR(D, ·) does
yield a split short exact sequence

0 //HomR(D,L)
ψ′ //HomR(D,M)

f ′ //HomR(D,N) //0 .

Now, assume that

0 //HomR(D,L)
ψ′ //HomR(D,M)

f ′ //HomR(D,N) //0

is a short exact sequence of abelian groups for all R-modules D. Set D = R and using

HomR(R,N) ∼= N yields that 0 //L
ψ //M

f //N //0 is a short exact sequence.
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Set D = N , so we have

0 //HomR(N,L)
ψ′ //HomR(N,M)

f ′ //HomR(N,N) //0

Here, f ′ is surjective, so the identity map of HomR(N,N) lifts to a map g ∈ HomR(N,M)
so that f ◦ g = f ′(g) = id. This means that g is a splitting homomorphism for the

sequence 0 //L
ψ //M

f //N //0, and therefore the sequence is a split short exact
sequence.

13.3. The tensor product

We shall now introduce the third functor of this chapter: the tensor product. The tensor
product’s key property is that it allows one to “linearize” bilinear maps. When taking the
tensor product of rings, it provides a categorical coproduct as well.

Bilinear maps and the tensor product

Let R be a commutative ring, as usual. We have seen that the hom-sets homR(M,N) of
R-modules M,N are themselves R-modules. Consequently, if we have three R-modules
M,N,P , we can think about module-homomorphisms

M
λ→ homR(N,P ).

Suppose x ∈M,y ∈ N . Then we can consider λ(x) ∈ homR(N,P ) and thus we can consider
the element λ(x)(y) ∈ P. We denote this element λ(x)(y), which depends on the variables
x ∈M,y ∈ N , by λ(x, y) for convenience; it is a function of two variables M ×N → P .

There are certain properties of λ(·, ·) that we list below. Fix x, x′ ∈ M ; y, y′ ∈ N ; a ∈ R.
Then:

1. λ(x, y + y′) = λ(x, y) + λ(x, y′) because λ(x) is additive.

2. λ(x, ay) = aλ(x, y) because λ(x) is an R-module homomorphism.

3. λ(x+ x′, y) = λ(x, y) + λ(x′, y) because λ is additive.

4. λ(ax, y) = aλ(x, y) because λ is an R-module homomorphism.

Conversely, given a function λ : M×N → P of two variables satisfying the above properties,
it is easy to see that we can get a morphism of R-modules M → homR(N,P ).

13.3.1 Definition An R-bilinear map λ : M × N → P is a map satisfying the above
listed conditions. In other words, it is required to be R-linear in each variable separately.

The previous discussion shows that there is a bijection between R-bilinear mapsM×N → P
with R-module maps M → homR(N,P ). Note that the first interpretation is symmetric
in M,N ; the second, by contrast, can be interpreted in terms of the old concepts of an
R-module map. So both are useful.
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13.3.2 Remark (exercise) Prove that a Z-bilinear map out of Z/2 × Z/3 is identically
zero, whatever the target module.

Let us keep the notation of the previous discussion: in particular, M,N,P will be modules
over a commutative ring R.

Given a bilinear map M × N → P and a homomorphism P → P ′, we can clearly get a
bilinear map M ×N → P ′ by composition. In particular, given M,N , there is a covariant
functor from R-modules to Sets sending any R-module P to the collection of R-bilinear
maps M ×N → P . As usual, we are interested in when this functor is corepresentable. As
a result, we are interested in universal bilinear maps out of M ×N .

13.3.3 Definition An R-bilinear map λ : M × N → P is called universal if for all

R-modules Q, the composition of P → Q with M ×N λ→ P gives a bijection

homR(P,Q) ' {bilinear maps M ×N → Q}

So, given a bilinear map M ×N → Q, there is a unique map P → Q making the diagram

P

��

M ×N

λ

;;

##
Q

Alternatively, P corepresents the functor Q→ {bilinear maps M ×N → Q}.

General nonsense says that given M,N , an universal R-bilinear map M×N → P is unique
up to isomorphism (if it exists). This follows from Yoneda’s lemma. For convenience, we
give a direct proof.

Suppose M × N
λ→ P was universal and M × N

λ′→ P ′ is also universal. Then by the
universal property, there are unique maps P → P ′ and P ′ → P making the following
diagram commutative:

P

��

M ×N

λ

::

λ′

##
P ′

OO

These compositions P → P ′ → P, P ′ → P → P ′ have to be the identity because of the
uniqueness part of the universal property. As a result, P → P ′ is an isomorphism.

We shall now show that this universal object does indeed exist.
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13.3.4 Proposition Given M,N , a universal bilinear map out of M ×N exists.

Before proving it we make:

13.3.5 Definition We denote the codomain of the universal map out of M×N byM⊗RN .
This is called the tensor product of M,N , so there is a universal bilinear map out of
M ×N into M ⊗R N .

Proof of 13.3.4. We will simply give a presentation of the tensor product by “generators
and relations.” Take the free R-module M⊗RN generated by the symbols {x⊗ y}x∈M,y∈N
and quotient out by the relations forced upon us by the definition of a bilinear map (for
x, x′ ∈M, y, y′ ∈ N, a ∈ R)

1. (x+ x′)⊗ y = x⊗ y + x′ ⊗ y.

2. (ax)⊗ y = a(x⊗ y) = x⊗ (ay).

3. x⊗ (y + y′) = x⊗ y + x⊗ y′.

We will abuse notation and denote x⊗y for its image in M⊗RN (as opposed to the symbol
generating the free module).

There is a bilinear map M ×N →M ⊗R N sending (x, y)→ x⊗ y; the relations imposed
imply that this map is a bilinear map. We have to check that it is universal, but this is
actually quite direct.

Suppose we had a bilinear map λ : M × N → P . We must construct a linear map
M ⊗R N → P . To do this, we can just give a map on generators, and show that it is zero
on each of the relations. It is easy to see that to make the appropriate diagrams commute,
the linear map M ⊗N → P has to send x⊗y → λ(x, y). This factors through the relations
on x⊗ y by bilinearity and leads to an R-linear map M ⊗RN → P such that the following
diagram commutes:

M ×N //

λ

&&

M ⊗R N

��
P

.

It is easy to see that M ⊗R N → P is unique because the x⊗ y generate it.

The theory of the tensor product allows one to do away with bilinear maps and just think
of linear maps.

Given M,N , we have constructed an object M ⊗RN . We now wish to see the functoriality
of the tensor product. In fact, (M,N)→ M ⊗R N is a covariant functor in two variables
from R-modules to R-modules. In particular, if M → M ′, N → N ′ are morphisms, there
is a canonical map

(13.3.5.1) M ⊗R N →M ′ ⊗R N ′.

To obtain eq. (13.3.5.1), we take the natural bilinear map M ×N →M ′×N ′ →M ′⊗RN ′
and use the universal property of M ⊗R N to get a map out of it.
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Basic properties of the tensor product

We make some observations and prove a few basic properties. As the proofs will show, one
powerful way to prove things about an object is to reason about its universal property. If
two objects have the same universal property, they are isomorphic.

13.3.6 Proposition The tensor product is symmetric: for R-modules M,N , we have
M ⊗R N ' N ⊗RM canonically.

Proof. This is clear from the universal properties: giving a bilinear map out of M × N
is the same as a bilinear map out N ×M . Thus M ⊗R N and N ⊗R N have the same
universal property. It is also clear from the explicit construction.

13.3.7 Proposition For an R-module M , there is a canonical isomorphism M →M⊗RR.

Proof. If we think in terms of bilinear maps, this statement is equivalent to the statement
that a bilinear map λ : M × R → P is the same as a linear map M → N . Indeed, to do
this, restrict λ to λ(·, 1). Given f : M → N , similarly, we take for λ as λ(x, a) = af(x).
This gives a bijection as claimed.

13.3.8 Proposition The tensor product is associative. There are canonical isomorphisms
M ⊗R (N ⊗R P ) ' (M ⊗R N)⊗R P .

Proof. There are a few ways to see this: one is to build it explicitly from the construction
given, sending x⊗ (y ⊗ z)→ (x⊗ y)⊗ z.

More conceptually, both have the same universal property: by general categorical nonsense
(Yoneda’s lemma), we need to show that for all Q, there is a canonical bijection

homR(M ⊗ (N ⊗ P )), Q) ' homR((M ⊗N)⊗ P,Q)

where the R’s are dropped for simplicity. But both of these sets can be identified with the
set of trilinear maps5 M ×N × P → Q. Indeed

homR(M ⊗ (N ⊗ P ), Q) ' bilinear M × (N ⊗ P )→ Q

' hom(N ⊗ P,hom(M,Q))

' bilinear N × P → hom(M,Q)

' hom(N, hom(P,hom(M,Q))

' trilinear maps.

5Easy to define.
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The adjoint property

Finally, while we defined the tensor product in terms of a “universal bilinear map,” we
saw earlier that bilinear maps could be interpreted as maps into a suitable hom-set. In
particular, fix R-modules M,N,P . We know that the set of bilinear maps M ×N → P is
naturally in bijection with

homR(M,homR(N,P ))

as well as with
homR(M⊗R, N, P ).

As a result, we find:

13.3.9 Proposition For R-modules M,N,P , there is a natural bijection

homR(M,homR(N,P )) ' homR(M ⊗R N,P ).

There is a more evocative way of phrasing the above natural bijection. Given N , let us
define the functors FN , GN via

FN (M) = M ⊗R N, GN (P ) = homR(N,P ).

Then the above proposition states that there is a natural isomorphism

homR(FN (M), P ) ' homR(M,GN (P )).

In particular, FN and GN are adjoint functors. So, in a sense, the operations of hom and
⊗ are dual to each other.

13.3.10 Proposition Tensoring commutes with colimits.

In particular, it follows that if {Nα} is a family of modules, and M is a module, then

M ⊗R
⊕

Nα =
⊕

M ⊗R Nα.

13.3.11 Remark (exercise) Give an explicit proof of the above relation.

Proof. This is a formal consequence of the fact that the tensor product is a left adjoint
and consequently commutes with all colimits. add: proof

In particular, by proposition 13.3.10, the tensor product commutes with cokernels. That
is, if A → B → C → 0 is an exact sequence of R-modules and M is an R-module,
A ⊗RM → B ⊗RM → C ⊗RM → 0 is also exact, because exactness of such a sequence
is precisely a condition on the cokernel. That is, the tensor product is right exact.

We can thus prove a simple result on finite generation:

13.3.12 Proposition If M,N are finitely generated, then M ⊗R N is finitely generated.

Proof. Indeed, if we have surjections Rm → M,Rn → N , we can tensor them; we get a
surjection since the tensor product is right-exact. So have a surjection Rmn = Rm⊗RRn →
M ⊗R N .
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The tensor product as base-change

Before this, we have considered the tensor product as a functor within a fixed category.
Now, we shall see that when one takes the tensor product with a ring, one gets additional
structure. As a result, we will be able to get natural functors between different module
categories.

Suppose we have a ring-homomorphism φ : R → R′. In this case, any R′-module can be
regarded as an R-module. In particular, there is a canonical functor of restriction

R′-modules→ R-modules.

We shall see that the tensor product provides an adjoint to this functor. Namely, if M has
an R-module structure, then M ⊗R R′ has an R′ module structure where R′ acts on the
right. Since the tensor product is functorial, this gives a functor in the opposite direction:

R-modules→ R′-modules.

Let M ′ be an R′-module and M an R-module. In view of the above, we can talk about

homR(M,M ′)

by thinking of M ′ as an R-module.

13.3.13 Proposition There is a canonical isomorphism between

homR(M,M ′) ' homR′(M ⊗R R′,M ′).

In particular, the restriction functor and the functor M → M ⊗R R′ are adjoints to each
other.

Proof. We can describe the bijection explicitly. Given an R′-homomorphism f : M⊗RR′ →
M ′, we get a map

f0 : M →M ′

sending
m→ m⊗ 1→ f(m⊗ 1).

This is easily seen to be an R-module-homomorphism. Indeed,

f0(ax) = f(ax⊗ 1) = f(φ(a)(x⊗ 1)) = af(x⊗ 1) = af0(x)

since f is an R′-module homomorphism.

Conversely, if we are given a homomorphism of R-modules

f0 : M →M ′

then we can define
f : M ⊗R R′ →M ′

by sending m⊗r′ → r′f0(m), which is a homomorphism of R′ modules. This is well-defined
because f0 is a homomorphism of R-modules. We leave some details to the reader.
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13.3.14 Example In the representation theory of finite groups, the operation of ten-
sor product corresponds to the procedure of inducing a representation. Namely, if H ⊂
G is a subgroup of a group G, then there is an obvious restriction functor from G-
representations to H-representations. The adjoint to this is the induction operator. Since
a H-representation (resp. a G-representation) is just a module over the group ring, the
operation of induction is really a special case of the tensor product. Note that the group
rings are generally not commutative, so this should be interpreted with some care.

Some concrete examples

We now present several concrete computations of tensor products in explicit cases to illu-
minate what is happening.

13.3.15 Example Let us compute Z/10 ⊗Z Z/12. Since 1 spans Z/(10) and 1 spans
Z/(12), we see that 1⊗ 1 spans Z/(10)⊗Z/(12) and this tensor product is a cyclic group.

Note that 1⊗0 = 1⊗(10·0) = 10⊗0 = 0⊗0 = 0 and 0⊗1 = (12·0)⊗1 = 0⊗12 = 0⊗0 = 0.
Now, 10(1⊗1) = 10⊗1 = 0⊗1 = 0 and 12(1⊗1) = 1⊗12 = 1⊗0 = 0, so the cyclic group
Z/(10)⊗ Z/(12) has order dividing both 10 and 12. This means that the cyclic group has
order dividing gcd(10, 12) = 2.

To show that the order of Z/(10)⊗Z/(12), define a bilinear map g : Z/(10)×Z/(12)→ Z/(2)
via g : (x, y) 7→ xy. The universal property of tensor products then says that there is a
unique linear map f : Z/(10)⊗ Z/(12)→ Z/(2) making the diagram

Z/(10)× Z/(12)
⊗ //

g
))

Z/(10)⊗ Z/(12)

f
��

Z/(2).

commute. In particular, this means that f(x ⊗ y) = g(x, y) = xy. Hence, f(1 ⊗ 1) = 1,
so f is surjective, and therefore, Z/(10) ⊗ Z/(12) has size at least two. This allows us to
conclude that Z/(10)⊗ Z/(12) = Z/(2).

We now generalize the above example to tensor products of cyclic groups.

13.3.16 Example Let d = gcd(m,n). We will show that (Z/mZ)⊗(Z/nZ) ' (Z/dZ), and
thus in particular if m and n are relatively prime, then (Z/mZ)⊗(Z/nZ) ' (0). First, note
that any a⊗b ∈ (Z/mZ)⊗ (Z/nZ) can be written as ab(1⊗1), so that (Z/mZ)⊗ (Z/nZ) is
generated by 1⊗ 1 and hence is a cyclic group. We know from elementary number theory
that d = xm + yn for some x, y ∈ Z. We have m(1 ⊗ 1) = m ⊗ 1 = 0 ⊗ 1 = 0 and
n(1 ⊗ 1) = 1 ⊗ n = 1 ⊗ 0 = 0. Thus d(1 ⊗ 1) = (xm + yn)(1 ⊗ 1) = 0, so that 1 ⊗ 1 has
order dividing d.

Conversely, consider the map f : (Z/mZ) × (Z/nZ) → (Z/dZ) defined by f(a + mZ, b +
nZ) = ab+ dZ. This is well-defined, since if a′ +mZ = a+mZ and b′ + nZ = b+ nZ then
a′ = a+mr and b′ = b+ns for some r, s and thus a′b′+dZ = ab+(mrb+nsa+mnrs)+dZ =
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ab+dZ (since d = gcd(m,n) divides m and n). This is obviously bilinear, and hence induces
a map f̃ : (Z/mZ) ⊗ (Z/nZ) → (Z/dZ), which has f̃(1 ⊗ 1) = 1 + dZ. But the order of
1 + dZ in Z/dZ is d, so that the order of 1 ⊗ 1 in (Z/mZ) ⊗ (Z/nZ) must be at least d.
Thus 1⊗ 1 is in fact of order d, and the map f̃ is an isomorphism between cyclic groups of
order d.

Finally, we present an example involving the interaction of hom and the tensor product.

13.3.17 Example Given an R-module M , let us use the notation M∗ = homR(M,R).
We shall define a functorial map

M∗ ⊗R N → homR(M,N),

and show that it is an isomorphism when M is finitely generated and free.

Define ρ′ : M∗ × N → homR(M,N) by ρ′(f, n)(m) = f(m)n (note that f(m) ∈ R, and
the multiplication f(m)n is that between an element of R and an element of N). This is
bilinear,

ρ′(af+bg, n)(m) = (af+bg)(m)n = (af(m)+bg(m))n = af(m)n+bg(m)n = aρ′(f, n)(m)+bρ′(g, n)(m)

ρ′(f, an1+bn2)(m) = f(m)(an1+bn2) = af(m)n1+bf(m)n2 = aρ′(f, n1)(m)+bρ′(f, n2)(m)

so it induces a map ρ : M∗ ⊗ N → hom(M,N) with ρ(f ⊗ n)(m) = f(m)n. This homo-
morphism is unique since the f ⊗ n generate M∗ ⊗N .

Suppose M is free on the set {a1, . . . , ak}. Then M∗ = hom(M,R) is free on the set
{fi : M → R, fi(r1a1 + · · ·+ rkak) = ri}, because there are clearly no relations among the
fi and because any f : M → R has f = f(a1)f1 + · · ·+f(an)fn. Also note that any element∑
hj ⊗ pj ∈M∗ ⊗N can be written in the form

∑k
i=1 fi ⊗ ni, by setting ni =

∑
hj(ai)pj ,

and that this is unique because the fi are a basis for M∗.

We claim that the map ψ : homR(M,N)→ M∗ ⊗N defined by ψ(g) =
∑k

i=1 fi ⊗ g(ai) is

inverse to ρ. Given any
∑k

i=1 fi ⊗ ni ∈M∗ ⊗N , we have

ρ(

k∑
i=1

fi ⊗ ni)(aj) =

k∑
i=1

ρ(fi ⊗ ni)(aj) =

k∑
i=1

fi(aj)ni = nj

Thus, ρ(
∑k

i=1 fi ⊗ ni)(ai) = ni, and thus ψ(ρ(
∑k

i=1 fi ⊗ ni)) =
∑k

i=1 fi ⊗ ni. Thus,
ψ ◦ ρ = idM∗⊗N .

Conversely, recall that for g : M → N ∈ homR(M,N), we defined ψ(g) =
∑k

i=1 fi ⊗ g(ai).
Thus,

ρ(ψ(g))(aj) = ρ(
k∑
i=1

fi ⊗ g(ai))(aj) =
k∑
i=1

ρ(fi ⊗ g(ai))(aj) =
k∑
i=1

fi(aj)g(ai) = g(aj)
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and because ρ(ψ(g)) agrees with g on the ai, it is the same element of homR(M,N) because
the ai generate M . Thus, ρ ◦ ψ = idhomR(M,N).

Thus, ρ is an isomorphism.

We now interpret localization as a tensor product.

13.3.18 Proposition Let R be a commutative ring, S ⊂ R a multiplicative subset. Then
there exists a canonical isomorphism of functors:

φ : S−1M ' S−1R⊗RM.

Proof. Here is a construction of φ. If x/s ∈ S−1M where x ∈M, s ∈ S, we define

φ(x/s) = (1/s)⊗m.

Let us check that this is well-defined. Suppose x/s = x′/s′; then this means there is t ∈ S
with

xs′t = x′st.

From this we need to check that φ(x/s) = φ(x′/s′), i.e. that 1/s⊗x and 1/s′⊗x′ represent
the same elements in the tensor product. But we know from the last statement that

1

ss′t
⊗ xs′t =

1

ss′t
x′st ∈ S−1R⊗M

and the first is just

s′t(
1

ss′t
⊗ x) =

1

s
⊗ x

by linearity, while the second is just
1

s′
⊗ x′

similarly. One next checks that φ is an R-module homomorphism, which we leave to the
reader.

Finally, we need to describe the inverse. The inverse ψ : S−1R ⊗M → S−1M is easy to
construct because it’s a map out of the tensor product, and we just need to give a bilinear
map

S−1R×M → S−1M,

and this sends (r/s,m) to mr/s.

It is easy to see that φ, ψ are inverses to each other by the definitions.

It is, perhaps, worth making a small categorical comment, and offering an alternative
argument. We are given two functors F,G from R-modules to S−1R-modules, where
F (M) = S−1R⊗RM and G(M) = S−1M . By the universal property, the map M → S−1M
from an R-module to a tensor product gives a natural map

S−1R⊗RM → S−1M,

that is a natural transformation F → G. Since it is an isomorphism for free modules, it is
an isomorphism for all modules by a standard argument.
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Tensor products of algebras

There is one other basic property of tensor products to discuss before moving on: namely,
what happens when one tensors a ring with another ring. We shall see that this gives
rise to push-outs in the category of rings, or alternatively, coproducts in the category of
R-algebras. Let R be a commutative ring and suppose R1, R2 are R-algebras. That is, we
have ring homomorphisms φ0 : R→ R0, φ1 : R→ R1.

13.3.19 Proposition R0⊗RR1 has the structure of a commutative ring in a natural way.

Indeed, this multiplication multiplies two typical elements x⊗y, x′⊗y′ of the tensor product
by sending them to xx′⊗yy′. The ring structure is determined by this formula. One ought
to check that this approach respects the relations of the tensor product. We will do so in
an indirect way.

Proof. Notice that giving a multiplication law on R0 ⊗R R1 is equivalent to giving an
R-bilinear map

(R0 ⊗R R1)× (R0 ⊗R1)→ R0 ⊗R R1,

i.e. an R-linear map
(R0 ⊗R R1)⊗R (R0 ⊗R1)→ R0 ⊗R R1

which satisfies certain constraints (associativity, commutativity, etc.). But the left side is
isomorphic to (R0⊗RR0)⊗R (R1⊗RR1). Since we have bilinear maps R0×R0 → R0 and
R1 ×R1 → R1, we get linear maps R0 ⊗R R0 → R0 and R1 ⊗R R1 → R1. Tensoring these
maps gives the multiplication as a bilinear map. It is easy to see that these two approaches
are the same.

We now need to check that this operation is commutative and associative, with 1⊗ 1 as a
unit; moreover, it distributes over addition. Distributivity over addition is built into the
construction (i.e. in view of bilinearity). The rest (commutativity, associativity, units)
can be checked directly on the generators, since we have distributivity. We shall leave the
details to the reader.

We can in fact describe the tensor product of R-algebras by a universal property. We will
describe a commutative diagram:

R

%%yy
R0

%%

R1

yy
R0 ⊗R R1

Here R0 → R0 ⊗R R1 sends x 7→ x ⊗ 1; similarly for R1 7→ R0 ⊗R R1. These are ring-
homomorphisms, and it is easy to see that the above diagram commutes, since r ⊗ 1 =
1⊗ r = r(1⊗ 1) for r ∈ R. In fact,
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13.3.20 Proposition R0⊗RR1 is universal with respect to this property: in the language
of category theory, the above diagram is a pushout square.

This means for any commutative ring B, and every pair of maps u0 : R0 → B and
u1 : R1 → B such that the pull-backs R→ R0 → B and R→ R1 → B are the same, then
we get a unique map of rings

R0 ⊗R R1 → B

which restricts on R0, R1 to the morphisms u0, u1 that we started with.

Proof. If B is a ring as in the previous paragraph, we make B into an R-module by the map
R→ R0 → B (or R→ R1 → B, it is the same by assumption). This map R0 ⊗R R1 → B
sends

x⊗ y → u0(x)u1(y).

It is easy to check that (x, y) → u0(x)u1(y) is R-bilinear (because of the condition that
the two pull-backs of u0, u1 to R are the same), and that it gives a homomorphism of rings
R0 ⊗R R1 → B which restricts to u0, u1 on R0, R1. One can check, for instance, that this
is a homomorphism of rings by looking at the generators.

It is also clear that R0 ⊗R R1 → B is unique, because we know that the map on elements
of the form x⊗ 1 and 1⊗ y is determined by u0, u1; these generate R0 ⊗R R1, though.

In fact, we now claim that the category of rings has all coproducts. We see that the
coproduct of any two elements exists (as the tensor product over Z). It turns out that
arbitrary coproducts exist. More generally, if {Rα} is a family of R-algebras, then one can
define an object ⊗

α

Rα,

which is a coproduct of the Rα in the category of R-algebras. To do this, we simply take
the generators as before, as formal objects⊗

rα, rα ∈ Rα,

except that all but finitely many of the rα are required to be the identity. One quotients
by the usual relations.

Alternatively, one may use the fact that filtered colimits exist, and construct the infinite
coproduct as a colimit of finite coproducts (which are just ordinary tensor products).

13.4. Exactness properties of the tensor product

In general, the tensor product is not exact; it is only exact on the right, but it can fail to
preserve injections. Yet in some important cases it is exact. We study that in the present
section.
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Right-exactness of the tensor product

We will start by talking about extent to which tensor products do preserve exactness
under any circumstance. First, let’s recall what is going on. If M,N are R-modules over
the commutative ring R, we have defined another R-module homR(M,N) of morphisms
M → N . This is left-exact as a functor of N . In other words, if we fix M and let N vary,
then the construction of homming out of M preserves kernels.

In the language of category theory, this constructionN → homR(M,N) has an adjoint. The
other construction we discussed last time was this adjoint, and it is the tensor product.
Namely, given M,N we defined a tensor product M ⊗R N such that giving a map
M ⊗RN → P into some R-module P is the same as giving a bilinear map λ : M ×N → P ,
which in turn is the same as giving an R-linear map

M → homR(N,P ).

So we have a functorial isomorphism

homR(M ⊗R N,P ) ' homR(M, homR(N,P )).

Alternatively, tensoring is the left-adjoint to the hom functor. By abstract nonsense, it
follows that since hom(M, ·) preserves cokernels, the left-adjoint preserves cokernels and is
right-exact. We shall see this directly.

13.4.1 Proposition The functor N →M ⊗R N is right-exact, i.e. preserves cokernels.

In fact, the tensor product is symmetric, so it’s right exact in either variable.

Proof. We have to show that if N ′ → N → N ′′ → 0 is exact, then so is

M ⊗R N ′ →M ⊗R N →M ⊗R N ′′ → 0.

There are a lot of different ways to think about this. For instance, we can look at the
direct construction. The tensor product is a certain quotient of a free module.

M ⊗R N ′′ is the quotient of the free module generated by m⊗ n′′,m ∈M,n ∈ N ′′ modulo
the usual relations. The map M ⊗ N → M ⊗ N ′′ sends m ⊗ n → m ⊗ n′′ if n′′ is the
image of n in N ′′. Since each n′′ can be lifted to some n, it is obvious that the map
M ⊗R N →M ⊗R N ′′ is surjective.

Now we know that M ⊗R N ′′ is a quotient of M ⊗R N . But which relations do you have
to impose on M ⊗R N to get M ⊗R N ′′? In fact, each relation in M ⊗R N ′′ can be lifted
to a relation in M ⊗RN , but with some redundancy. So the only thing to quotient out by
is the statement that x⊗ y, x⊗ y′ have the same image in M ⊗N ′′. In particular, we have
to quotient out by

x⊗ y − x⊗ y′ , y − y′ ∈ N ′

so that if we kill off x⊗ n′ for n′ ∈ N ′ ⊂ N , then we get M ⊗N ′′. This is a direct proof.

One can also give a conceptual proof. We would like to know that M ⊗N ′′ is the cokernel
of M ⊗N ′ →M ⊗N ′′. In other words, we’d like to know that if we mapped M ⊗RN into
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some P and the pull-back to M ⊗R N ′, it’d factor uniquely through M ⊗R N ′′. Namely,
we need to show that

homR(M ⊗N ′′, P ) = ker(homR(M ⊗N,P )→ homR(M ⊗N ′′, P )).

But the first is just homR(N ′′,homR(M,P )) by the adjointness property. Similarly, the
second is just

ker(homR(N, hom(M,P ))→ homR(N ′, homR(M,P ))

but this last statement is homR(N ′′,homR(M,P )) by just the statement that N ′′ =
coker(N ′ → N). To give a map N ′′ into some module (e.g. homR(M,P )) is the same
thing as giving a map out of N which kills N ′. So we get the functorial isomorphism.

13.4.2 Remark Formation of tensor products is, in general, not exact.

13.4.3 Example Let R = Z. Let M = Z/2Z. Consider the exact sequence

0→ Z→ Q→ Q/Z→ 0

which we can tensor with M , yielding

0→ Z/2Z→ Q⊗ Z/2Z→ Q/Z⊗ Z/2Z→ 0

I claim that the second thing Q ⊗ Z/2Z is zero. This is because by tensoring with Z/2Z,
we’ve made multiplication by 2 identically zero. By tensoring with Q, we’ve made multi-
plication by 2 invertible. The only way to reconcile this is to have the second term zero.
In particular, the sequence becomes

0→ Z/2Z→ 0→ 0→ 0

which is not exact.

13.4.4 Remark (exercise) Let R be a ring, I, J ⊂ R ideals. Show that R/I ⊗R R/J '
R/(I + J).

A characterization of right-exact functors

Let us consider additive functors on the category of R-modules. So far, we know a very
easy way of getting such functors: given an R-module N , we have a functor

TN : M →M ⊗R N.

In other words, we have a way of generating a functor on the category of R-modules for
each R-module. These functors are all right-exact, as we have seen. Now we will prove a
converse.

13.4.5 Proposition Let F be a right-exact functor on the category of R-modules that
commutes with direct sums. Then F is isomorphic to some TN .
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Proof. The idea is that N will be F (R).

Without the right-exactness hypothesis, we shall construct a natural morphism

F (R)⊗M → F (M)

as follows. Given m ∈ M , there is a natural map R → M sending 1 → m. This identifies
M = homR(R,M). But functoriality gives a map F (R) × homR(R,M) → F (M), which
is clearly R-linear; the universal property of the tensor product now produces the desired
transformation TF (R) → F .

It is clear that TF (R)(M)→ F (M) is an isomorphism for M = R, and thus for M free, as
both TF (R) and F commute with direct sums. Now let M be any R-module. There is a
“free presentation,” that is an exact sequence

RI → RJ →M → 0

for some sets I, J ; we get a commutative, exact diagram

TF (R)(R
I)

��

// TF (R)(R
J)

��

// TF (R)(M)

��

// 0

F (RI) // F (RJ) // F (M) // 0

where the leftmost two vertical arrows are isomorphisms. A diagram chase now shows that
TF (R)(M)→ F (M) is an isomorphism. In particular, F ' TF (R) as functors.

Without the hypothesis that F commutes with arbitrary direct sums, we could only draw
the same conclusion on the category of finitely presented modules; the same proof as above
goes through, though I and J are required to be finite.6

13.4.6 Proposition Let F be a right-exact functor on the category of finitely presented
R-modules that commutes with direct sums. Then F is isomorphic to some TN .

From this we can easily see that localization at a multiplicative subset S ⊂ R is given
by tensoring with S−1R. Indeed, localization is a right-exact functor on the category of
R-modules, so it is given by tensoring with some module M ; applying to R shows that
M = S−1R.

Flatness

In some cases, though, the tensor product is exact.

13.4.7 Definition Let R be a commutative ring. An R-module M is called flat if the
functor N →M ⊗R N is exact. An R-algebra is flat if it is flat as an R-module.

6Recall that an additive functor commutes with finite direct sums.
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We already know that tensoring with anything is right exact, so the only thing to be
checked for flatness of M is that the operation of tensoring by M preserves injections.

13.4.8 Example Z/2Z is not flat as a Z-module by 13.4.3.

13.4.9 Example If R is a ring, then R is flat as an R-module, because tensoring by R is
the identity functor.

More generally, if P is a projective module (i.e., homming out of P is exact), then P is
flat.

Proof. If P =
⊕

AR is free, then tensoring with P corresponds to taking the direct sum
|A| times, i.e.

P ⊗RM =
⊕
A

M.

This is because tensoring with R preserves (finite or direct) infinite sums. The functor
M →

⊕
AM is exact, so free modules are flat.

A projective module, as discussed earlier, is a direct summand of a free module. So if P is
projective, P ⊕ P ′ '

⊕
AR for some P ′. Then we have that

(P ⊗RM)⊕ (P ′ ⊗RM) '
⊕
A

M.

If we had an injection M →M ′, then there is a direct sum decomposition yields a diagram
of maps

P ⊗RM

��

//
⊕

AM

��
P ⊗RM ′ //

⊕
AM

′

.

A diagram-chase now shows that the vertical map is injective. Namely, the composition
P ⊗RM →

⊕
AM

′ is injective, so the vertical map has to be injective too.

13.4.10 Example If S ⊂ R is a multiplicative subset, then S−1R is a flat R-module,
because localization is an exact functor.

Let us make a few other comments.

13.4.11 Remark Let φ : R → R′ be a homomorphism of rings. Then, first of all, any
R′-module can be regarded as an R-module by composition with φ. In particular, R′ is an
R-module.

If M is an R-module, we can define
M ⊗R R′

as an R-module. But in fact this tensor product is an R′-module; it has an action of R′.
If x ∈M and a ∈ R′ and b ∈ R′, multiplication of (x⊗ a) ∈M ⊗R R′ by b ∈ R′ sends this,
by definition, to

b(x⊗ a) = x⊗ ab.
It is easy to check that this defines an action of R′ on M ⊗R R′. (One has to check that
this action factors through the appropriate relations, etc.)

146



13. Three important functors 13.4. Exactness properties of the tensor product

The following fact shows that the hom-sets behave nicely with respect to flat base change.

13.4.12 Proposition Let M be a finitely presented R-module, N an R-module. Let S be
a flat R-algebra. Then the natural map

homR(M,N)⊗R S → homS(M ⊗R S,N ⊗R S)

is an isomorphism.

Proof. Indeed, it is clear that there is a natural map

homR(M,N)→ homS(M ⊗R S,N ⊗R S)

ofR-modules. The latter is an S-module, so the universal property gives the map homR(M,N)⊗R
S → homS(M ⊗R S,N ⊗R S) as claimed. If N is fixed, then we have two contravariant
functors in M ,

T1(M) = homR(M,N)⊗R S, T2(M) = homS(M ⊗R S,N ⊗R S).

We also have a natural transformation T1(M) → T2(M). It is clear that if M is finitely
generated and free, then the natural transformation is an isomorphism (for example, if
M = R, then we just have the map N ⊗R S → N ⊗R S).

Note moreover that both functors are left-exact: that is, given an exact sequence

M ′ →M →M ′′ → 0,

there are induced exact sequences

0→ T1(M ′′)→ T1(M)→ T1(M ′), 0→ T2(M ′′)→ T2(M)→ T2(M ′).

Here we are using the fact that hom is always a left-exact functor and the fact that tensoring
with S preserves exactness. (Thus it is here that we use flatness.)

Now the following lemma will complete the proof:

13.4.13 Lemma Let T1, T2 be contravariant, left-exact additive functors from the cate-
gory of R-modules to the category of abelian groups. Suppose a natural transformation
t : T1(M) → T2(M) is given, and suppose this is an isomorphism whenever M is finitely
generated and free. Then it is an isomorphism for any finitely presented module M .

Proof. This lemma is a diagram chase. Fix a finitely presented M , and choose a presenta-
tion

F ′ → F →M → 0,

with F ′, F finitely generated and free. Then we have an exact and commutative diagram

0 // T1(M)

��

// T1(F )

'
��

// T1(F ′)

'
��

0 // T2(M) // T2(F ) // T2(F ′).

By hypotheses, the two vertical arrows to the right are isomorphisms, as indicated. A
diagram chase now shows that the remaining arrow is an isomorphism, which is what we
wanted to prove.
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13.4.14 Example Let us now consider finitely generated flat modules over a principal
ideal domain R. By 11.5.4, we know that any such M is isomorphic to a direct sum⊕
R/ai for some ai ∈ R. But if any of the ai is not zero, then that ai would be a nonzero

zerodivisor on M . However, we know no element of R−{0} can be a zerodivisor on M . It
follows that all the ai = 0. In particular, we have proved:

13.4.15 Proposition A finitely generated module over a PID is flat if and only if it is
free.

Finitely presented flat modules

In example 13.4.9, we saw that a projective module over any ring R was automatically
flat. In general, the converse is flat. For instance, Q is a flat Z-module (as tensoring by Q
is a form of localization). However, because Q is divisible (namely, multiplication by n is
surjective for any n), Q cannot be a free abelian group.

Nonetheless:

13.4.16 Theorem A finitely presented flat module over a ring R is projective.

Proof. We follow ?.

Let us define the following contravariant functor from R-modules to R-modules. Given
M , we send it to M∗ = homZ(M,Q/Z). This is made into an R-module in the following
manner: given φ : M → Q/Z (which is just a homomorphism of abelian groups!) and r ∈ R,
we send this to rφ defined by (rφ)(m) = φ(rm). Since Q/Z is an injective abelian group,
we see that M 7→M∗ is an exact contravariant functor from R-modules to R-modules. In
fact, we note that 0 → A → B → C → 0 is exact implies 0 → C∗ → B∗ → A∗ → 0 is
exact.

Let F be any R-module. There is a natural homomorphism

(13.4.16.1) M∗ ⊗R F → homR(F,M)∗.

This is defined as follows. Given φ : M → Q/Z and x ∈ F , we define a new map
hom(F,M) → Q/Z by sending a homomorphism ψ : F → M to φ(ψ(x)). In other words,
we have a natural map

homZ(M,Q/Z)⊗R F → homZ(homR(F,M)∗,Q/Z).

Now fix M . This map (13.4.16.1) is an isomorphism if F is finitely generated and free.
Both are right-exact (because dualizing is contravariant-exact!). The “finite presentation
trick” now shows that the map is an isomorphism if F is finitely presented. add: this
should be elaborated on

Fix now F finitely presented and flat, and consider the above two quantities in (13.4.16.1)
as functors in M . Then the first functor is exact, so the second one is too. In particular,
homR(F,M)∗ is an exact functor in M ; in particular, if M �M ′′ is a surjection, then

homR(F,M ′′)∗ → homR(F,M)∗
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is an injection. But this implies that

homR(F,M)→ homR(F,M ′′)

is a surjection, i.e. that F is projective. Indeed:

13.4.17 Lemma A→ B → C is exact if and only if C∗ → B∗ → A∗ is exact.

Proof. Indeed, one direction was already clear (from Q/Z being an injective abelian group).
Conversely, we note that M = 0 if and only if M∗ = 0 (again by injectivity and the fact
that (Z/a)∗ 6= 0 for any a). Thus dualizing reflects isomorphisms: if a map becomes an
isomorphism after dualized, then it was an isomorphism already. From here it is easy to
deduce the result (by applying the above fact to the kernel and image).
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20. General Topology

20.1. The category of topological spaces

Topologies and continuous maps

20.1.1 Definition Let X be a set. By a topology on X on understands a set O of subsets
of X such that:

(Top0) X ∈ O and ∅ ∈ O.

(Top1) The union of any collection of elements of O is again in O that means for each
family (Ui)i∈I of Ui ∈ O one has

⋃
i∈I Ui ∈ O.

(Top2) The intersection of finitely many elements of O is again in O that means for
U1, . . . , Un ∈ O with n ∈ N one has

⋂n
i=1 Ui ∈ O.

A pair (X,O) is a called a topological space when X is a set and O a topology on X.
Moreover, a subset U of X is called open if U ∈ O and closed if {XU ∈ O.

20.1.2 Remark Strictly speaking, Axiom (Top0) can be derived from Axioms (Top1) and
(Top2), since the union of an empty family of subsets of X coincides with ∅, and the
intersection of an empty family of subsets of X coincides with X. Nevertheless, it is useful
to require it, since in proofs one often shows Axiom (Top1) only for non-empty families
of open sets, and Axiom (Top2) only for the case of the intersection of two open subsets.
Then it is necessary to verify Axiom (Top0) as well to prove that a given set of subsets of
set X is a topology, indeed.

20.1.3 Examples (a) For every set X the power set P(X) is a topology on X. It is called
the discrete or strongest topology on X.

(b) The set
{
∅, X

}
is another topology on a set X called the indiscrete or trivial or weakest

topology on X. Unless X is empty or has only one element, the discrete and indiscrete
topologies differ.

(c) Let S be a set {0, 1}. Then the set
{
∅, {1}, {0, 1}

}
is a topology on S which does

neither coincide with the discrete nor the indiscrete topology. The set S with this topology
is called Sierpiński space. The closed sets of the Sierpiński space are ∅, {0} and S.

(d) The euclidean topology OR,e on the set R of real numbers consists of all sets U ⊂ R
such that for each x ∈ U there exist real numbers a, b satisfying a < x < b and ]a, b[ ⊂ U .

Let us show that OR,e is a topology on R indeed. Obviously ∅ and R are elements of OR,e.
Let U, V ∈ OR,e and x ∈ U ∩ V . Then there are a, b, c, d ∈ R such that x ∈ ]a, b[ ⊂ U
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and x ∈ ]c, d[ ⊂ V . Put e := max{a, c} and f := min{b, d}. Then x ∈ ]e, f [ ⊂ U ∩ V ,
which proves U ∩ V ∈ OR,e. If U ⊂ OR,e and x ∈

⋃
U, then there exists an U ∈ U with

x ∈ U . Choose a, b ∈ R such that x ∈ ]a, b[ ⊂ U . Then x ∈ ]a, b[ ⊂ U ⊂
⋃
U, which proves⋃

U ∈ OR,e. If not mentioned differently, we always assume the set of real numbers to be
equipped with the euclidean topology. One therefore sometimes calls OR,e the standard
topology on R.

(e) The euclidean topology OQ,e on the set Q of rational numbers is defined analogously to
the previous example as the set of all subset U ⊂ Q such that for each x ∈ U there exist
rational numbers a, b with a < x < b and ]a, b[ ⊂ U . Like for the reals one proves that OQ,e
is a topology on Q. Unless mentioned differently it is also always assumed that Q comes
equipped with the euclidean topology.

(f) Let X be a set, and let Ocof denote the set of all subset of X which are either empty
or have finite complement in X. Then Ocof is a topology on X called the cofinite topology
on X.

(g) Let X be a (nonempty) set, (Y,O) be a topological space, and f : X → Y a function.
Define

f∗O := f−1O := {f−1(U) | U ∈ O} .

Then (X, f∗O) is a topological space. One calls f∗O the initial topology on X with respect
to f or the topology induced by f .

Let us verify that f∗O is a topology on X indeed. By construction, f−1(Y ) = X and
f−1(∅) = ∅, so ∅, X ∈ f∗O. Now let (Vi)i∈I be a family of elements of f∗O. In other words
we have, for each i ∈ I, Vi = f−1(Ui) for some Ui ∈ O. Then U :=

⋃
i∈I Ui ∈ O and⋃

i∈I
Vi =

⋃
i∈I

f−1(Ui) = f−1
(⋃
i∈I

Ui

)
= f−1(U) ∈ f∗O .

Finally, let V1, . . . , Vn ∈ f−1O. Then, by definition, there exist U1, . . . , Un ∈ O such that
Vi = f−1(Ui) for i = 1, . . . , n. Thus U :=

⋂n
i=1 Ui ∈ O and

n⋂
i=1

Vi =

n⋂
i=1

f−1(Ui) = f−1
( n⋂
i=1

Ui

)
= f−1(U) ∈ f∗O .

Section 20.2 on fundamental examples collects several more examples of topologies. For
now, we will work out a few basic properties of topologies and their structure preserving
morphisms, the continuous maps defined below.

20.1.4 Definition Let (X,OX) and (Y,OY ) be two topological spaces and assume that
f : X → Y is a function. One says that f is continuous if for all U ∈ OY the preimage
f−1(U) is open in X. The map f is called open if f(V ) is open in Y for all V ∈ OX .

20.1.5 Example Any constant function c : X → Y between two topological spaces is
continuous since the preimage of an open set in Y is either the full setX or empty depending
on whether the image of c is contained in the open set or not.
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20.1.6 Proposition and Definition (a) The identity map idX on a topological space
(X,OX) is continuous and open.

(b) Let (X,OX), (Y,OY ) and (Z,OZ) be three topological spaces. Assume that f : X → Y
and g : Y → Z are maps. If f and g are both continuous, so is g ◦ f . If f and g are both
open, then g ◦ f is open as well.

(c) Topological spaces as objects together with continuous maps as morphisms form a cat-
egory. It is called the category of topological spaces and will be denoted by Top.

Proof. It is obvious by definition that the identity map idX is continuous and open. Now
assume that f and g are continuous and let U ∈ OZ . Then g−1(U) ∈ OY by continuity
of g. Hence f−1(g−1(U)) ∈ OX by continuity of f . So g ◦ f is continuous. If f and g
are open maps, and V ∈ OX , then f(V ) ∈ OY and g ◦ f(V ) = g(f(V )) ∈ OZ . Hence the
composition of two open maps is open, too. The rest of the claim follows immediately.

Comparison of topologies

The initial topology f∗O induced by a function f : X → Y between topological spaces is
a subset of the topology on X if and only if f is continuous. This motivates the following
definition.

20.1.7 Definition Let X be a set. Let O1 and O2 be two topologies on X. One says that
O1 is finer or stronger than O2 and O2 is coarser or weaker than O1 when O2 ⊂ O1.

Of course, inclusion induces an order relation on topologies on a given set. A remarkable
property is that any nonempty subset of the ordered set of topologies on a given set always
admits a greatest lower bound.

20.1.8 Theorem Let X be a set. Let T be a nonempty set of topologies on E. Then the
set

OT :=
⋂

T = {U ∈ P(X) | U ∈ O for all O ∈ T}

is a topology on X and it is the greatest lower bound of T, where the order between topologies
is given by inclusion. In other words, OT is the finest topology contained in each topology
from T.

Proof. We first show that OT is a topology. Since each O ∈ T is a topology on X, we have
∅, X ∈ O for all O ∈ T. Hence ∅, X ∈ OT.

Let (Ui)i∈I be a family of elements Ui ∈ OT. Let O ∈ T be arbitrary. By definition of
OT, we have Ui ∈ O for all i ∈ I. Since O is a topology,

⋃
i∈I Ui ∈ O. Hence, as O was

arbitrary,
⋃
i∈I Ui ∈ OT.

Now, let U1, . . . , Un ∈ OT. Let O ∈ T be arbitrary. By definition of OT, we have
U1, . . . , Un ∈ O. Therefore, U1 ∩ . . . ∩ Un ∈ O since O is a topology. Since O was ar-
bitrary in T, we conclude that U1 ∩ . . . ∩ Un ∈ OT by definition.
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So OT is a topology on X. By construction, OT ⊂ O for all O ∈ T, so OT is a lower bound
for T. Assume given a new topology Q on X such that Q ⊂ O for all O ∈ T. Let U ∈ Q.
Then we have U ∈ O for all O ∈ T. Hence by definition U ∈ OT. So Q ⊂ OT and thus OT

is the greatest lower bound of T.

20.1.9 Corollary Let X be a set and (Y,OY ) be a topological space. The coarsest topology
on X which makes a function f : X → Y continuous is the initial topology f∗O.

Proof. Let T be the set of all topologies on X such that f is continuous. By definition, f∗O
is a lower bound of T. Moreover, f∗O ∈ T. Hence f∗O is the coarsest topology making
the function f : X → Y continuos.

We can use Theorem 20.1.8 to define other interesting topologies. Note that trivially P(X)
is a topology on a given set X, so given any S ⊂ P(X), there is at least one topology
containing S. From this:

20.1.10 Proposition and Definition Let X be a set, and S a subset of P(X). The
greatest lower bound of the set

T = {O ∈ P(P(X)) | O is a topology on X & S ⊂ O}

is the coarsest topology on X containing S. We call it the topology generated by S on X
and denote it by OS. The topology OS consists of unions of finite intersections of elements
of S that means

OS =
{
U ∈ P(X) | ∃J ∀j ∈ J ∃nj ∈ N ∃Uj,1, . . . , Uj,nj ∈ S : U =

⋃
j∈J

nj⋂
k=1

Uj,k

}
.

Proof. By definition of T and Theorem 20.1.8, OT =
⋂
T is a topology on X which contains

S. Hence OT is an element of T as well and a subset of any element of T. The first claim
follows. To verify the second, observe that it suffices to show that

Q :=
{
U ∈ P(X) | ∃J ∀j ∈ J ∃nj ∈ N ∃Uj,1, . . . , Uj,nj ∈ S : U =

⋃
j∈J

nj⋂
k=1

Uj,k

}
is a topology. The set Q being a topology namely entails OS ⊂ Q, because S ⊂ Q, and
Q ⊂ OS is clear by definition, since OS is a topology containing S. The second claim
Q = OS then follows. So let us show that Q is a topology. Obviously ∅ and X are elements
of Q because

⋃
i∈∅ Ui = ∅ and

⋂0
k=1 Uk = X. Now assume that (Ui)i∈I is a family of

elements of Q. Then there exists for each i ∈ I a set Ji and for every j ∈ Ji a natural
number ni,j together with elements Ui,j,1, . . . , Ui,j,ni,j ∈ S such that

Ui =
⋃
j∈Ji

ni,j⋂
k=1

Ui,j,k .

Put J :=
⋃
i∈I{i} × Ji. Then

U :=
⋃
i∈I

Ui =
⋃
i∈I

⋃
j∈Ji

ni,j⋂
k=1

Ui,j,k =
⋃

(i,j)∈J

ni,j⋂
k=1

Ui,j,k ∈ Q .
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Last assume U1, . . . Un ∈ O where n ∈ N. Then one can find for each i ∈ {1, . . . , n} a set
Ji and for every j ∈ Ji a natural number ni,j together with elements Ui,j,1, . . . , Ui,j,ni,j ∈ S

such that

Ui =
⋃
j∈Ji

ni,j⋂
k=1

Ui,j,k .

Put J := J1 × . . .× Jn. Then

U :=
n⋂
i=1

Ui =
n⋂
i=1

⋃
j∈Ji

ni,j⋂
k=1

Ui,j,k =
⋃

(j1,...,jn)∈J

n1,j1⋂
k1=1

U1,j1,k1 ∩ . . . ∩
nn,jn⋂
kn=1

Un,jn,kn ∈ Q .

Hence Q is a topology, indeed, and the proposition is proved.

20.1.11 Definition Let X be a set, and O a topology on X. One calls a subset S ⊂ O a
subbase or subbasis of the topology O if O coincides with OS. If in addition X =

⋃
S∈S S,

the subbase S is said to be adequate.

Bases of topologies

When inducing a topology from a family B of subsets of some set X, the fact that B enjoys
the following property greatly simplifies the description of the topology OB generated by
B.

20.1.12 Definition Let X be a set. A (topological) base on X is a subset B of the
powerset P(X) such that

(Bas1) X =
⋃
B∈BB,

(Bas2) For all B,B′ ∈ B and all x ∈ B ∩ B′ there exists a B′′ ∈ B such that x ∈ B′′ and
B′′ ⊂ B ∩B′.

The main purpose for this definition stems from the following theorem:

20.1.13 Theorem Let X be some set. Let B be a topological basis on E. Then the topology
generated by B coincides with the set of unions of elements of B that means

OB =
{ ⋃
B∈U

B | U ⊂ B
}
.

Proof. Denote, for this proof, the set {
⋃
U : U ⊆ B}, by σ, and let us abbreviate O(B) by

O. We wish to prove that O = σ. First, note that B ⊆ σ by construction. By definition,
B ⊆ O and since O is a topology, it is closed under arbitrary unions. Hence σ ⊆ O. To
prove the converse, it is sufficient to show that σ is a topology. As it contains B and O is
the smallest such topology, this will provide us with the inverse inclusion. By definition,⋃
∅ = ∅ and thus ∅ ∈ σ. By assumption, since B is a basis, E =

⋃
B so E ∈ σ. As the

union of unions of elements in B is a union of elements in B, σ is closed under abritrary
unions. Now, let U, V be elements of B. If U ∩V = ∅ then U ∩V ∈ σ. Assume that U and
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V are not disjoints. Then by definition of a basis, for all x ∈ U ∩ V there exists Wx ∈ B
such that x ∈Wx and Wx ⊆ U ∩ V . So:

U ∩ V =
⋃

x∈U∩V
Wx

and therefore, by definition, U ∩ V ∈ σ. We conclude that the intersection of two arbitary
elements in σ is again in σ by using the distributivity of the union with respect to the
intersection.

20.1.14 Definition We shall say that a base B on a set X is a base for a topology O on X
when the smallest topology containing B coincides with O, in other words when O = OB.

The typical usage of the preceding theorem comes from the following result.

20.1.15 Corollary Let B be a topological base for a topology O on X. A subset U of X
is in O if and only if for any x ∈ U there exists B ∈ B such that x ∈ B and B ⊂ U .

Proof. We showed that any open set for the topology O is a union of elements in B: hence
if x ∈ U for U ∈ O then there exists B ∈ B such that x ∈ B and B ⊆ U . Conversely, if
U is some subset of E such that for all x ∈ U there exists Bx ∈ B such that x ∈ Bx and
Bx ⊆ U then U =

⋃
x∈U Bx and thus U ∈ O.

As a basic application, we show that:

20.1.16 Corollary Let (E,OE) and (F,OF ) be two topological spaces. Let B be a basis
for the topology OE. Let f : E → F . Then f is continuous on E if and only if:

∀V ∈ OF ∀x ∈ f−1(V ) ∃B ∈ B x ∈ B ∧B ⊂ f−1(V ).

20.1.17 Corollary Let (E,OE) and (F,OF ) be two topological spaces. Let B be a basis
for the topology OF . Let f : E → F . Then f is continuous on E if and only if:

∀V ∈ B f−1(V ) ∈ OE.

Proof. By definition, continuity of f implies 20.1.17. Conversely, assume 20.1.17 holds. Let
V ∈ OF . Then there exists U ⊆ B such that V =

⋃
U . Now by assumption, f−1(B) ∈ OE

for all B ∈ U and thus f−1(V ) =
⋃
B∈U f

−1(B) ∈ OE since OE is a topology.

We leave to the reader to write the statement when both E and F have a basis.

20.2. Fundamental examples of topologies

This section provides various examples of topological spaces which will be used all along
this book.
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The order topology

20.2.1 Proposition Let (X,≤) be a totally ordered set, and assume that ∞,−∞ are two
symbols not in X. Define [−∞,∞] = X ∪{−∞,∞} and extend ≤ to [−∞,∞] by requiring
x ≤ y for x, y ∈ [−∞,∞] to hold when x, y ∈ X and x ≤ y, when x = −∞, or when
y =∞. Then [−∞,∞] together with the relation ≤ becomes a totally ordered set, as well,
and the embedding X ↪→ [−∞,∞] is order-preserving.

Proof. By definition, the relation ≤ on [−∞,∞] is reflexive. Assume that x ≤ y and y ≤ x.
Then

20.2.2 Remark For the rest of this paragraph we always assume that an ordered set
(X,≤) does not contain the symbols ∞,−∞, and that [−∞,∞] and the extended order
relation ≤ are defined as in the preceding proposition.

20.2.3 Definition For a totally ordered set (X,≤), define intervals with boundaries x, y ∈
[−∞,∞], where x ≤ y is required, as follows:

]x, y[ :=
{
z ∈ [−∞,∞] | x < z < y

}
,

[x, y[ :=
{
z ∈ [−∞,∞] | x ≤ z < y

}
,

]x, y] :=
{
z ∈ [−∞,∞] | x < z ≤ y

}
,

[x, y] :=
{
z ∈ [−∞,∞] | x ≤ z ≤ y

}
.

20.2.4 Definition Let (X,≤) be a totally ordered set. Then the topology generated by
the set

IX =
{

]x, y[ ∈ P(X) | x, y ∈ [−∞,∞] & x ≤ y
}

is called the order topology on X.

20.2.5 Proposition Let (X,≤) be a totally ordered set. Then the set IX is a base for the
order topology on X. A subbase of the order topology is given by the set SX of rays ]x,∞[
and ]−∞, y[, where x, y run through the elemants of X.

Proof. Since X is totally ordered, so is [−∞,∞]. It is immediate that ]x, y[ ∩ ]x′, y′[ = ]w, z[
if w is the largest of x and x′ and z is the smallest of y and y′. Hence IX is a base of the
order topology.

Since ]x,∞[ ∩ ]−∞, y[ = ]x, y[ for x ≤ y, the set SX is a subbase of the order topology.

20.2.6 Example The standard topology on R from Example 20.1.3 (d) is the order
topology. Likewise, the standard topology on Q coincides with the order topology.

20.2.7 Remark If X neither has a minimum nor a maximum, one usually denotes the
space [−∞,∞] by X. This notation fits with the understanding that denotes the closure
operation, because the closure of X in [−∞,∞] with respect to the order topology coincides
with the full space [−∞,∞] under the assumptions made.

Extending the ordered set of real numbers (R,≤) in that way gives the so-called extended
real number system R.
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The subspace topology

20.2.8 Proposition and Definition Let (X,O) be a topological space. Let S ⊂ X and
ι : S ↪→ X the canonical embedding. Then initial topology ι∗O coincides with

OXS := {U ∩ S ∈ P(S) | U ∈ O} .

One calls OXY the subspace or trace topology on S. Sometimes one says that OXY is the
topology induced by (X,O).

Proof. The claim follows immediately from the definition of the initial topology ι∗O.

Just as easy is the following observation:

20.2.9 Proposition Let (X,O) be a topological space, and S ⊂ X a subset. Let B be a
basis for O. Then the set

BX
S := {B ∩ S ∈ P(S) | B ∈ B}

is a basis for the subspace topology on S induced by (X,O).

Proof. Trivial exercise.

20.2.10 Example The default topologies on N and Z are the subspace topologies induced
by the standard topology on R. Since {n} = ]n− 1

2 , n+ 1
2 [ ∩ Z for all n ∈ Z, we see that

the natural topologies on N and Z are in fact the discrete topologies. The topology on Q
induced by the standard topology on R coincides with the default topology on Q (which
is, as pointed out above, the same as the order topology).

The quotient topology

The product topology

20.2.11 Definition Let I be some nonempty set. Let us assume given a family (Xi,Oi)i∈I
of topological spaces. Consider the cartesian product X :=

∏
i∈I Xi and denote for each

j ∈ I by πj : X → Xj , (xi)i∈I 7→ xj the projection on the i-th coordinate. The initial
topology on X with respect to the

basic open set of the cartesian product
∏
i∈I Ei is a set of the form

∏
i∈I Ui where {i ∈ I :

Ui 6= Ei} is finite and for all i ∈ I, we have Ui ∈ Oi.

20.2.12 Definition Let I be some nonempty set. Let us assume given a family (Ei,Oi)i∈I
of topological spaces. The product topology on

∏
i∈I Ei is the smallest topology containing

all the basic open sets.

20.2.13 Proposition Let I be some nonempty set. Let us assume given a family (Ei,Oi)i∈I
of topological spaces. The collection of all basic open sets is a basis on the set

∏
i∈I Ei.
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Proof. Trivial exercise.

20.2.14 Remark The product topology is not just the basic open sets on the cartesian
products: there are many more open sets!

20.2.15 Proposition Let I be some nonempty set. Let us assume given a family (Ei,Oi)i∈I
of topological spaces. The product topology on

∏
i∈I Ei is the initial topology for the the set

{pi : i ∈ I} where pi :
∏
j∈I Ej → Ei is the canonical surjection for all i ∈ I.

Proof. Fix i ∈ I. Let V ∈ OEi . By definition, p−1
i (V ) =

∏
j∈I Uj where Uj = Ej for

j ∈ I \ {i}, and Ui = V . Hence p−1
i (V ) is open in the product topology. As V was

an arbitrary open subset of Ei, the map pi is continuous by definition. Hence, as i was
arbitrary in I, the initial topology for {pi : i ∈ I} is coarser than the product topology.

Conversely, note that the product topology is generated by {p−1
i (V ) : i ∈ I, V ∈ OEi}, so

it is coarser than the initial topology for {pi : i ∈ I}. This concludes this proof.

20.2.16 Corollary Let I be some nonempty set. Let us assume given a family (Ei,Oi)i∈I
of topological spaces. Let O be the product topology on F =

∏
i∈I Ei. Let (D,OD) be a

topological space. Then f : D → F is continuous if and only if pi ◦ f is continuous from
(D,OD) to (Ei,OEi) for all i ∈ I, where pi is the canonical surjection on Ei for all i ∈ I.

Proof. We simply applied the fundamental property of initial topologies.

20.2.17 Remarks (a) The box topology on the cartesian product
∏
i∈I Xi is the smallest

topology containing all possible cartesian products of open sets Ui ⊂ Xi, i ∈ I. The
box topology is strictly finer than the product topology when the index set is infinite and
infintely many of the Xi carry a topology strictly finer than the indiscrete topology. Of
course, the box and product topologies coincide otherwise, in particular when the product
is finite.

(b) Since the product topology is the coarsest topology which makes the canonical projec-
tions continuous, it is the preferred and default one on cartesian products.

The metric topology

20.2.18 Definition Let E be a set. A function d : E × E → [0,∞) is a distance on E
when:

1. For all x, y ∈ E, we have d(x, y) = 0 if and only if x = y,

2. For all x, y ∈ E we have d(x, y) = d(y, x),

3. For all x, y, z ∈ E we have d(x, y) ≤ d(x, z) + d(z, y).

20.2.19 Definition A pair (E, d) is a metric space when E is a set and d a distance on
E.

The following is often useful:
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20.2.20 Proposition Let (E,d) be a metric space. Let x, y, z ∈ E. Then:

|d(x, y)− d(x, z)| ≤ d(y, z).

Proof. Since d(x, y) ≤ d(x, z) + d(z, y) we have d(x, y)− d(x, z) ≤ d(z, y) = d(y, z). Since
d(x, z) ≤ d(x, y)+d(y, z) we have d(x, z)−d(x, y) ≤ d(y, z). Hence the proposition holds.

20.2.21 Definition Let (E, d) be a metric space. Let x ∈ E and r ∈ (0,∞) ⊆ R. The
open ball of center x and radius r in (E, d) is the set:

B(x, r) = {y ∈ E : d(x, y) < r}.

20.2.22 Definition Let (E, d) be a metric space. The metric topology on E induced by
d is the smallest topology containing all the open balls of E.

20.2.23 Theorem Let (E, d) be a metric space. The set of all open balls on E is a basis
for the metric topology on E induced by d.

Proof. It is enough to show that the set of all open balls is a basis. By definition, E =⋃
x∈E B(x, 1). Now, let us be given B(x, rx) and B(y, ry) for some x, y ∈ E and rx, ry > 0.

If the intersection of these two balls is empty, we are done; let us assume that there exists
z ∈ B(x, rx)∩B(y, ry). Let ρ be the smallest of rx−d(x, z) and ry−d(y, z). Let w ∈ B(z, ρ).
Then:

d(x,w) ≤ d(x, z) + d(z, w) < d(x, z) + rx − d(x, z) = rx

so w ∈ B(x, rx). Similarly, w ∈ B(y, ry). Hence, B(z, ρ) ⊆ B(x, rx)∩B(y, ry) as desired.

The following theorem shows that metric topologies are minimal in the sense of making
the distance functions continuous.

20.2.24 Theorem Let (E, d) be a metric space. For all x ∈ E, the function y ∈ E 7→
d(x, y) is continuous on E for the metric topology. Moreover, the metric topology is the
smallest topology such that all the functions in the set {y 7→ d(x, y) : x ∈ E} are continuous.

Proof. Fix x ∈ E. It is sufficient to show that the preimage of [0, r) and (r,∞) by dx : y ∈
E 7→ d(x, y) is open in the metric topology of E, where r ≥ 0 is arbitrary. Indeed, these
intervals form a basis for the topology of [0,∞). Let r ≥ 0 be given. Then d−1

x ([0, r)) =
B(x, r) by definition, so it is open. Moreover, it shows that the minimal topology making
all these maps continuous must indeed contain the metric topology. Now, let y ∈ E such
that d(x, y) > r. Let ρ = d(x, y)− r > 0. Then if d(w, y) < ρ for some w ∈ E then:

d(x, y) ≤ d(x,w) + d(w, y) so d(x, y)− d(w, y) ≤ d(x,w)

so d(x,w) > r. Hence
B(y, ρ) ⊂ d−1

x ((r,∞))

for all y ∈ d−1
x ((r,∞)). Therefore, d−1

x ((r,∞)) is open, as desired, and our proposition is
proven.

160



20. General Topology 20.2. Fundamental examples of topologies

20.2.25 Remark The topology on [0,∞) is the trace topology on [0,∞) induced by the
usual, i.e. the order topology on R.

20.2.26 Remark The metric topology is the default topology on a metric space.

There are more examples of continuous functions between metric spaces. More precisely, a
natural category for metric spaces consists of metric spaces and Lipschitz maps as arrows,
defined as follows:

20.2.27 Definition Let (E, dE), (F, dF ) be metric spaces. A function f : E → F is
k-Lipschitz for k ∈ [0,∞) if:

∀x, y ∈ E dF (f(x), f(y)) ≤ kdE(x, y).

20.2.28 Definition Let (E, dE), (F, dF ) be metric spaces. Let f : E → F be a Lipschitz
function. Then the Lipschitz constant of f is defined by:

Lip(f) = sup

{
dF (f(x), f(y))

dE(x, y)
: x, y ∈ E, x 6= y

}
.

20.2.29 Remark Lip(f) = 0 if and only if f is constant.

20.2.30 Proposition Let (E, dE), (F, dF ) be metric spaces. If f : E → F is a Lipschitz
function, then it is continuous.

Proof. Assume f is nonconstant (otherwise the result is trivial). Let k be the Lipschitz
constant for f . Let y ∈ F and ε > 0. Let x ∈ f−1(B(y, ε)). Let z ∈ E such that

dE(x, z) < δx = ε−d(f(x),y)
k (note that the upper bound is nonzero).

dF (f(z), y) ≤ dF (f(z), f(x)) + dF (f(x), y)(20.2.30.1)

≤ kdE(x, z) + dF (f(x), y)(20.2.30.2)

< ε− dF (f(x), y) + dF (f(x), y) = ε.(20.2.30.3)

Hence f−1(B(y, ε)) =
⋃
x∈f−1(B(y,ε))B(x, δx). So f is continuous.

20.2.31 Remark The proof of continuity for Lipshitz maps can be simplified: it is a
consequence of the squeeze theorem. We refer to the chapter on metric spaces for this.

20.2.32 Remark Using Lipshitz maps as morphisms for a category of metric spaces is
natural. Another, more general type of morphisms, would be uniform continuous maps,
which are discussed in the compact space chapter.
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Co-Finite Topologies

A potential source for counter-examples, the family of cofinite topologies is easily defined:

20.2.33 Proposition Let E be a set. Let:

Ocof(E) = {∅} ∪ {U ⊂ E : {EU is finite }.

Then Ocof(E) is a topology on E.

Proof. By definition, ∅ ∈ Ocof(E). Moreover, {EE = ∅ which is finite, so E ∈ Ocof(E).
Let U, V ∈ Ocof(E). If U or V is empty then U ∩ V = ∅ so U ∩ V ∈ Ocof(E). Otherwise,
{E(U ∩ V ) = {EU ∪ {V which is finite, since by definition {EU and {EV are finite. Hence
U ∩ V ∈ Ocof(E). Last, let U ⊆ Ocof(E). Again, if U = {∅} then

⋃
U = ∅ ∈ Ocof(E). Let

us now assume that U contains at least one nonempty set V . Then:

{E
⋃
U =

⋂
{{EU : U ∈ U} ⊆ {EV .

Since {EV is finite by definition, so is
⋃
U , which is therefore in Ocof(E). This completes

our proof.

The one-point compactification of N

Limits of sequences is a central tool in topology and this section introduces the natural
topology for this concept. The general notion of limit is the subject of the next chapter.

20.2.34 Definition Let ∞ be some symbol not found in N. We define N to be N ∪ {∞}.

20.2.35 Proposition The set:

ON = {U ⊆ N : (U ⊆ N) ∨ (∞ ∈ U ∧ {NU is finite)}

is a topology on N.

Proof. By definition, ∅ ⊆ N so ∅ ∈ ON. Moreover {NN = ∅ which has cardinal 0 so N ∈ ON.
Let U, V ∈ ON. If either U or V is a subset of N then U ∩V is a subset of N so U ∩V ∈ ON.
Othwiwse, ∞ ∈ U ∩ V . Yet {N(U ∩ V ) = {NU ∪ {NV which is finite as a finite union of
finite sets. Hence U ∩ V ∈ ON again.

Last, assume that U ⊆ ON. Of course, ∞ ∈
⋃
U if and only if ∞ ∈ U for some U ∈ U .

So, if ∞ 6∈
⋃
U then

⋃
U ∈ ON by definition. If, on the other hand, ∞ ∈

⋃
U , then there

exists U ∈ U with {NU finite. Now, {N
⋃
U =

⋂
{{NV : V ∈ U} ⊆ {NU so it is finite, and

thus again
⋃
U ∈ ON.

162



20. General Topology 20.3. Separation properties

20.3. Separation properties

20.3.1 The general definition of a topology allows for examples where elements of a topo-
logical space, seen as a set, can not be distinguished from each other by open sets (for
instance if the topology is indiscrete). When points can be topologically differentiated,
a topology is in some sense separated. The standard separation axioms allow to sub-
sume topological spaces with certain separability properties in particular classes. One then
studies the properties of these clases, often with a view to particular applications, and
attempts to create counter examples, meaning examples not satsifying the corresponding
separation axioms. The most important separability property goes back to the founder
of set-theoretic topology, Felix Hausdorff, who introduced it in 1914. The first full pre-
sentation of the separation axioms as we know them today appeared in the classic book
Topologie by Alexandroff & Hopf (1965) under their German name Trennungsaxiome.

Let us note that the literature on separation axioms is not uniform when it comes to the
axioms (T3) to (T6) below, so one needs to always check which convention an author
follows. Here, we follow the convention by (Steen & Seebach, 1995, Part I, Chap. 2) which
coincides with the one of

20.3.2 Definition (The Separation Axioms) Recall that two subsets A,B of a topo-
logical space (X,O) are called disjoint if A ∩ B = ∅. The two sets are called separated if
A ∩B = A ∩B = ∅. The topological space (X,O) now is said to be

(T0) or Kolmogorov if for each pair of distinct points x, y ∈ X there is an open U ⊂ X
such that x ∈ U and y /∈ U holds true, or y ∈ U and x /∈ U ,

(T1) or Fréchet if for each pair of distinct points x, y ∈ X there is an open U ⊂ X such
that x ∈ U and y /∈ U ,

(T2) or Hausdorff if for each pair of distinct points x, y ∈ X there exist disjoint open
sets U, V ⊂ X such that x ∈ U and y ∈ V ,

(T2 1
2
) or Uryson or completely Hausdorff if for each pair of distinct points x, y ∈ X there

exist distinct closed neigborhoods U of x and V of y,

(T3) if for each point x ∈ X and closed subset A ⊂ X with x /∈ A there exist disjoint
open sets U, V ⊂ X such that x ∈ U and A ⊂ V ,

(T3 1
2
) if for each point x ∈ X and closed subset A ⊂ X with x /∈ A there exists a continuous

function f : X → R such that f(x) = 0 and f(A) = {1},

(T4) if for each pair of closed disjoint subsets A,B ⊂ X there exist disjoint open sets
U, V ⊂ X such that A ⊂ U and B ⊂ V ,

(T5) if for each pair of separated subsets A,B ⊂ X there exist disjoint open sets U, V ⊂ X
such that A ⊂ U and B ⊂ V ,

(T6) if for each pair of disjoint closed subsets A,B ⊂ X there exists a continuous function
f : X → R such that A = f−1(0) and B = f−1(0).
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A Hausdorff space will be called regular if it fulfills (T3) , completely regular, if it satisfies
(T3) , and normal if (T4) holds true. Finally we call a Hausdorff space completely normal
if it is (T5) and perfectly normal if it is (T6) .

20.4. Filters and convergence

Filters and ultrafilters

20.4.1 Definition Let X be a set. A subset F of the powerset P(X) is called a filter on
X if it satisfies the following axioms:

(Fil1) The empty set ∅ is not an element of F.

(Fil2) The set X is an element of F.

(Fil3) If A ∈ F and if B ∈ P(X) satisfies A ⊂ B, then B ∈ F.

(Fil4) If A ∈ F and B ∈ F, then the intersection A ∩B is an element of F as well.

If F1 and F2 are two filters on X such that F1 ⊂ F2, then one calls F1 a subfilter of F2 or
says that F2 is finer than F1. Sometimes one expresses this by saying that F2 refines F1.
Filters maximal with respect to set inclusion are called ultrafilters. A filter F is called free
if
⋂
A∈F A = ∅ otherwise it is called fixed.

20.4.2 Examples (a) For every X, the set {X} is a filter. It is the smallest of all filters
on X.

(b) Given an element x ∈ X the set Fx := {A ∈ P(X) | x ∈ A} is an ultrafilter on X.
More generally, if Y ⊂ X is a non-empty subset, then FY := {A ∈ P(X) | Y ⊂ A} is a
filter on X. It is an ultrafilter if and only if Y has exactly one element.

(c) If (X,O) is a topological space and x ∈ X an element, then the neigborhood filter
Ux := {V ∈ P(X) | ∃U ∈ O : x ∈ U ⊂ V } is a filter contained in Fx. The filters Ux and
Fx coincide if and only if x is an isolated point.

(d) Now consider the reals and let F = {A ∈ P(R) | ∃ ε > 0 : [0, ε[ ⊂ A}. Then F is a
filter on R which is properly contained in the ultrafilter F0 and which properly contains
the neighborhood filter U0 (where R carries the standard topology).

20.4.3 Proposition Let A ⊂ P(X) be a non-empty set of subset of X which has the
finite intersection property that is that A1 ∩ . . . ∩ An is non-empty for all n ∈ N∗ and all
A1, . . . , An ∈ A. Then there is an ultrafilter F containing A.

Proof. Let P be the set of all J ⊂ P(X) having the finite intersection property and con-
taining A. Then P is non-empty, as it contains at least A, and is ordered by set inclusion.
If C ⊂ P is a chain, then M :=

⋃
J∈C J contains A and fulfills the finite intersection prop-

erty. To verify the latter let Y1, . . . , Yn ∈ M. Then there exist J1, . . . , Jn ∈ C such that
Yi ∈ Ji for i = 1, . . . , n. Hence all Yi lie in the maximum Jm of the sets J1, . . . , Jn. But
Jm has the finite intersection property, hence Y1 ∩ . . . ∩ Yn 6= ∅. So M is an upper bound
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of the chain C. By Zorn’s Lemma, P has a maximal element F. It contains A and has
the finite intersection property. Moreover, if A ∈ F and B ∈ P(X) contains A as a subset,
then F ∪ {B} also satisfies the finite intersection property, hence by maximality of F one
concludes B ∈ F. Again by maximality F has to be an ultrafilter.

20.4.4 Corollary Every filter on X is contained in an ultrafilter.

Proof. This follows from the preceding proposition since a filter has the finite intersection
property.

20.4.5 Theorem Let F be a filter on a set X. Then the following are equivalent:

(i) F is an ultrafilter.

(ii) If A is a subset of X and A has non-empty intersection with every element of F, then
A ∈ F.

(iii) For all A ⊂ X either A ∈ F or X \A ∈ F.

Convergence of filters

20.4.6 Definition

20.5. Nets

Directed sets

Let us first recall that by a preorderd set one understands a set P together with a binary
relation which is reflexive, i.e. x ≤ x for all x ∈ P , and transitive, i.e. for all x, y, z ∈ P
the relation x ≤ y and y ≤ z implies x ≤ z.

20.5.1 Definition (Directed sets) By a directed set one understands a set (P, ) together
with a binary relation ≤ that is

(Dir1) directed, i.e. for all x, y ∈ D exists a z ∈ D such that x ≤ z and y ≤ z.

20.5.2 Remark The property that (P,≤) is directed is the same as saying that any two
elements of the preordered set P have an upper bound.
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20.6. Compactness

Quasi-compact topological spaces

20.6.1 Before we come to defining quasi-compactness let us recall some relevant notation.
By a cover (or covering) of a set X one understands a family U = (Ui)i∈I of subsets Ui ⊂ X
such that X ⊂

⋃
i∈I Ui. This terminology also holds for a subset Y ⊂ X. That is a family

U = (Ui)i∈I of subsets Ui ⊂ X is called a cover of Y if Y ⊂
⋃
i∈I Ui. A subcover of a cover

U = (Ui)i∈I of Y or shortly a subcover of U then is a subfamily (Ui)i∈J which also covers
Y which means that J ⊂ I and Y ⊂

⋃
i∈J Ui. If J is finite, one calls the subcover (Ui)i∈J a

finite subcover. If (X,O) is a topological space and all elements Ui of a cover U = (Ui)i∈I
of some Y ⊂ X are open sets, the cover is called an open cover of Y .

20.6.2 Proposition Let be a topological spaces (X,O). Then the following are equivalent:

(i) Every open cover of X has a finite subcover.

(ii) For every family (Ai)i∈I of closed subset Ai ⊂ X such that
⋂
i∈I Ai = ∅ there exist

finitely many elements Ai1 , . . . , Ain such that Ai1 ∩ . . . ∩Ain = ∅.

(iii) Every filter on X has an accummulation point.

(iv) Every ultrafilter on X converges.

Proof. Assume that (i) holds true and let (Ai)i∈I be a family of closed subset Ai ⊂ X such
that

⋂
i∈I Ai = ∅. Put Ui := X \ Ai for all i ∈ I. Then (Ui)i∈I is an open covering of

X, hence by assumption there exist i1, . . . , in ∈ I such that X = Ui1 ∪ . . . ∪ Uin . By de
Morgan’s laws the relation Ai1 ∩ . . . ∩Ain = ∅ the follows, hence (ii) follows.

Next assume (ii), and let F be a filter on X. Then A1 ∩ . . . ∩ An 6= ∅ for all n ∈ N∗ and
A1, . . . , An ∈ F, since F is a filter. Hence

⋂
A∈F A 6= ∅ by (ii). Every element of

⋂
A∈F A

now is an accummulation point of F, so (iii) follows.

By ??, (iii) implies (iv).

Finally assume that every ultrafilter on X converges, and let U = (Ui)i∈I be an open
cover of X. Assume that U has no finite subcover. For each finite subset J ⊂ I the set
BJ := X \

⋃
i∈J Ui then is non-empty, hence B := {BJ ∈ P(X) | J ⊂ I & #J < ∞} is

a filter base. Let F be an ultrafilter containing B. By assumption F converges to some
x ∈ X. Since U is an open covering of X there is some Ui with x ∈ Ui, hence Ui since F

converges to x. On the other hand X \Ui ∈ B ⊂ F by construction. This is a contradiction,
so U must have a finite subcover.

20.6.3 Definition (?) A topological space (X,O) is called quasi-compact, if every filter
on X has an accummulation point.

20.6.4 Theorem (Alexander Subbase Theorem) Let (X,O) be a topological space,
and S an adequate subbase of the topology that is a subbase of O such that X =

⋃
S∈S S.

If every cover of X by elements of S has a finite subcover, the topological space (X,O) is
quasi-compact.
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Compact topological spaces

20.7. The compact-open topology on function spaces

Let X and Y be topological spaces. We denote the set of all functions from Y to X by XY .
This is the same thing as the direct product

∏
Y X of X over Y . The space of continuous

functions C(Y,X) sits in XY so we can give C(Y,X) the product topology induced by XY .
This is the topology of pointwise convergence and will not be useful for studying most
function spaces. We will instead be interested in the compact open topology which is the
topology of uniform convergence on compact sets.

20.7.1 Definition Let X and Y be topological spaces. The compact open topology on
C(Y,X) is the topology with subbasis given by the sets V(K,U) = {f ∈ C(Y,X)|f(K) ⊂ U}
for K ⊂ Y compact and U ⊂ X open.

20.7.2 Definition A topology O on C(Y,X) is called admissable if the evaluation map
e : C(Y,X)× Y → X, (f, y) 7→ f(y) is continuous.

20.7.3 Proposition The compact open topology is coarser than any admissable topology
on C(Y,X).

Proof. LetO be an admissable topology on C(Y,X) so that the evaluation map e : C(Y,X)×
Y → X is continuous. Let K ⊂ Y be compact, U ⊂ X be open and f ∈ T (K,U). We have
to find V ∈ O such that f ∈ V ⊂ T (K,U). Let k ∈ K. Since e is continuous and U is an
open neighborhood of f(x), then there are open sets Wk ⊂ Y and Vk ⊂ CO(Y,X) such that
k ∈ Wk, f(k) ∈ Vk amd e(Vk ×Wk) ⊂ U . Since K is compact, there are k1, k2, ..., kl ∈ K
such that K ⊂

⋃l
i=1Wki . Put V :=

⋂l
i=1 Vki so that f ∈ V and V is open in O. Now take

g ∈ V and let k ∈ K. Choose i such that k ∈Wki and observe that g ∈Wki so that

g(k) = e(g, k) ∈ e(Vki ×Wki ⊂ U

Hense g ∈ T (K,U)

20.7.4 Theorem If Y is locally compact, then the compact open topology on C(Y,X) is
admissable, and it is the coarsets topology on C(Y,X) with that property.

Proof. We have to show that

e : C(Y,X)× Y → X(f, y) 7→ f(y)

is continuous. Since sets of the form T (K,U) form a subbasis for the compact open
topology, it suffices to show that for an open neighborhood W ⊂ X of some e(f, y), there
is compact K ⊂ Y , open U ⊂ X and open V ⊂ Y such that e(T (K,U) × V ) ⊂ W with
f ∈ T (K,U) and y ∈ V . By assumption, and since f is continuous, there is an open
neighborhood W̃ of y such that f(W̃ ) ⊂ W . By local compactness, there is an open
neighborhood V ⊂ Y of Y such that y ∈ V ⊂ V̄ ⊂ W̃ and V̄ is compact. If we put
K := V̄ and U = W , then e(T (K,U) × V ) ⊂ W since for f ′ ∈ T (K,U) and y′ ∈ V , we
have e(f ′, y′) = f ′(y′) ⊂W .

167



20. General Topology 20.7. The compact-open topology on function spaces

Let X,Y, Z be topological spaces. As sets, it is always true that ZX×Y ∼= ZY
X

via the
maps

Φ : ZX×Y → ZY
X
f 7→ (x 7→ (y 7→ f(x, y)))

and
Ψ : ZY

X → ZX×Y g 7→ ((x, y) 7→ g(x)(y))

20.7.5 Theorem (The exponential law) If Y is locally compact, then

Φ(C(X × Y ), Z) ⊂ C(X,C(Y, Z))

and
Ψ(C(X,C(Y, Z))) ⊂ (C(X × Y ), Z)

Proof. For f ∈ C(X × Y,Z) and x ∈ X, we have to show that Φ(f)(x) ∈ C(Y, Z) and
Φ(f) ∈ C(X,C(Y, Z)). Φ(f)(x)(y) = f ◦ ix(y) = f(x, y). Consider T (K,U) for K ⊂ Y
compact and U ⊂ X open. We need ot prove that the preimage Φ(f)−1(T (K,U)) is open
in X. Let x ∈ Φ(f)−1(T (K,U)) so that f(x,) ∈ T (K,U). Hence for all y ∈ K, we have
f(x, y) ∈ U . By the continuity of f , there are open neighborhoods Wy of x and Vy of y
such that f(Wy×Vy) ⊂ U . Since K us compact, there are open sets y1, y2, . . . yk ⊂ Y such
that K ⊂ Vy1 ∪Vy2 ∪ . . .∪Vyk . Put W = Wy1 ∩Wy2 ∩ . . .∩Wyk so that W is a neighborhood
of x and Φ(f)(W ) ⊂ T (K,U).

Now we need to show for g ∈ C(X,C(Y, Z)) that Ψ(g) ∈ C(X × Y,Z). Let g : X × C(Y,Z)
be continuous and assume that U ⊂ Z be open. We have to show that Ψ(g)−1(U) is open.
Take (x, y) ∈ Ψ(g)−1(U). Since g is continuous, there is an open neighborhood W of y
such that g(x)(W ) ⊂ U . Since Y is locally compact, there is an open V ⊂ Y such that
y ∈ V ⊂ V̄ ⊂ W with V̄ compact. Hence g(x)(V ) ⊂ g(x)(V̄ ) ⊂ U . Thus g(x) ∈ T (K,U)
so there is an open neighborhood O ⊂ X of x such that g(O) ⊂ T (V̄ , U). Therefore

Ψ(g)(O × V ) ⊂ g(O)(V ) ⊂ g(O)(V̄ ) ⊂ U

20.7.6 Lemma The sets (UL)K = T (K,T (L,U)) with K ⊂ X and L ⊂ Y compact and
U ⊂ Z open form a subbasis for the compact open topology on C(X,C(Y,Z)).

Proof. Let I be an index set Wi ⊂ C(Y,Z) be open and K ⊂ X be compact.

T

(
K,
⋃
I

Wi

)
=
⋃
n∈N+

⋃
K1×...×Kn⊂Kn

K1∪...∪Kn=K
Ki=K̄i∀i

⋃
(i1,...,in)∈In

n⋂
l=1

T (Kil ,Wil)

Suppose J is a finite set. then T
(
K,
⋂
j∈JWj

)
=
⋂
j∈J T (K,Wj). Sets of the form T (L,U)

with L ⊂ Y compact and U ⊂ Z open form a subbasis of C(Y,Z), so if W ⊂ C(Y,Z) is
open, we have W =

⋃
i∈I
⋂
j∈Ji T (Lij , Uij ) so that

T (K,W ) =
⋃
n∈N+

⋃
K1×...×Kn⊂Kn

K1∪...∪Kn=K
Ki=K̄i∀i

⋃
(i1,...,in)∈Jn

n⋂
l=1

⋂
j∈Jil

T (Kil , T (Lilj , Uilj))
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20.7.7 Theorem Let X,Y, Z be topological spaces with X and Y Hausdorff and Y locally
compact. Then the natural isomorphism

Φ̄ : C(X × Y, Z)→ C(X,C(Y, Z))

is a homeomorphism.

Proof. Let f ∈ C(X × Y,Z) and let W ∈ C(X,C(Y, Z)) be an open neighborhood of
Φ̄(f). By 20.7.6, there is an open U ⊂ Z and compact subsets L ⊂ Y and K ⊂ X such
that ¯phi(f) ∈ T (K,T (L,U)) ⊂ W . T (K × L,U) is open in C(X × Y,Z) and note that
f ∈ T (K×L,U) since for (x, y) ∈ K×L, Φ̄(f)(x) ∈ T (L,U) and f(x, y) = Φ̄(f)(x)(y) ∈ U .

Assume that g ∈ T (K × L,U). The Φ̄(g)(x)(y) = g(x, y) =∈ U so Φ̄(g)(x) ∈ T (L,U) so
Φ̄(g) ∈ T (K,T (L,U)), hence Φ̄ is continuous. Rest of proof

in email
9/27/10
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21. Sheaves

21.1. Presheaves

The category of open sets of a topological space

21.1.1 Before we define presheaves and sheaves on a topological space (X,O), we briefly
introduce the category Ouv(X) of open sets of (X,O). By definition, its object class
coincides with the set of open sets O, so Ouv(X) is in particular a small category. For
two open U, V ⊂ X the morphism set MorOuv(X)(U, V ) is defined to be empty in case
V 6⊂ U and V 6⊂ U and consists of the canonical (identical) embedding iU,V : V ↪→ U when
V ⊂ U . Obviously, the identity map iU,U is then a morphism for every open U ⊂ X, and
the composition of morphisms in this category is given by

iU,V ◦ iV,W = iU,W : W ↪→ U for U, V,W ∈ O with W ⊂ V ⊂ U.

This observation entails that Ouv(X) is a category indeed; it is called the category of open
sets on the topological space (X,O).

21.1.2 Remarks (a) The topology O carries a natural partial order given by set-theoretic
inclusion, so becomes a poset. The corresponding category structure from Example 1.1.9
is canonically isomorphic to Ouv(X).

(b) The notation Ouv stems from the French word ‘ouvert’ for ‘open’.

21.1.3 Proposition Let (X,O) be a topological space. Then the category Ouv(X) has the
following properties.

(i) The empty set is an initial object in Ouv(X), the total set X a final object.

(ii) Fibered products exist in Ouv(X). More precisely, if iU,V : V ↪→ U and iW,U : W ↪→ U
are two morphisms in Ouv(X), the fibered product V ×U W is given by the open set
V ∩W together with the canonical embeddings iV,V ∩W : V ∩W ↪→ V and iW,V ∩W :
V ∩W ↪→W .

(iii) Arbitrary (direct) limits exist in Ouv(X).

(iv) Finite colimits exist in Ouv(X).

Proof. ad (i). The first claim follows from the fact that ∅ is contained in every element of
O and that every element of O is contained in X.

ad (ii). Assume to be given O ∈ O such that the following diagram commutes:
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O V

W U .

Then O ⊂ V ∩W , and the following diagram commutes with morphisms unique:

O

V ∩W V

W U .

ad (iii). Assume that
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40. The spectrum of a commutative ring

Introduction

The notion of the Spec of a ring is fundamental in modern algebraic geometry. It is the
scheme-theoretic analog of classical affine schemes. The identification occurs when one
identifies the maximal ideals of the polynomial ring k[x1, . . . , xn] (for k an algebraically
closed field) with the points of the classical variety Ank = kn. In modern algebraic geom-
etry, one adds the “non-closed points” given by the other prime ideals. Just as general
varieties were classically defined by gluing affine varieties, a scheme is defined by gluing
open affines.

This is not a book on schemes, but it will nonetheless be convenient to introduce the Spec
construction, outside of the obvious benefits of including preparatory material for algebraic
geometry. First of all, it will provide a convenient notation. Second, and more importantly,
it will provide a convenient geometric intuition. For example, an R-module can be thought
of as a kind of “vector bundle”—technically, a sheaf—over the space SpecR, with the
caveat that the rank might not be locally constant (which is, however, the case when the
module is projective).

40.1. The spectrum and the Zariski topology

We shall now associate to every commutative ring R a topological space SpecR in a func-
torial manner. That is, there will be a contravariant functor

Spec : CRing→ Top

where Top is the category of topological spaces. This construction is the basis for scheme-
theoretic algebraic geometry and will be used frequently in the sequel.

The motivating observation is the following. If k is an algebraically closed field, then the
maximal ideals in k[x1, . . . , xn] are of the form (x1 − a1, . . . , xn − an) for (a1, . . . , an) ∈
k[x1, . . . , xn]. This is the Nullstellensatz, which we have not proved yet. We can thus
identify the maximal ideals in the polynomial ring with the space kn. If I ⊂ k[x1, . . . , xn]
is an ideal, then the maximal ideals in k[x1, . . . , xn] correspond to points where everything
in I vanishes. See 40.1.6 for a more detailed explanation. Classical affine algebraic geometry
thus studies the set of maximal ideals in an algebra finitely generated over an algebraically
closed field.

The Spec of a ring is a generalization of this construction. In general, it is more natural
to use all prime ideals instead of just maximal ideals.
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Definition and examples

We start by defining Spec as a set. We will next construct the Zariski topology and later
the functoriality.

40.1.1 Definition Let R be a commutative ring. The spectrum of R, denoted SpecR,
is the set of prime ideals of R.

We shall now make SpecR into a topological space. First, we describe a collection of sets
which will become the closed sets. If I ⊂ R is an ideal, let

V (I) = {p : p ⊃ I} ⊂ SpecR.

40.1.2 Proposition There is a topology on SpecR such that the closed subsets are of the
form V (I) for I ⊂ R an ideal.

Proof. Indeed, we have to check the familiar axioms for a topology:

1. ∅ = V ((1)) because no prime contains 1. So ∅ is closed.

2. SpecR = V ((0)) because any ideal contains zero. So SpecR is closed.

3. We show the closed sets are stable under intersections. Let Kα = V (Iα) be closed
subsets of SpecR for α ranging over some index set. Let I =

∑
Iα. Then

V (I) =
⋂
Kα =

⋂
V (Iα),

which follows because I is the smallest ideal containing each Iα, so a prime contains
every Iα iff it contains I.

4. The union of two closed sets is closed. Indeed, if K,K ′ ⊂ SpecR are closed, we show
K ∪K ′ is closed. Say K = V (I),K ′ = V (I ′). Then we claim:

K ∪K ′ = V (II ′).

Here, as usual, II ′ is the ideal generated by products ii′, i ∈ I, i′ ∈ I ′. If p is prime
and contains II ′, it must contain one of I, I ′; this implies the displayed equation
above and implies the result.

40.1.3 Definition The topology on SpecR defined above is called the Zariski topology.
With it, SpecR is now a topological space.

40.1.4 Remark What is the Spec of the zero ring?

In order to see the geometry of this construction, let us work several examples.

40.1.5 Example Let R = Z, and consider SpecZ. Then every prime is generated by one
element, since Z is a PID. We have that SpecZ = {(0)} ∪

⋃
p prime{(p)}. The picture is

that one has all the familiar primes (2), (3), (5), . . . , and then a special point (0).

Let us now describe the closed subsets. These are of the form V (I) where I ⊂ Z is an
ideal, so I = (n) for some n ∈ Z.
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1. If n = 0, the closed subset is all of SpecZ.

2. If n 6= 0, then n has finitely many prime divisors. So V ((n)) consists of the prime
ideals corresponding to these prime divisors.

The only closed subsets besides the entire space are the finite subsets that exclude (0).

40.1.6 Example Say R = C[x, y] is a polynomial ring in two variables. We will not give
a complete description of SpecR here. But we will write down several prime ideals.

1. For every pair of complex numbers s, t ∈ C, the collection of polynomials f ∈ R such
that f(s, t) = 0 is a prime ideal ms,t ⊂ R. In fact, it is maximal, as the residue ring
is all of C. Indeed, R/ms,t ' C under the map f → f(s, t).

In fact,

40.1.7 Theorem The ms,t are all the maximal ideals in R.

This will follow from the Hilbert Nullstellensatz to be proved later (43.4.5).

2. (0) ⊂ R is a prime ideal since R is a domain.

3. If f(x, y) ∈ R is an irreducible polynomial, then (f) is a prime ideal. This is equivalent
to unique factorization in R.1

To draw SpecR, we start by drawing C2, which is identified with the collection of maximal
ideals ms,t, s, t ∈ C. SpecR has additional (non-closed) points too, as described above, but
for now let us consider the topology induced on C2 as a subspace of SpecR.

The closed subsets of SpecR are subsets V (I) where I is an ideal, generated by polynomials
{fα(x, y)}. It is of interest to determine the subset of C2 that V (I) induces. In other words,
we ask:

What points of C2 (with (s, t) identified with ms,t) lie in V (I)?

Now, by definition, we know that (s, t) corresponds to a point of V (I) if and only if I ⊂ ms,t.
This is true iff all the fα lie in ms,t, i.e. if fα(s, t) = 0 for all α. So the closed subsets
of C2 (with the induced Zariski topology) are precisely the subsets that can be defined by
polynomial equations.

This is much coarser than the usual topology. For instance, {(z1, z2) : Re(z1) ≥ 0} is
not Zariski-closed. The Zariski topology is so coarse because one has only algebraic data
(namely, polynomials, or elements of R) to define the topology.

40.1.8 Remark Let R1, R2 be commutative rings. Give R1 ×R2 a natural structure of a
ring, and describe Spec(R1 ×R2) in terms of SpecR1 and SpecR2.

40.1.9 Remark Let X be a compact Hausdorff space, C(X) the ring of real continuous
functions X → R. The maximal ideals in SpecC(X) are in bijection with the points of X,
and the topology induced on X (as a subset of SpecC(X) with the Zariski topology) is
just the usual topology.
1To be proved later ??.
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40.1.10 Remark Prove the following result: if X,Y are compact Hausdorff spaces and
C(X), C(Y ) the associated rings of continuous functions, if C(X), C(Y ) are isomorphic as
R-algebras, then X is homeomorphic to Y .

The radical ideal-closed subset correspondence

We now return to the case of an arbitrary commutative ring R. If I ⊂ R, we get a closed
subset V (I) ⊂ SpecR. It is called V (I) because one is supposed to think of it as the places
where the elements of I “vanish,” as the elements of R are something like “functions.”
This analogy is perhaps best seen in the example of a polynomial ring over an algebraically
closed field, e.g. 40.1.6 above.

The map from ideals into closed sets is very far from being injective in general, though by
definition it is surjective.

40.1.11 Example If R = Z and p is prime, then I = (p), I ′ = (p2) define the same subset
(namely, {(p)}) of SpecR.

We now ask why the map from ideals to closed subsets fails to be injective. As we shall
see, the entire problem disappears if we restrict to radical ideals.

40.1.12 Definition If I is an ideal, then the radical Rad(I) or
√
I is defined as

Rad(I) = {x ∈ R : xn ∈ I for some n} .

An ideal is radical if it is equal to its radical. (This is equivalent to the earlier 11.2.5.)

Before proceeding, we must check:

40.1.13 Lemma If I an ideal, so is Rad(I).

Proof. Clearly Rad(I) is closed under multiplication since I is. Suppose x, y ∈ Rad(I); we
show x + y ∈ Rad(I). Then xn, yn ∈ I for some n (large) and thus for all larger n. The
binomial expansion now gives

(x+ y)2n = x2n +

(
2n

1

)
x2n−1y + · · ·+ y2n,

where every term contains either x, y with power ≥ n, so every term belongs to I. Thus
(x+ y)2n ∈ I and, by definition, we see then that x+ y ∈ Rad(I).

The map I → V (I) does in fact depend only on the radical of I. In fact, if I, J have
the same radical Rad(I) = Rad(J), then V (I) = V (J). Indeed, V (I) = V (Rad(I)) =
V (Rad(J)) = V (J) by:

40.1.14 Lemma For any I, V (I) = V (Rad(I)).

Proof. Indeed, I ⊂ Rad(I) and therefore obviously V (Rad(I)) ⊂ V (I). We have to show
the converse inclusion. Namely, we must prove:
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If p ⊃ I, then p ⊃ Rad(I).

So suppose p ⊃ I is prime and x ∈ Rad(I); then xn ∈ I ⊂ p for some n. But p is prime, so
whenever a product of things belongs to p, a factor does. Thus since xn = x · x · · ·x, we
must have x ∈ p. So

Rad(I) ⊂ p,

proving the quoted claim, and thus the lemma.

There is a converse to this remark:

40.1.15 Proposition If V (I) = V (J), then Rad(I) = Rad(J).

So two ideals define the same closed subset iff they have the same radical.

Proof. We write down a formula for Rad(I) that will imply this at once.

40.1.16 Lemma For a commutative ring R and an ideal I ⊂ R,

Rad(I) =
⋂
p⊃I

p.

From this, it follows that V (I) determines Rad(I). This will thus imply the proposition.
We now prove the lemma:

Proof. 1. We show Rad(I) ⊂
⋂

p∈V (I) p. In particular, this follows if we show that if a
prime contains I, it contains Rad(I); but we have already discussed this above.

2. If x /∈ Rad(I), we will show that there is a prime ideal p ⊃ I not containing x. This
will imply the reverse inclusion and the lemma.

We want to find p not containing x, more generally not containing any power of x. In
particular, we want p ∩

{
1, x, x2 . . . ,

}
= ∅. This set S = {1, x, . . . } is multiplicatively

closed, in that it contains 1 and is closed under finite products. Right now, it does not
interset I; we want to find a prime containing I that still does not intersect {xn, n ≥ 0}.

More generally, we will prove:

40.1.17 Lemma Let S be multiplicatively closed set in any ring R and let I be any ideal
with I ∩ S = ∅. There is a prime ideal p ⊃ I and does not intersect S (in fact, any ideal
maximal with respect to the condition of not intersecting S will do).

In English, any ideal missing S can be enlarged to a prime ideal missing S. This is actually
fancier version of a previous argument. We showed earlier that any ideal not containing
the multiplicatively closed subset {1} can be contained in a prime ideal not containing 1,
in 11.4.8.

Note that the lemma clearly implies the lemma when applied to S = {1, x, . . . } .
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Proof of the lemma. Let P = {J : J ⊃ I, J ∩ S = ∅}. Then P is a poset with respect to
inclusion. Note that P 6= ∅ because I ∈ P . Also, for any nonempty linearly ordered subset
of P , the union is in P (i.e. there is an upper bound). We can invoke Zorn’s lemma to get
a maximal element of P . This element is an ideal p ⊃ I with p ∩ S = ∅. We claim that p
is prime.

First of all, 1 /∈ p because 1 ∈ S. We need only check that if xy ∈ p, then x ∈ p or y ∈ p.
Suppose otherwise, so x, y /∈ p. Then (x, p) /∈ P or p would not be maximal. Ditto for
(y, p).

In particular, we have that these bigger ideals both intersect S. This means that there are

a ∈ p, r ∈ R such that a+ rx ∈ S

and
b ∈ p, r′ ∈ R such that b+ r′y ∈ S.

Now S is multiplicatively closed, so multiply (a+ rx)(b+ r′y) ∈ S. We find:

ab+ ar′y + brx+ rr′xy ∈ S.

Now a, b ∈ p and xy ∈ p, so all the terms above are in p, and the sum is too. But this
contradicts p ∩ S = ∅.

The upshot of the previous lemmata is:

40.1.18 Proposition There is a bijection between the closed subsets of SpecR and radical
ideals I ⊂ R.

A meta-observation about prime ideals

We saw in the previous subsec (lemma 40.1.17) that an ideal maximal with respect to the
property of not intersecting a multiplicatively closed subset is prime. It turns out that
this is the case for many such properties of ideals. A general method of seeing this was
developed in ?. In this (optional) subsec, we digress to explain this phenomenon.

If I is an ideal and a ∈ R, we define the notation

(I : a) = {x ∈ R : xa ∈ I} .

More generally, if J is an ideal, we define

(I : J) = {x ∈ R : xJ ⊂ I} .

Let R be a ring, and F a collection of ideals of R. We are interested in conditions that will
guarantee that the maximal elements of F are prime. Actually, we will do the opposite: the
following condition will guarantee that the ideals maximal at not being in F are prime.
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40.1.19 Definition The family F is called an Oka family ifR ∈ F (whereR is considered
as an ideal) and whenever I ⊂ R is an ideal and (I : a), (I, a) ∈ F (for some a ∈ R), then
I ∈ F .

40.1.20 Example Let us begin with a simple observation. If (I : a) is generated by
a1, . . . , an and (I, a) is generated by a, b1, . . . , bm (where we may take b1, . . . , bm ∈ I,
without loss of generality), then I is generated by aa1, . . . , aan, b1, . . . , bm. To see this,
note that if x ∈ I, then x ∈ (I, a) is a linear combination of the {a, b1, . . . , bm}, but the
coefficient of a must lie in (I : a).

As a result, we may deduce that the family of finitely generated ideals is an Oka family.

40.1.21 Example Let us now show that the family of principal ideals is an Oka family.
Indeed, suppose I ⊂ R is an ideal, and (I, a) and (I : a) are principal. One can easily
check that (I : a) = (I : (I, a)). Setting J = (I, a), we find that J is principal and (I : J)
is too. However, for any principal ideal J , and for any ideal I ⊂ J ,

I = J(I : J)

as one easily checks. Thus we find in our situation that since J = (I, a) and (I : J) are
principal, I is principal.

40.1.22 Proposition (?) If F is an Oka family of ideals, then any maximal element of
the complement of F is prime.

Proof. Suppose I /∈ F is maximal with respect to not being in F but I is not prime. Note
that I 6= R by hypothesis. Then there is a ∈ R such that (I : a), (I, a) both strictly contain
I, so they must belong to F . Indeed, we can find a, b ∈ R − I with ab ∈ I; it follows that
(I, a) 6= I and (I : a) contains b /∈ I.

By the Oka condition, we have I ∈ F , a contradiction.

40.1.23 Corollary (Cohen) If every prime ideal of R is finitely generated, then every
ideal of R is finitely generated.2

Proof. Suppose that there existed ideals I ⊂ R which were not finitely generated. The
union of a totally ordered chain {Iα} of ideals that are not finitely generated is not finitely
generated; indeed, if I =

⋃
Iα were generated by a1, . . . , an, then all the generators would

belong to some Iα and would consequently generate it.

By Zorn’s lemma, there is an ideal maximal with respect to being not finitely generated.
However, by 40.1.22, this ideal is necessarily prime (since the family of finitely generated
ideals is an Oka family). This contradicts the hypothesis.

40.1.24 Corollary If every prime ideal of R is principal, then every ideal of R is principal.

Proof. This is proved in the same way.

2Later we will say that R is noetherian.
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40.1.25 Remark Suppose every nonzero prime ideal in R contains a non-zerodivisor.
Then R is a domain. (Hint: consider the set S of nonzerodivisors, and argue that any ideal
maximal with respect to not intersecting S is prime. Thus, (0) is prime.)

40.1.26 Remark Let R be a ring. Let κ be an infinite cardinal. By applying 40.1.20 and
40.1.22 we see that any ideal maximal with respect to the property of not being generated
by κ elements is prime. This result is not so useful because there exists a ring for which
every prime ideal of R can be generated by ℵ0 elements, but some ideal cannot. Namely,
let k be a field, let T be a set whose cardinality is greater than ℵ0 and let

R = k[{xn}n≥1, {zt,n}t∈T,n≥0]/(x2
n, z

2
t,n, xnzt,n − zt,n−1)

This is a local ring with unique prime ideal m = (xn). But the ideal (zt,n) cannot be
generated by countably many elements.

Functoriality of Spec

The construction R→ SpecR is functorial in R in a contravariant sense. That is, if f : R→
R′, there is a continuous map SpecR′ → SpecR. This map sends p ⊂ R′ to f−1(p) ⊂ R,
which is easily seen to be a prime ideal in R. Call this map F : SpecR′ → SpecR. So far,
we have seen that SpecR induces a contravariant functor from Rings→ Sets.

40.1.27 Remark A contravariant functor F : C → Sets (for some category C) is called
representable if it is naturally isomorphic to a functor of the form X → hom(X,X0) for
some X0 ∈ C, or equivalently if the induced covariant functor on Cop is corepresentable.

The functor R→ SpecR is not representable. (Hint: Indeed, a representable functor must
send the initial object into a one-point set.)

Next, we check that the morphisms induced on Spec’s from a ring-homomorphism are in
fact continuous maps of topological spaces.

40.1.28 Proposition Spec induces a contravariant functor from Rings to the category
Top of topological spaces.

Proof. Let f : R → R′. We need to check that this map SpecR′ → SpecR, which we call
F , is continuous. That is, we must check that F−1 sends closed subsets of SpecR to closed
subsets of SpecR′.

More precisely, if I ⊂ R and we take the inverse image F−1(V (I)) ⊂ SpecR′, it is just
the closed set V (f(I)). This is best left to the reader, but here is the justification. If
p ∈ SpecR′, then F (p) = f−1(p) ⊃ I if and only if p ⊃ f(I). So F (p) ∈ V (I) if and only if
p ∈ V (f(I)).
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40.1.29 Example Let R be a commutative ring, I ⊂ R an ideal, f : R → R/I. There is
a map of topological spaces

F : Spec(R/I)→ SpecR.

This map is a closed embedding whose image is V (I). Most of this follows because there is
a bijection between ideals of R containing I and ideals of R/I, and this bijection preserves
primality.

40.1.30 Remark Show that this map SpecR/I → SpecR is indeed a homeomorphism
from SpecR/I → V (I).

A basis for the Zariski topology

In the previous section, we were talking about the Zariski topology. If R is a commutative
ring, we recall that SpecR is defined to be the collection of prime ideals in R. This has a
topology where the closed sets are the sets of the form

V (I) = {p ∈ SpecR : p ⊃ I} .

There is another way to describe the Zariski topology in terms of open sets.

40.1.31 Definition If f ∈ R, we let

Uf = {p : f /∈ p}

so that Uf is the subset of SpecR consisting of primes not containing f . This is the
complement of V ((f)), so it is open.

40.1.32 Proposition The sets Uf form a basis for the Zariski topology.

Proof. Suppose U ⊂ SpecR is open. We claim that U is a union of basic open sets Uf .

Now U = SpecR− V (I) for some ideal I. Then

U =
⋃
f∈I

Uf

because if an ideal is not in V (I), then it fails to contain some f ∈ I, i.e. is in Uf for that
f . Alternatively, we could take complements, whence the above statement becomes

V (I) =
⋂
f∈I

V ((f))

which is clear.

The basic open sets have nice properties.

1. U1 = SpecR because prime ideals are not allowed to contain the unit element.

2. U0 = ∅ because every prime ideal contains 0.
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3. Ufg = Uf ∩ Ug because fg lies in a prime ideal p if and only if one of f, g does.

Now let us describe what the Zariski topology has to do with localization. Let R be a
ring and f ∈ R. Consider S =

{
1, f, f2, . . .

}
; this is a multiplicatively closed subset. Last

week, we defined S−1R.

40.1.33 Definition For S the powers of f , we write Rf or R[f−1] for the localization
S−1R.

There is a map φ : R→ R[f−1] and a corresponding map

SpecR[f−1]→ SpecR

sending a prime p ⊂ R[f−1] to φ−1(p).

40.1.34 Proposition This map induces a homeomorphism of SpecR[f−1] onto Uf ⊂
SpecR.

So if one takes a commutative ring and inverts an element, one just gets an open subset of
Spec. This is why it’s called localization: one is restricting to an open subset on the Spec
level when one inverts something.

Proof. The reader is encouraged to work this proof out for herself.

1. First, we show that SpecR[f−1]→ SpecR lands in Uf . If p ⊂ R[f−1], then we must
show that the inverse image φ−1(p) can’t contain f . If otherwise, that would imply
that φ(f) ∈ p; however, φ(f) is invertible, and then p would be (1).

2. Let’s show that the map surjects onto Uf . If p ⊂ R is a prime ideal not containing f ,
i.e. p ∈ Uf . We want to construct a corresponding prime in the ring R[f−1] whose
inverse image is p.

Let p[f−1] be the collection of all fractions

{ x
fn
, x ∈ p} ⊂ R[f−1],

which is evidently an ideal. Note that whether the numerator is in p is independent
of the representing fraction x

fn used.3 In fact, p[f−1] is a prime ideal. Indeed, suppose

a

fm
b

fn
∈ p[f−1].

Then ab
fm+n belongs to this ideal, which means ab ∈ p; so one of a, b ∈ p and one of

the two fractions a
fm ,

b
fn belongs to p[f−1]. Also, 1/1 /∈ p[f−1].

It is clear that the inverse image of p[f−1] is p, because the image of x ∈ R is x/1,
and this belongs to p[f−1] precisely when x ∈ p.

3Suppose x
fn

= y

fk
for y ∈ p. Then there is N such that fN (fkx− fny) = 0 ∈ p; since y ∈ p and f /∈ p, it

follows that x ∈ p.
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3. The map SpecR[f−1] → SpecR is injective. Suppose p, p′ are prime ideals in the
localization and the inverse images are the same. We must show that p = p′.

Suppose x
fn ∈ p. Then x/1 ∈ p, so x ∈ φ−1(p) = φ−1(p′). This means that x/1 ∈ p′,

so x
fn ∈ p′ too. So a fraction that belongs to p belongs to p′. By symmetry the two

ideals must be the same.

4. We now know that the map ψ : SpecR[f−1]→ Uf is a continuous bijection. It is left
to see that it is a homeomorphism. We will show that it is open. In particular, we
have to show that a basic open set on the left side is mapped to an open set on the
right side. If y/fn ∈ R[f−1], we have to show that Uy/fn ⊂ SpecR[f−1] has open
image under ψ. We’ll in fact show what open set it is.

We claim that
ψ(Uy/fn) = Ufy ⊂ SpecR.

To see this, p is contained in Uf/yn . This mean that p doesn’t contain y/fn. In
particular, p doesn’t contain the multiple yf/1. So ψ(p) doesn’t contain yf . This
proves the inclusion ⊂.

5. To complete the proof of the claim, and the result, we must show that if p ⊂
SpecR[f−1] and ψ(p) = φ−1(p) ∈ Ufy, then y/fn doesn’t belong to p. (This is
kosher and dandy because we have a bijection.) But the hypothesis implies that
fy /∈ φ−1(p), so fy/1 /∈ p. Dividing by fn+1 implies that

y/fn /∈ p

and p ∈ Uf/yn .

If SpecR is a space, and f is thought of as a “function” defined on SpecR, the space
Uf is to be thought of as the set of points where f “doesn’t vanish” or “is invertible.”
Thinking about rings in terms of their spectra is a very useful idea. We will bring it up
when appropriate.

40.1.35 Remark The construction R → R[f−1] as discussed above is an instance of
localization. More generally, we defined S−1R for S ⊂ R multiplicatively closed. We can
thus define maps SpecS−1R→ SpecR. To understand S−1R, it may help to note that

lim−→
f∈S

R[f−1]

which is a direct limit of rings where one inverts more and more elements.

As an example, consider S = R − p for a prime p, and for simplicity that R is countable.
We can write S = S0 ∪S1 ∪ . . . , where each Sk is generated by a finite number of elements
f0, . . . , fk. Then Rp = lim−→S−1

k R. So we have

S−1R = lim−→
k

R[f−1
0 , f−1

1 , . . . , f−1
k ] = lim−→R[(f0 . . . fk)

−1].

The functions we invert in this construction are precisely those which do not contain p, or
where “the functions don’t vanish.”
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The geometric idea is that to construct SpecS−1R = SpecRp, we keep cutting out from
SpecR vanishing locuses of various functions that do not intersect p. In the end, you don’t
restrict to an open set, but to an intersection of them.

40.1.36 Remark Say that R is semi-local if it has finitely many maximal ideals. Let p1,
. . . , pn ⊂ R be primes. The complement of the union, S = R r

⋃
pi, is closed under

multiplication, so we can localize. R[S−1] = RS is called the semi-localization of R at the
pi.

The result of semi-localization is always semi-local. To see this, recall that the ideals in
RS are in bijection with ideals in R contained in

⋃
pi. Now use prime avoidance.

40.1.37 Definition For a finitely generated R-moduleM , define µR(M) to be the smallest
number of elements that can generate M .

This is not the same as the cardinality of a minimal set of generators. For example, 2 and
3 are a minimal set of generators for Z over itself, but µZ(Z) = 1.

40.1.38 Theorem Let R be semi-local with maximal ideals m1, . . . ,mn. Let ki = R/mi.
Then

muR(M) = max{dimkiM/miM}

Proof. add: proof

40.2. Nilpotent elements

We will now prove a few general results about nilpotent results in a ring. Topologically,
the nilpotents do very little: quotienting by them will not change the Spec. Nonethe-
less, they carry geometric importance, and one thinks of these nilpotents as “infinitesimal
thickenings” (in a sense to be elucidated below).

The radical of a ring

There is a useful corollary of the analysis in the previous section about the Spec of a ring.

40.2.1 Definition x ∈ R is called nilpotent if a power of x is zero. The set of nilpotent
elements in R is called the radical of R and is denoted Rad(R) (which is an abuse of
notation).

The set of nilpotents is just the radical Rad((0)) of the zero ideal, so it is an ideal. It can
vary greatly. A domain clearly has no nonzero nilpotents. On the other hand, many rings
do:

40.2.2 Example For any n ≥ 2, the ring Z[X]/(Xn) has a nilpotent, namely X. The
ideal of nilpotent elements is (X).
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It is easy to see that a nilpotent must lie in any prime ideal. The converse is also true by
the previous analysis. As a corollary of it, we find in fact:

40.2.3 Corollary Let R be a commutative ring. Then the set of nilpotent elements of R
is precisely

⋂
p∈SpecR p.

Proof. Apply 40.1.16 to the zero ideal.

We now consider a few examples of nilpotent elements.

40.2.4 Example (Nilpotents in polynomial rings) Let us now compute the nilpotent
elements in the polynomial R[x]. The claim is that a polynomial

∑n
m=0 amx

m ∈ R[x] is
nilpotent if and only if all the coefficients am ∈ R are nilpotent. That is, Rad(R[x]) =
(Rad(R))R[x].

If a0, . . . , an are nilpotent, then because the nilpotent elements form an ideal, f = a0+· · ·+
anx

n is nilpotent. Conversely, if f is nilpotent, then fm = 0 and thus (anx
n)m = 0. Thus

anx
n is nilpotent, and because the nilpotent elements form an ideal, f − anxn is nilpotent.

By induction, aix
i is nilpotent for all i, so that all ai are nilpotent.

Before the next example, we need to define a new notion. We now define a power series
ring intuitively in the same way they are used in calculus. In fact, we will use power series
rings much the same way we used them in calculus; they will serve as keeping track of fine
local data that the Zariski topology might “miss” due to its coarseness.

40.2.5 Definition Let R be a ring. The power series ring R[[x]] is just the set of
all expressions of the form

∑∞
i=0 cix

i. The arithmetic for the power series ring will be
done term by term formally (since we have no topology, we can’t consider questions of
convergence, though a natural topology can be defined making R[[x]] the completion of
another ring, as we shall see later).

40.2.6 Example (Nilpotence in power series rings) LetR be a ring such that Rad(R)
is a finitely generated ideal. (This is satisfied, e.g., if R is noetherian, cf. 41.) Let us con-
sider the question of how Rad(R) and Rad(R[[x]]) are related. The claim is that

Rad(R[[x]]) = (Rad(R))R[[x]].

If f ∈ R[[x]] is nilpotent, say with fn = 0, then certainly an0 = 0, so that a0 is nilpotent.
Because the nilpotent elements form an ideal, we have that f − a0 is also nilpotent, and
hence by induction every coefficient of f must be nilpotent in R. For the converse, let
I = Rad(R). There exists an N > 0 such that the ideal power IN = 0 by finite generation.
Thus if f ∈ IR[[x]], then fN ∈ INR[[x]] = 0.

40.2.7 Remark Prove that x ∈ R is nilpotent if and only if the localization Rx is the
zero ring.

40.2.8 Remark Construct an example where Rad(R)R[[x]] 6= Rad(R[[x]]). (Hint: con-
sider R = C[X1, X2, X3, . . . ]/(X1, X

2
2 , X

3
3 , . . . ).)
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Lifting idempotents

If R is a ring, and I ⊂ R a nilpotent ideal, then we want to think of R/I as somehow
close to R. For instance, the inclusion SpecR/I ↪→ SpecR is a homeomorphism, and one
pictures that SpecR has some “fuzz” added (with the extra nilpotents in I) that is killed
in SpecR/I.

One manifestation of the “closeness” of R and R/I is the following result, which states
that the idempotent elements4 of the two are in natural bijection. For convenience, we
state it in additional generality (that is, for noncommutative rings).

40.2.9 Lemma (Lifting idempotents) Suppose I ⊂ R is a nilpotent two-sided ideal,
for R any5 ring. Let e ∈ R/I be an idempotent. Then there is an idempotent e ∈ R which
reduces to e.

Note that if J is a two-sided ideal in a noncommutative ring, then so are the powers of
J .

Proof. Let us first assume that I2 = 0. We can find e1 ∈ R which reduces to e, but e1

is not necessarily idempotent. By replacing R with Z[e1] and I with Z[e1] ∩ I, we may
assume that R is in fact commutative. However,

e2
1 ∈ e1 + I.

Suppose we want to modify e1 by i such that e = e1 + i is idempotent and i ∈ I; then e
will do as in the lemma. We would then necessarily have

e1 + i = (e1 + i)2 = e2
1 + 2e1i as I2 = 0.

In particular, we must satisfy

i(1− 2e1) = e2
1 − e1 ∈ I.

We claim that 1 − 2e1 ∈ R is invertible, so that we can solve for i ∈ I. However, R is
commutative. It thus suffices to check that 1− 2e1 lies in no maximal ideal of R. But the
image of e1 in R/m for any maximal ideal m ⊂ R is either zero or one. So 1 − 2e1 has
image either 1 or −1 in R/m. Thus it is invertible.

This establishes the result when I has zero square. In general, suppose In = 0. We have
the sequence of noncommutative rings:

R� R/In−1 � R/In−2 · · ·� R/I.

The kernel at each step is an ideal whose square is zero. Thus, we can use the lifting
idempotents partial result proved above each step of the way and left e ∈ R/I to some
e ∈ R.

4Recall that an element e ∈ R is idempotent if e2 = e.
5Not necessarily commutative.
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While the above proof has the virtue of applying to noncommutative rings, there is a more
conceptual argument for commutative rings. The idea is that idempotents in A measure
disconnections of SpecA.6 Since the topological space underlying SpecA is unchanged
when one quotients by nilpotents, idempotents are unaffected. We prove:

40.2.10 Proposition If X = Spec A, then there is a one-to-one correspondence between
Idem(A) and the open and closed subsets of X.

Proof. Suppose I is the radical of (e) for an an idempotent e ∈ R. We show that V (I) is
open and closed. Since V is unaffected by passing to the radical, we will assume without
loss of generality that

I = (e).

I claim that SpecR − V (I) is just V (1− e) = V ((1− e)). This is a closed set, so proving
this claim will imply that V (I) is open. Indeed, V (e) = V ((e)) cannot intersect V (1 − e)
because if

p ∈ V (e) ∩ V (1− e),

then e, 1− e ∈ p, so 1 ∈ p. This is a contradiction since p is necessarily prime.

Conversely, suppose that p ∈ SpecR belongs to neither V (e) nor V (1− e). Then e /∈ p and
1− e /∈ p. So the product

e(1− e) = e− e2 = 0

cannot lie in p. But necessarily 0 ∈ p, contradiction. So V (e) ∪ V (1 − e) = SpecR. This
implies the claim.

Next, we show that if V (I) is open, then I is the radical of (e) for an idempotent e. For
this it is sufficient to prove:

40.2.11 Lemma Let I ⊂ R be such that V (I) ⊂ SpecR is open. Then I is principal,
generated by (e) for some idempotent e ∈ R.

Proof. Suppose that SpecR − V (I) = V (J) for some ideal J ⊂ R. Then the intersection
V (I) ∩ V (J) = V (I + J) is all of R, so I + J cannot be a proper ideal (or it would be
contained in a prime ideal). In particular, I + J = R. So we can write

1 = x+ y, x ∈ I, y ∈ J.

Now V (I) ∪ V (J) = V (IJ) = SpecR. This implies that every element of IJ is nilpotent
by the next lemma.

40.2.12 Lemma Suppose V (X) = SpecR for X ⊂ R an ideal. Then every element of X
is nilpotent.

6More generally, in any ringed space (a space with a sheaf of rings), the idempotents in the ring of global
sections correspond to the disconnections of the topological space.
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Proof. Indeed, suppose x ∈ X were non-nilpotent. Then the ring Rx is not the zero ring, so
it has a prime ideal. The map SpecRx → SpecR is, as discussed in class, a homeomorphism
of SpecRx onto D(x). So D(x) ⊂ SpecR (the collection of primes not containing x) is
nonempty. In particular, there is p ∈ SpecR with x /∈ p, so p /∈ V (X). So V (X) 6= SpecR,
contradiction.

Return to the proof of the main result. We have shown that IJ is nilpotent. In particular,
in the expression x + y = 1 we had earlier, we have that xy is nilpotent. Say (xy)k = 0.
Then expand

1 = (x+ y)2k =

2k∑
i=0

(
2k

i

)
xiy2k−i =

′∑
+

′′∑
where

∑′ is the sum from i = 0 to i = k and
∑′′ is the sum from k + 1 to 2k. Then∑′∑′′ = 0 because in every term occurring in the expansion, a multiple of xkyk occurs.

Also,
∑′ ∈ I and

∑′′ ∈ J because x ∈ I, y ∈ J .

All in all, we find that it is possible to write

1 = x′ + y′, x′ ∈ I, y′ ∈ J, x′y′ = 0.

(We take x′ =
∑′, y′ =

∑′′.) Then x′(1 − x′) = 0 so x′ ∈ I is idempotent. Similarly
y′ = 1− x′ is. We have that

V (I) ⊂ V (x′), V (J) ⊂ V (y′)

and V (x′), V (y′) are complementary by the earlier arguments, so necessarily

V (I) = V (x′), V (J) = V (y′).

Since an ideal generated by an idempotent is automatically radical, it follows that:

I = (x′), , J = (y′).

There are some useful applications of this in representation theory, because one can look for
idempotents in endomorphism rings; these indicate whether a module can be decomposed
as a direct sum into smaller parts. Except, of course, that endomorphism rings aren’t
necessarily commutative and this proof breaks down.

Thus we get:

40.2.13 Proposition Let A be a ring and I a nilpotent ideal. Then Idem(A)→ Idem(A/I)
is bijective.

Proof. Indeed, the topological spaces of Spec A and Spec A/I are the same. The result
then follows from ??.
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Units

Finally, we make a few remarks on units modulo nilideals. It is a useful and frequently
used trick that adding a nilpotent does not affect the collection of units. This trick is
essentially an algebraic version of the familiar “geometric series;” convergence questions
do not appear thanks to nilpotence.

40.2.14 Example Suppose u is a unit in a ring R and v ∈ R is nilpotent; we show that
a+ v is a unit.

Suppose ua = 1 and vm = 0 for some m > 1. Then (u+v)·a(1−av+(av)2−· · ·±(av)m−1) =
(1− (−av))(1 + (−av) + (−av)2 + · · ·+ (−av)m−1) = 1− (−av)m = 1− 0 = 1, so u+ v is
a unit.

So let R be a ring, I ⊂ R a nilpotent ideal of square zero. Let R∗ denote the group of
units in R, as usual, and let (R/I)∗ denote the group of units in R/I. We have an exact
sequence of abelian groups:

0→ I → R∗ → (R/I)∗ → 0

where the second map is reduction and the first map sends i→ 1 + i. The hypothesis that
I2 = 0 shows that the first map is a homomorphism. We should check that the last map
is surjective. But if any a ∈ R maps to a unit in R/I, it clearly can lie in no prime ideal
of R, so is a unit itself.

40.3. Vista: sheaves on SpecR

Presheaves

Let X be a topological space.

40.3.1 Definition A presheaf of sets F on X assigns to every open subset U ⊂ X a
set F(U), and to every inclusion U ⊂ V a restriction map resVU : F(V ) → F(U). The
restriction map is required to satisfy:

1. resUU = idF(U) for all open sets U .

2. resWU = resVU ◦ resWV if U ⊂ V ⊂W .

If the sets F(U) are all groups (resp. rings), and the restriction maps are morphisms of
groups (resp. rings), then we say that F is a sheaf of groups (resp. rings). Often the
restriction of an element a ∈ U to a subset W is denoted a|W .

A morphism of presheaves F → G is a collection of maps F(U) → G(U) for each open
set U , that commute with the restriction maps in the obvious way. Thus the collection of
presheaves on a topological space forms a category.
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One should think of the restriction maps as kind of like restricting the domain of a function.
The standard example of presheaves is given in this way, in fact.

40.3.2 Example Let X be a topological space, and F the presheaf assigning to each
U ⊂ X the set of continuous functions U → R. The restriction maps come from restricting
the domain of a function.

Now, in classical algebraic geometry, there are likely to be more continuous functions in
the Zariski topology than one really wants. One wants to focus on functions that are given
by polynomial equations.

40.3.3 Example Let X be the topological space Cn with the topology where the closed
sets are those defined by the zero loci of polynomials (that is, the topology induced on
Cn from the Zariski topology of SpecC[x1, . . . , xn] via the canonical imbedding Cn ↪→
SpecC[x1, . . . , xn]). Then there is a presheaf assigning to each open set U the collection
of rational functions defined everywhere on U , with the restriction maps being the obvious
ones.

40.3.4 Remark The notion of presheaf thus defined relied very little on the topology of
X. In fact, we could phrase it in purely categorical terms. Let C be the category consisting
of open subsets U ⊂ X and inclusions of open subsets U ⊂ U ′. This is a rather simple
category (the hom-sets are either empty or consist of one element). Then a presheaf is
just a contravariant functor from C to Sets (or Grp, etc.). A morphism of presheaves is a
natural transformation of functors.

In fact, given any category C, we can define the category of presheaves on it to be the
category of functors Fun(Cop,Set). This category is complete and cocomplete (we can
calculate limits and colimits “pointwise”), and the Yoneda embedding realizes C as a full
subcategory of it. So if X ∈ C, we get a presheaf Y 7→ homC(Y,X). In general, however,
such representable presheaves are rather special; for instance, what do they look like for
the category of open sets in a topological space?

Sheaves

40.3.5 Definition Let F be a presheaf of sets on a topological space X. We call F a
sheaf if F further satisfies the following two “sheaf conditions.”

1. (Separatedness) If U is an open set of X covered by a family of open subsets {Ui}
and there are two elements a, b ∈ F(U) such that a|Ui = b|Ui for all Ui, then a = b.

2. (Gluability) If U is an open set of X covered by Ui and there are elements ai ∈ F(Ui)
such that ai|Ui∩Uj = aj |Ui∩Uj for all i and j, then there exists an element a ∈ F(U)
that restricts to the ai. Notice that by the first axiom, this element is unique.

A morphism of sheaves is just a morphism of presheaves, so the sheaves on a topological
space X form a full subcategory of presheaves on X.
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The above two conditions can be phrased more compactly as follows. Whenever {Ui}i∈I is
an open cover of U ⊂ X, we require that the following sequence be an equalizer of sets:

F(U)→
∏
i∈I
F(Ui)⇒

∏
i,j∈I
F(Ui ∩ Uj)

where the two arrows correspond to the two allowable restriction maps. Similarly, we say
that a presheaf of abelian groups (resp. rings) is a sheaf if it is a sheaf of sets.

40.3.6 Example The example of functions gives an example of a sheaf, because functions
are determined by their restrictions to an open cover! Namely, if X is a topological space,
and we consider the presheaf

U 7→ {continuous functions U → R} ,

then this is clearly a presheaf, because we can piece together continuous functions in a
unique manner.

40.3.7 Example Here is a refinement of the above example. Let X be a smooth manifold.
For each U , let F(U) denote the group of smooth functions U → R. This is easily checked
to be a sheaf.

We could, of course, replace “smooth” by “Cr” or by “holomorphic” in the case of a
complex manifold.

40.3.8 Remark As remarked above, the notion of presheaf can be defined on any category,
and does not really require a topological space. The definition of a sheaf requires a bit
more topologically, because the idea that a family {Ui} covers an open set U was used
inescapably in the definition. The idea of covering required the internal structure of the
open sets and was not a purely categorical idea. However, Grothendieck developed a way
to axiomatize this, and introduced the idea of a Grothendieck topology on a category (which
is basically a notion of when a family of maps covers something). On a category with a
Grothendieck topology (also known as a site), one can define the notion of a sheaf in a
similar manner as above. See ?.

There is a process that allows one to take any presheaf and associate a sheaf to it. In some
sense, this associated sheaf should also be the best “approximation” of our presheaf with
a sheaf. This motivates the following universal property:

40.3.9 Definition Let F be a presheaf. Then F ′ is said to be the sheafification of F if
for any sheaf G and a morphism F → G, there is a unique factorization of this morphism
as F → F ′ → G.

40.3.10 Theorem We can construct the sheafification of a presheaf F as follows: F ′(U) =
{s : U →

∐
x∈U Fx|for all x ∈ U, s(x) ∈ Fx and there is a neighborhood V ⊂ U and t ∈

F(V ) such that for all y ∈ V, s(y) is the image of t in the local ring Fy}.
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add: proof

In the theory of schemes, when one wishes to replace polynomial rings over C (or an
algebraically closed field) with arbitrary commutative rings, one must drop the idea that
a sheaf is necessarily given by functions. A scheme is defined as a space with a certain
type of sheaf of rings on it. We shall not define a scheme formally, but show how on the
building blocks of schemes—objects of the form SpecA—a sheaf of rings can be defined.

Sheaves on SpecA

add: we need to describe how giving sections over basic open sets gives a
presheaf in general.

40.3.11 Proposition Let A be a ring and let X = Spec(A). Then the assignment of the
ring Af to the basic open set Xf defines a presheaf of rings on X.

Proof.

Part (i). If Xg ⊂ Xf are basic open sets, then there exist n ≥ 1 and u ∈ A such that
gn = uf .

Proof of part (i). Let S = {gn : n ≥ 0} and suppose S ∩ (f) = ∅. Then the extension (f)e

into S−1A is a proper ideal, so there exists a maximal ideal S−1p of S−1A, where p∩S = ∅.
Since (f)e ∈ S−1p, we see that f/1 ∈ S−1p, so f ∈ p. But S ∩ p = ∅ implies that g /∈ p.
This is a contradiction, since then p ∈ Xg \Xf .

Part (ii). If Xg ⊂ Xf , then there exists a unique map ρ : Af → Ag, called the restriction
map, which makes the following diagram commute.

A

~~   
Af // Ag

Proof of part (ii). Let n ≥ 1 and u ∈ A be such that gn = uf by part (i). Note that in Ag,

(f/1)(u/gn) = (fu/gn) = 1/1 = 1

which means that f maps to a unit in Ag. Hence every fm maps to a unit in Ag, so the
universal property of Af yields the desired unique map ρ : Af → Ag.

Part (iii). If Xg = Xf , then the corresponding restriction ρ : Af → Ag is an isomorphism.

Proof of part (iii). The reverse inclusion yields a ρ′ : Ag → Af such that the diagram

A

  ~~
Af

ρ
++ Ag

ρ′
kk
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commutes. But since the localization map is epic, this implies that ρρ′ = ρ′ρ = 1.

Part (iv). If Xh ⊂ Xg ⊂ Xf , then the diagram

Af //

  

Ah

Ag

>>

of restriction maps commutes.

Proof of part (iv). Consider the following tetrahedron.

A

}} !!

��

Af //

  

Ah

Ag

>>

Except for the base, the commutativity of each face of the tetrahedron follows from the
universal property of part (ii). But its easy to see that commutativity of the those faces
implies commutativity of the base, which is what we want to show.

Part (v). If Xg̃ = Xg ⊂ Xf = Xf̃ , then the diagram

Af //

��

Ag

��
Af̃

// Ag̃

of restriction maps commutes. (Note that the vertical maps here are isomorphisms.)

Proof of part (v). By part (iv), the two triangles of

Af //

��   

Ag

��
Af̃

// Ag̃

commute. Therefore the square commutes.

Part (vi). Fix a prime ideal p in A. Consider the direct system consisting of rings Af for
every f /∈ p and restriction maps ρfg : Af → Ag whenever Xg ⊂ Xf . Then lim−→Af ∼= Ap.

proof of part (vi). First, note that since f /∈ p and p is prime, we know that fm /∈ p for all
m ≥ 0. Therefore the image of fm under the localization A → Ap is a unit, which means
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the universal property of Af yields a unique map αf : Af → Ap such that the following
diagram commutes.

A

  ~~
Af

αf // Ap

Then consider the following tetrahedron.

A

~~   

��

Af //

  

Ah

Ap

>>

All faces except the bottom commute by construction, so the bottom face commutes as
well. This implies that the αf commute with the restriction maps, as necessary. Now, to
see that lim−→Af ∼= Ap, we show that Ap satisfies the universal property of lim−→Af .

Suppose B is a ring and there exist maps βf : Af → B which commute with the restrictions.
Define β : A → B as the composition A → Af → B. The fact that β is independent of
choice of f follows from the commutativity of the following diagram.

A

  ~~
Af

ρfg //

βf

  

Ag
βg

~~
B

Now, for every f /∈ p, we know that β(f) must be a unit since β(f) = βf (f/1) and f/1 is
a unit in Af . Therefore the universal property of Ap yields a unique map Ap → B, which
clearly commutes with all the arrows necessary to make lim−→Af ∼= Ap.

40.3.12 Proposition Let A be a ring and let X = Spec(A). The presheaf of rings OX
defined on X is a sheaf.

Proof. The proof proceeds in two parts. Let (Ui)i∈I be a covering of X by basic open sets.

Part 1. If s ∈ A is such that si := ρX,Ui(s) = 0 for all i ∈ I, then s = 0.

Proof of part 1. Suppose Ui = Xfi . Note that si is the fraction s/1 in the ring Afi , so
si = 0 implies that there exists some integer mi such that sfmii = 0. Define gi = fmii , and
note that we still have an open cover by sets Xgi since Xfi = Xgi (a prime ideal contains
an element if and only if it contains every power of that element). Also sgi = 0, so the
fraction s/1 is still 0 in the ring Agi . (Essentially, all we’re observing here is that we are
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free to change representation of the basic open sets in our cover to make notation more
convenient).

Since X is quasi-compact, choose a finite subcover X = Xg1 ∪ · · · ∪Xgn . This means that
g1, . . . , gn must generate the unit ideal, so there exists some linear combination

∑
xigi = 1

with xi ∈ A. But then

s = s · 1 = s
(∑

xigi

)
=
∑

xi(sgi) = 0.

Part 2. Let si ∈ OX(Ui) be such that for every i, j ∈ I,

ρUi,Ui∩Uj (si) = ρUj ,Ui∩Uj (sj).

(That is, the collection (si)i∈I agrees on overlaps). Then there exists a unique s ∈ A such
that ρX,Ui(s) = si for every i ∈ I.

Proof of part 2. Let Ui = Xfi , so that si = ai/(f
mi
i ) for some integers mi. As in part 1, we

can clean up notation by defining gi = fmii , so that si = ai/gi. Choose a finite subcover
X = Xg1 ∪ · · · ∪Xgn . Then the condition that the cover agrees on overlaps means that

aigj
gigj

=
ajgi
gigj

for all i, j in the finite subcover. This is equivalent to the existence of some kij such that

(aigj − ajgi)(gigj)kij = 0.

Let k be the maximum of all the kij , so that (aigj −ajgi)(gigj)k = 0 for all i, j in the finite
subcover. Define bi = aig

k
i and hi = gk+1

i . We make the following observations:

bihj − bjhi = 0, Xgi = Xhi , and si = ai/gi = bi/hi

The first observation implies that the Xhi cover X, so the hi generate the unit ideal. Then
there exists some linear combination

∑
xihi = 1. Define s =

∑
xibi. I claim that this is

the global section that restricts to si on the open cover.

The first step is to show that it restricts to si on our chosen finite subcover. In other words,
we want to show that s/1 = si = bi/hi in Ahi , which is equivalent to the condition that
there exist some li such that (shibi)h

li
i = 0. But in fact, even li = 0 works:

shi − bi =
(∑

xjbj

)
hi − bi

(∑
xjhj

)
=
∑

xj (hibj − bihj) = 0.

This shows that s restricts to si on each set in our finite subcover. Now we need to show
that in fact, it restricts to si for all of the sets in our cover. Choose any j ∈ I. Then
U1, . . . , Un, Uj still cover X, so the above process yields an s′ such that s′ restricts to si
for all i ∈ {1, . . . , n, j}. But then s− s′ satisfies the assumptions of part 1 using the cover
{U1, . . . , Un, Uj}, so this means s = s′. Hence the restriction of s to Uj is also sj .
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41. Noetherian rings and modules

The finiteness condition of a noetherian ring is necessary for much of commutative algebra;
many of the results we prove after this will apply only (or mostly) to the noetherian
case. In algebraic geometry, the noetherian condition guarantees that the topological
space associated to the ring (the Spec) has all its sets quasi-compact; this condition can
be phrased as saying that the space itself is noetherian in a certain sense.

We shall start by proving the basic properties of noetherian rings. These are fairly standard
and straightforward; they could have been placed after ??, in fact. More subtle is the
structure theory for finitely generated modules over a noetherian ring. While there is
nothing as concrete as there is for PIDs (there, one has a very explicit descrition for the
isomorphism classes), one can still construct a so-called “primary decomposition.” This
will be the primary focus after the basic properties of noetherian rings and modules have
been established. Finally, we finish with an important subclass of noetherian rings, the
artinian ones.

41.1. Basics

The noetherian condition

41.1.1 Definition Let R be a commutative ring and M an R-module. We say that M is
noetherian if every submodule of M is finitely generated.

There is a convenient reformulation of the finiteness hypothesis above in terms of the
ascending chain condition.

41.1.2 Proposition M is a module over R. The following are equivalent:

1. M is noetherian.

2. Every chain of submodules M0 ⊂ M1 ⊂ · · · ⊂ M , eventually stabilizes at some MN .
(Ascending chain condition.)

3. Every nonempty collection of submodules of M has a maximal element.

Proof. Say M is noetherian and we have such a chain

M0 ⊂M1 ⊂ . . . .

Write
M ′ =

⋃
Mi ⊂M,

197



41. Noetherian rings and modules 41.1. Basics

which is finitely generated since M is noetherian. Let it be generated by x1, . . . , xn. Each
of these finitely many elements is in the union, so they are all contained in some MN . This
means that

M ′ ⊂MN , so MN = M ′

and the chain stabilizes.

For the converse, assume the ACC. Let M ′ ⊂ M be any submodule. Define a chain of
submodules M0 ⊂ M1 ⊂ · · · ⊂ M ′ inductively as follows. First, just take M0 = {0}. Take
Mn+1 to be Mn +Rx for some x ∈M ′ −Mn, if such an x exists; if not take Mn+1 = Mn.
So M0 is zero, M1 is generated by some nonzero element of M ′, M2 is M1 together with
some element of M ′ not in M1, and so on, until (if ever) the chain stabilizes.

However, by construction, we have an ascending chain, so it stabilizes at some finite place
by the ascending chain condition. Thus, at some point, it is impossible to choose something
in M ′ that does not belong to MN . In particular, M ′ is generated by N elements, since
MN is and M ′ = MN . This proves the reverse implication. Thus the equivalence of 1 and
2 is clear. The equivalence of 2 and 3 is left to the reader.

Working with noetherian modules over non-noetherian rings can be a little funny, though,
so normally this definition is combined with:

41.1.3 Definition The ring R is noetherian if R is noetherian as an R-module. Equiv-
alently phrased, R is noetherian if all of its ideals are finitely generated.

We start with the basic examples:

41.1.4 Example 1. Any field is noetherian. There are two ideals: (1) and (0).

2. Any PID is noetherian: any ideal is generated by one element. So Z is noetherian.

The first basic result we want to prove is that over a noetherian ring, the noetherian
modules are precisely the finitely generated ones. This will follow from 41.1.7 in the next
subsec. So the defining property of noetherian rings is that a submodule of a finitely
generated module is finitely generated. (Compare 41.1.10.)

41.1.5 Remark The ring C[X1, X2, . . . ] of polynomials in infinitely many variables is not
noetherian. Note that the ring itself is finitely generated (by the element 1), but there are
ideals that are not finitely generated.

41.1.6 Remark Let R be a ring such that every prime ideal is finitely generated. Then
R is noetherian. See 40.1.23, or prove it as an exercise.

198



41. Noetherian rings and modules 41.1. Basics

Stability properties

The class of noetherian rings is fairly robust. If one starts with a noetherian ring, most of
the elementary operations one can do to it lead to noetherian rings.

41.1.7 Proposition If
0→M ′ →M →M ′′ → 0

is an exact sequence of modules, then M is noetherian if and only if M ′,M ′′ are.

One direction states that noetherianness is preserved under subobjects and quotients. The
other direction states that noetherianness is preserved under extensions.

Proof. If M is noetherian, then every submodule of M ′ is a submodule of M , so is finitely
generated. So M ′ is noetherian too. Now we show that M ′′ is noetherian. Let N ⊂M ′′ and
let Ñ ⊂ M the inverse image. Then Ñ is finitely generated, so N—as the homomorphic
image of Ñ—is finitely generated So M ′′ is noetherian.

Suppose M ′,M ′′ noetherian. We prove M noetherian. We verify the ascending chain
condition. Consider

M1 ⊂M2 ⊂ · · · ⊂M.

Let M ′′i denote the image of Mi in M ′′ and let M ′i be the intersection of Mi with M ′.
Here we think of M ′ as a submodule of M . These are ascending chains of submodules of
M ′,M ′′, respectively, so they stabilize by noetherianness. So for some N , we have that
n ≥ N implies

M ′n = M ′n+1, M ′′n = M ′′n+1.

We claim that this implies, for such n,

Mn = Mn+1.

Indeed, say x ∈ Mn+1 ⊂ M . Then x maps into something in M ′′n+1 = M ′′n . So there is
something in Mn, call it y, such that x, y go to the same thing in M ′′. In particular,

x− y ∈Mn+1

goes to zero in M ′′, so x− y ∈M ′. Thus x− y ∈M ′n+1 = M ′n. In particular,

x = (x− y) + y ∈M ′n +Mn = Mn.

So x ∈Mn, and
Mn = Mn+1.

This proves the result.

The class of noetherian modules is thus “robust.” We can get from that the following.

41.1.8 Proposition If φ : A → B is a surjection of commutative rings and A is noethe-
rian, then B is noetherian too.
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Proof. Indeed, B is noetherian as an A-module; indeed, it is the quotient of a noetherian
A-module (namely, A). However, it is easy to see that the A-submodules of B are just the
B-modules in B, so B is noetherian as a B-module too. So B is noetherian.

We know show that noetherianness of a ring is preserved by localization:

41.1.9 Proposition Let R be a commutative ring, S ⊂ R a multiplicatively closed subset.
If R is noetherian, then S−1R is noetherian.

I.e., the class of noetherian rings is closed under localization.

Proof. Say φ : R → S−1R is the canonical map. Let I ⊂ S−1R be an ideal. Then
φ−1(I) ⊂ R is an ideal, so finitely generated. It follows that

φ−1(I)(S−1R) ⊂ S−1R

is finitely generated as an ideal in S−1R; the generators are the images of the generators
of φ−1(I).

Now we claim that
φ−1(I)(S−1R) = I.

The inclusion ⊂ is trivial. For the latter inclusion, if x/s ∈ I, then x ∈ φ−1(I), so

x = (1/s)x ∈ (S−1R)φ−1(I).

This proves the claim and implies that I is finitely generated.

Let R be a noetherian ring. We now characterize the noetherian R-modules.

41.1.10 Proposition An R-module M is noetherian if and only if M is finitely generated.

Proof. The only if direction is obvious. A module is noetherian if and only if every sub-
module is finitely generated.

For the if direction, if M is finitely generated, then there is a surjection of R-modules

Rn →M

where R is noetherian. But Rn is noetherian by 41.1.7 because it is a direct sum of copies
of R. So M is a quotient of a noetherian module and is noetherian.
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The basis theorem

Let us now prove something a little less formal. This is, in fact, the biggest of the “stability”
properties of a noetherian ring: we are going to see that finitely generated algebras over
noetherian rings are still noetherian.

41.1.11 Theorem (Hilbert basis theorem) If R is a noetherian ring, then the polyno-
mial ring R[X] is noetherian.

Proof. Let I ⊂ R[X] be an ideal. We prove that it is finitely generated. For each m ∈ Z≥0,
let I(n) be the collection of elements a ∈ R consisting of the coefficients of xn of elements
of I of degree ≤ n. This is an ideal, as is easily seen.

In fact, we claim that
I(1) ⊂ I(2) ⊂ . . .

which follows because if a ∈ I(1), there is an element aX + . . . in I. Thus X(aX + . . . ) =
aX2 + · · · ∈ I, so a ∈ I(2). And so on.

Since R is noetherian, this chain stabilizes at some I(N). Also, because R is noetherian,
each I(n) is generated by finitely many elements an,1, . . . , an,mn ∈ I(n). All of these come
from polynomials Pn,i ∈ I such that Pn,i = an,iX

n + . . . .

The claim is that the Pn,i for n ≤ N and i ≤ mn generate I. This is a finite set of
polynomials, so if we prove the claim, we will have proved the basis theorem. Let J be the
ideal generated by {Pn,i, n ≤ N, i ≤ mn}. We know J ⊂ I. We must prove I ⊂ J .

We will show that any element P (X) ∈ I of degree n belongs to J by induction on n. The
degree is the largest nonzero coefficient. In particular, the zero polynomial does not have
a degree, but the zero polynomial is obviously in J .

There are two cases. In the first case, n ≥ N . Then we write

P (X) = aXn + . . . .

By definition, a ∈ I(n) = I(N) since the chain of ideals I(n) stabilized. Thus we can write
a in terms of the generators: a =

∑
aN,iλi for some λi ∈ R. Define the polynomial

Q =
∑

λiPN,ix
n−N ∈ J.

Then Q has degree n and the leading term is just a. In particular,

P −Q

is in I and has degree less than n. By the inductive hypothesis, this belongs to J , and
since Q ∈ J , it follows that P ∈ J .

Now consider the case of n < N . Again, we write P (X) = aXn + . . . . Then a ∈ I(n). We
can write

a =
∑

an,iλi, λi ∈ R.
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But the an,i ∈ I(n). The polynomial

Q =
∑

λiPn,i

belongs to J since n < N . In the same way, P − Q ∈ I has a lower degree. Induction as
before implies that P ∈ J .

41.1.12 Example Let k be a field. Then k[x1, . . . , xn] is noetherian for any n, by the
Hilbert basis theorem and induction on n.

41.1.13 Corollary If R is a noetherian ring and R′ a finitely generated R-algebra, then
R′ is noetherian too.

Proof. Each polynomial ring R[X1, . . . , Xn] is noetherian by theorem 41.1.11 and an easy
induction on n. Consequently, any quotient of a polynomial ring (i.e. any finitely generated
R-algebra, such as R′) is noetherian.

41.1.14 Example Any finitely generated commutative ring R is noetherian. Indeed, then
there is a surjection

Z[x1, . . . , xn]� R

where the xi get mapped onto generators in R. The former is noetherian by the basis
theorem, and R is as a quotient noetherian.

41.1.15 Corollary Any ring R can be obtained as a filtered direct limit of noetherian
rings.

Proof. Indeed, R is the filtered direct limit of its finitely generated subrings.

This observation is sometimes useful in commutative algebra and algebraic geometry, in
order to reduce questions about arbitrary commutative rings to noetherian rings. Noethe-
rian rings have strong finiteness hypotheses that let you get numerical invariants that may
be useful. For instance, we can do things like inducting on the dimension for noetherian
local rings.

41.1.16 Example Take R = C[x1, . . . , xn]. For any algebraic variety V defined by poly-
nomial equations, we know that V is the vanishing locus of some ideal I ⊂ R. Using the
Hilbert basis theorem, we have shown that I is finitely generated. This implies that V can
be described by finitely many polynomial equations.

Noetherian induction

The finiteness condition on a noetherian ring allows for “induction” arguments to be made;
we shall see examples of this in the future.

41.1.17 Proposition (Noetherian Induction Principle) Let R be a noetherian ring,
let P be a property, and let F be a family of ideals R. Suppose the inductive step: if all
ideals in F strictly larger than I ∈ F satisfy P, then I satisfies P. Then all ideals in F
satisfy P.
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Proof. Assume Fcrim = {J ∈ F|J does not satisfy P} 6= ∅. Since R is noetherian, Fcrim

has a maximal member I. By maximality, all ideals in F strictly containing I satisfy P,
so I also does by the inductive step.

41.2. Associated primes

We shall now begin the structure theory for noetherian modules. The first step will be to
associate to each module a collection of primes, called the associated primes, which lie in
a bigger collection of primes (the support) where the localizations are nonzero.

The support

Let R be a noetherian ring. An R-module M is supposed to be thought of as something
like a vector bundle, somehow spread out over the topological space SpecR. If p ∈ SpecR,
then let k(p) = fr. field R/p, which is the residue field of Rp. If M is any R-module, we
can consider M ⊗R k(p) for each p; it is a vector space over k(p). If M is finitely generated,
then M ⊗R k(p) is a finite-dimensional vector space.

41.2.1 Definition Let M be a finitely generated R-module. Then suppM , the support
of M , is defined to be the set of primes p ∈ SpecR such that M ⊗R k(p) 6= 0.

One is supposed to think of a module M as something like a vector bundle over the
topological space SpecR. At each p ∈ SpecR, we associate the vector space M ⊗R k(p);
this is the “fiber.” Of course, the intuition of M ’s being a vector bundle is somewhat
limited, since the fibers do not generally have the same dimension. Nonetheless, we can
talk about the support, i.e. the set of spaces where the “fiber” is not zero.

Note that p ∈ suppM if and only if Mp 6= 0. This is because

(M ⊗R Rp)/(pRp(M ⊗R Rp)) = Mp ⊗Rp k(p)

and we can use Nakayama’s lemma over the local ring Rp. (We are using the fact that M
is finitely generated.)

A vector bundle whose support is empty is zero. Thus the following easy proposition is
intuitive:

41.2.2 Proposition M = 0 if and only if suppM = ∅.

Proof. Indeed, M = 0 if and only if Mp = 0 for all primes p ∈ SpecR. This is equivalent
to suppM = ∅.

41.2.3 Remark Let 0→M ′ →M →M ′′ → 0 be exact. Then

suppM = suppM ′ ∪ suppM ′′.

We will see soon that that suppM is closed in SpecR. One imagines that M lives on this
closed subset suppM , in some sense.
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Associated primes

Throughout this section, R is a noetherian ring. The associated primes of a module M will
refer to primes that arise as the annihilators of elements in M . As we shall see, the support
of a module is determined by the associated primes. Namely, the associated primes contain
the “generic points” (that is, the minimal primes) of the support. In some cases, however,
they may contain more.

add: We are currently using the notation Ann(x) for the annihilator of x ∈ M .
This has not been defined before. Should we add this in a previous chapter?

41.2.4 Definition Let M be a finitely generated R-module. The prime ideal p is said to
be associated to M if there exists an element x ∈ M such that p is the annihilator of x.
The set of associated primes is Ass(M).

Note that the annihilator of an element x ∈ M is not necessarily prime, but it is possible
that the annihilator might be prime, in which case it is associated.

41.2.5 Remark Show that p ∈ Ass(M) if and only if there is an injection R/p ↪→M .

41.2.6 Remark Let p ∈ SpecR. Then Ass(R/p) = {p}.

41.2.7 Example Take R = k[x, y, z], where k is an integral domain, and let I = (x2 −
yz, x(z− 1)). Any prime associated to I must contain I, so let’s consider p = (x2− yz, z−
1) = (x2 − y, z − 1), which is I : x. It is prime because R/p = k[x], which is a domain. To
see that (I : x) ⊂ p, assume tx ∈ I ⊂ p; since x 6∈ p, t ∈ p, as desired.

There are two more associated primes, but we will not find them here.

We shall start by proving that Ass(M) 6= ∅ for nonzero modules.

41.2.8 Proposition If M 6= 0, then M has an associated prime.

Proof. Consider the collection of ideals in R that arise as the annihilator of a nonzero
element in M . Let I ⊂ R be a maximal element among this collection. The existence of
I is guaranteed thanks to the noetherianness of R. Then I = Ann(x) for some x ∈ M , so
1 /∈ I because the annihilator of a nonzero element is not the full ring.

I claim that I is prime, and hence I ∈ Ass(M). Indeed, suppose ab ∈ I where a, b ∈ R.
This means that

(ab)x = 0.

Consider the annihilator Ann(bx) of bx. This contains the annihilator of x, so I; it also
contains a.

There are two cases. If bx = 0, then b ∈ I and we are done. Suppose to the contrary
bx 6= 0. In this case, Ann(bx) contains (a) + I, which contains I. By maximality, it must
happen that Ann(bx) = I and a ∈ I.

In either case, we find that one of a, b belongs to I, so that I is prime.
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41.2.9 Example (A module with no associated prime) Without the noetherian hy-
pothesis, 41.2.8 is false. Consider R = C[x1, x2, . . . ], the polynomial ring over C in infinitely
many variables, and the ideal I = (x1, x

2
2, x

3
3, . . . ) ⊂ R. The claim is that

Ass(R/I) = ∅.

To see this, suppose a prime p was the annihilator of some f ∈ R/I. Then f lifts to f ∈ R;
it follows that p is precisely the set of g ∈ R such that fg ∈ I. Now f contains only finitely
many of the variables xi, say x1, . . . , xn. It is then clear that xn+1

n+1f ∈ I (so xn+1
n+1 ∈ p), but

xn+1f /∈ I (so xn+1 /∈ p). It follows that p is not a prime, a contradiction.

We shall now show that the associated primes are finite in number.

41.2.10 Proposition If M is finitely generated, then Ass(M) is finite.

The idea is going to be to use the fact that M is finitely generated to build M out of
finitely many pieces, and use that to bound the number of associated primes to each piece.
For this, we need:

41.2.11 Lemma Suppose we have an exact sequence of finitely generated R-modules

0→M ′ →M →M ′′ → 0.

Then
Ass(M ′) ⊂ Ass(M) ⊂ Ass(M ′) ∪Ass(M ′′)

Proof. The first claim is obvious. If p is the annihilator of in x ∈ M ′, it is an annihilator
of something in M (namely the image of x), because M ′ →M is injective. So Ass(M ′) ⊂
Ass(M).

The harder direction is the other inclusion. Suppose p ∈ Ass(M). Then there is x ∈ M
such that p = Ann(x). Consider the submodule Rx ⊂ M . If Rx ∩M ′ 6= 0, then we can
choose y ∈ Rx ∩M ′ − {0}. I claim that Ann(y) = p and so p ∈ Ass(M ′). To see this,
y = ax for some a ∈ R. The annihilator of y is the set of elements b ∈ R such that

abx = 0

or, equivalently, the set of b ∈ R such that ab ∈ p = Ann(x). But y = ax 6= 0, so a /∈ p. As
a result, the condition b ∈ Ann(y) is the same as b ∈ p. In other words,

Ann(y) = p

which proves the claim.

Suppose now that Rx ∩ M ′ = 0. Let φ : M � M ′′ be the surjection. I claim that
p = Ann(φ(x)) and consequently that p ∈ Ass(M ′′). The proof is as follows. Clearly p
annihilates φ(x) as it annihilates x. Suppose a ∈ Ann(φ(x)). This means that φ(ax) = 0,
so ax ∈ kerφ = M ′; but kerφ ∩ Rx = 0. So ax = 0 and consequently a ∈ p. It follows
Ann(φ(x)) = p.
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The next step in the proof of 41.2.10 is that any finitely generated module admits a filtration
each of whose quotients are of a particularly nice form. This result is quite useful and will
be referred to in the future.

41.2.12 Proposition (Dévissage) For any finitely generated R-module M , there exists
a finite filtration

0 = M0 ⊂M1 ⊂ · · · ⊂Mk = M

such that the successive quotients Mi+1/Mi are isomorphic to various R/pi with the pi ⊂ R
prime.

Proof. Let M ′ ⊂ M be maximal among submodules for which such a filtration (ending
with M ′) exists. We would like to show that M ′ = M . Now M ′ is well-defined since 0 has
such a filtration and M is noetherian.

There is a filtration
0 = M0 ⊂M1 ⊂ · · · ⊂Ml = M ′ ⊂M

where the successive quotients, except possibly the last M/M ′, are of the form R/pi for
pi ∈ SpecR. If M ′ = M , we are done. Otherwise, consider the quotient M/M ′ 6= 0.
There is an associated prime of M/M ′. So there is a prime p which is the annihilator of
x ∈M/M ′. This means that there is an injection

R/p ↪→M/M ′.

Now, take Ml+1 as the inverse image in M of R/p ⊂ M/M ′. Then, we can consider the
finite filtration

0 = M0 ⊂M1 ⊂ · · · ⊂Ml+1,

all of whose successive quotients are of the form R/pi; this is because Ml+1/Ml = Ml+1/M
′

is of this form by construction. We have thus extended this filtration one step further, a
contradiction since M ′ was assumed to be maximal.

Now we are in a position to meet the goal, and prove that Ass(M) is always a finite set.

Proof of 41.2.10. Suppose M is finitely generated Take our filtration

0 = M0 ⊂M1 ⊂ · · · ⊂Mk = M.

By induction, we show that Ass(Mi) is finite for each i. It is obviously true for i = 0.
Assume now that Ass(Mi) is finite; we prove the same for Ass(Mi+1). We have an exact
sequence

0→Mi →Mi+1 → R/pi → 0

which implies that, by 41.2.11,

Ass(Mi+1) ⊂ Ass(Mi) ∪Ass(R/pi) = Ass(Mi) ∪ {pi} ,

so Ass(Mi+1) is also finite. By induction, it is now clear that Ass(Mi) is finite for every i.

This proves the proposition; it also shows that the number of associated primes is at most
the length of the filtration.
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Finally, we characterize the zerodivisors on M in terms of the associated primes. The last
characterization of the result will be useful in the future. It implies, for instance, that if R
is local and m the maximal ideal, then if every element of m is a zerodivisor on a finitely
generated module M , then m ∈ Ass(M).

41.2.13 Proposition If M is a finitely generated module over a noetherian ring R, then
the zerodivisors on M are the union

⋃
p∈Ass(M) p.

More strongly, if I ⊂ R is any ideal consisting of zerodivisors on M , then I is contained
in an associated prime.

Proof. Any associated prime is an annihilator of some element of M , so it consists of
zerodivisors. Conversely, if a ∈ R annihilates x ∈ M , then a belongs to every associated
prime of the nonzero module Ra ⊂M . (There is at least one by proposition 41.2.10.)

For the last statement, we use prime avoidance (theorem 11.4.20): if I consists of zerodi-
visors, then I is contained in the union

⋃
p∈Ass(M) p by the first part of the proof. This is

a finite union by ??, so prime avoidance implies I is contained one of these primes.

41.2.14 Remark For every module M over any (not necessarily noetherian) ring R, the
set of M -zerodivisorsZ(M) is a union of prime ideals. In general, there is an easy charac-
terization of sets Z which are a union of primes: it is exactly when R r Z is a saturated
multiplicative set. This is Kaplansky’s Theorem 2.

41.2.15 Definition A multiplicative set S 6= ∅ is a saturated multiplicative set if for all
a, b ∈ R, a, b ∈ S if and only if ab ∈ S. (“multiplicative set” just means the “if” part)

To see that Z(M) is a union of primes, just verify that its complement is a saturated
multiplicative set.

Localization and Ass(M)

It turns out to be extremely convenient that the construction M → Ass(M) behaves about
as nicely with respect to localization as we could possibly want. This lets us, in fact, reduce
arguments to the case of a local ring, which is a significant simplification.

So, as usual, let R be noetherian, and M a finitely generated R-module. Let further S ⊂ R
be a multiplicative subset. Then S−1M is a finitely generated module over the noetherian
ring S−1M . So it makes sense to consider both Ass(M) ⊂ SpecR and Ass(S−1M) ⊂
SpecS−1R. But we also know that SpecS−1R ⊂ SpecR is just the set of primes of R that
do not intersect S. Thus, we can directly compare Ass(M) and Ass(S−1M), and one might
conjecture (correctly, as it happens) that Ass(S−1M) = Ass(M) ∩ SpecS−1R.

41.2.16 Proposition Let R noetherian, M finitely generated and S ⊂ R multiplicatively
closed. Then

Ass(S−1M) =
{
S−1p : p ∈ Ass(M), p ∩ S = ∅

}
.
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Proof. We first prove the easy direction, namely that Ass(S−1M) contains primes in
SpecS−1R ∩Ass(M).

Suppose p ∈ Ass(M) and p ∩ S = ∅. Then p = Ann(x) for some x ∈ M . Then the anni-
hilator of x/1 ∈ S−1M is just S−1p, as one can directly check. Thus S−1p ∈ Ass(S−1M).
So we get the easy inclusion.

Let us now do the harder inclusion. Call the localization map R → S−1R as φ. Let
q ∈ Ass(S−1M). By definition, this means that q = Ann(x/s) for some x ∈M , s ∈ S. We
want to see that φ−1(q) ∈ Ass(M) ⊂ SpecR. By definition φ−1(q) is the set of elements
a ∈ R such that

ax

s
= 0 ∈ S−1M.

In other words, by definition of the localization, this is

φ−1(q) =
⋃
t∈S
{a ∈ R : atx = 0 ∈M} =

⋃
Ann(tx) ⊂ R.

We know, however, that among elements of the form Ann(tx), there is a maximal element
I = Ann(t0x) for some t0 ∈ S, since R is noetherian. The claim is that I = φ−1(q), so
φ−1(q) ∈ Ass(M).

Indeed, any other annihilator I ′ = Ann(tx) (for t ∈ S) must be contained in Ann(t0tx).
However, I ⊂ Ann(t0x) and I is maximal, so I = Ann(t0tx) and I ′ ⊂ I. In other words, I
contains all the other annihilators Ann(tx) for t ∈ S. In particular, the big union above,
i.e. φ−1(q), is just I = Ann(t0x). In particular, φ−1(q) = Ann(t0x) is in Ass(M). This
means that every associated prime of S−1M comes from an associated prime of M , which
completes the proof.

41.2.17 Remark Show that, if M is a finitely generated module over a noetherian ring,
that the map

M →
⊕

p∈Ass(M)

Mp

is injective. Is this true if M is not finitely generated?

Associated primes determine the support

The next claim is that the support and the associated primes are related.

41.2.18 Proposition The support is the closure of the associated primes:

suppM =
⋃

q∈Ass(M)

{q}

By definition of the Zariski topology, this means that a prime p ∈ SpecR belongs to suppM
if and only if it contains an associated prime.
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Proof. First, we show that supp(M) contains the set of primes p ∈ SpecR containing an
associated prime; this will imply that supp(M) ⊃

⋃
q∈Ass(M) {q}. So let q be an associated

prime and p ⊃ q. We need to show that

p ∈ suppM, i.e. Mp 6= 0.

But, since q ∈ Ass(M), there is an injective map

R/q ↪→M,

so localization gives an injective map

(R/q)p ↪→Mp.

Here, however, the first object (R/q)p is nonzero since nothing nonzero in R/q can be
annihilated by something outside p. So Mp 6= 0, and p ∈ suppM .

Let us now prove the converse inclusion. Suppose that p ∈ suppM . We have to show that
p contains an associated prime. By assumption, Mp 6= 0, and Mp is a finitely generated
module over the noetherian ring Rp. So Mp has an associated prime. It follows by 41.2.16
that Ass(M) ∩ SpecRp is nonempty. Since the primes of Rp correspond to the primes
contained in p, it follows that there is a prime contained in p that lies in Ass(M). This is
precisely what we wanted to prove.

41.2.19 Corollary For M finitely generated, suppM is closed. Further, every minimal
element of suppM lies in Ass(M).

Proof. Indeed, the above result says that

suppM =
⋃

q∈Ass(M)

{q}.

Since Ass(M) is finite, it follows that suppM is closed. The above equality also shows that
any minimal element of suppM must be an associated prime.

41.2.20 Example 41.2.19 is false for modules that are not finitely generated. Consider
for instance the abelian group

⊕
p Z/p. The support of this as a Z-module is precisely the

set of all closed points (i.e., maximal ideals) of SpecZ, and is consequently is not closed.

41.2.21 Corollary The ring R has finitely many minimal prime ideals.

Proof. Clearly, suppR = SpecR. Thus every prime ideal of R contains an associated prime
of R by 41.2.18.

So SpecR is the finite union of the irreducible closed pieces q if R is noetherian. add: I
am not sure if “irreducibility” has already been defined. Check this.

We have just seen that suppM is a closed subset of SpecR and is a union of finitely many
irreducible subsets. More precisely,

suppM =
⋃

q∈Ass(M)

{q}

though there might be some redundancy in this expression. Some associated prime might
be contained in others.

209



41. Noetherian rings and modules 41.2. Associated primes

41.2.22 Definition A prime p ∈ Ass(M) is an isolated associated prime of M if it is
minimal (with respect to the ordering on Ass(M)); it is embedded otherwise.

So the embedded primes are not needed to describe the support of M .

add: Examples of embedded primes

41.2.23 Remark It follows that in a noetherian ring, every minimal prime consists of
zerodivisors. Although we shall not use this in the future, the same is true in non-noetherian
rings as well. Here is an argument.

Let R be a ring and p ⊂ R a minimal prime. Then Rp has precisely one prime ideal. We
now use:

41.2.24 Lemma If a ring R has precisely one prime ideal p, then any x ∈ p is nilpotent.

Proof. Indeed, it suffices to see that Rx = 0 (40.2.7 in ??) if x ∈ p. But SpecRx consists of
the primes of R not containing x. However, there are no such primes. Thus SpecRx = ∅,
so Rx = 0.

It follows that every element in p is a zerodivisor in Rp. As a result, if x ∈ p, there is
s
t ∈ Rp such that xs/t = 0 but s

t 6= 0. In particular, there is t′ /∈ p with

xst′ = 0, st′ 6= 0,

so that x is a zerodivisor.

Primary modules

A primary modules are ones that has only one associated prime. It is equivalent to say
that any homothety is either injective or nilpotent. As we will see in the next section, any
module has a “primary decomposition:” in fact, it embeds as a submodule of a sum of
primary modules.

41.2.25 Definition Let p ⊂ R be prime, M a finitely generated R-module. Then M is
p-primary if

Ass(M) = {p} .

A module is primary if it is p-primary for some prime p, i.e., has precisely one associated
prime.

41.2.26 Proposition Let M be a finitely generated R-module. Then M is p-primary if
and only if, for every m ∈M − {0}, the annihilator Ann(m) has radical p.

Proof. We first need a small observation.

41.2.27 Lemma If M is p-primary, then any nonzero submodule M ′ ⊂M is p-primary.
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Proof. Indeed, we know that Ass(M ′) ⊂ Ass(M) by 41.2.11. Since M ′ 6= 0, we also know
that M ′ has an associated prime (41.2.8). Thus Ass(M ′) = {p}, so M ′ is p-primary.

Let us now return to the proof of the main result, 41.2.26. Assume first that M is p-
primary. Let x ∈ M , x 6= 0. Let I = Ann(x); we are to show that Rad(I) = p. By
definition, there is an injection

R/I ↪→M

sending 1→ x. As a result, R/I is p-primary by the above lemma. We want to know that
p = Rad(I). We saw that the support suppR/I = {q : q ⊃ I} is the union of the closures
of the associated primes. In this case,

supp(R/I) = {q : q ⊃ p} .

But we know that Rad(I) =
⋂

q⊃I q, which by the above is just p. This proves that
Rad(I) = p. We have shown that if R/I is primary, then I has radical p.

The converse is easy. Suppose the condition holds and q ∈ Ass(M), so q = Ann(x) for
x 6= 0. But then Rad(q) = p, so

q = p

and Ass(M) = {p}.

We have another characterization.

41.2.28 Proposition Let M 6= 0 be a finitely generated R-module. Then M is primary if
and only if for each a ∈ R, then the homothety M

a→M is either injective or nilpotent.

Proof. Suppose first that M is p-primary. Then multiplication by anything in p is nilpotent
because the annihilator of everything nonzero has radical p by 41.2.26. But if a /∈ p, then
Ann(x) for x ∈M − {0} has radical p and cannot contain a.

Let us now do the other direction. Assume that every element of a acts either injectively
or nilpotently on M . Let I ⊂ R be the collection of elements a ∈ R such that anM = 0
for n large. Then I is an ideal, since it is closed under addition by the binomial formula:
if a, b ∈ I and an, bn act by zero, then (a+ b)2n acts by zero as well.

I claim that I is actually prime. If a, b /∈ I, then a, b act by multiplication injectively on
M . So a : M → M, b : M → M are injective. However, a composition of injections is
injective, so ab acts injectively and ab /∈ I. So I is prime.

We need now to check that if x ∈M is nonzero, then Ann(x) has radical I. Indeed, if a ∈ R
annihilates x, then the homothety M

a→ M cannot be injective, so it must be nilpotent
(i.e. in I). Conversely, if a ∈ I, then a power of a is nilpotent, so a power of a must kill x.
It follows that Ann(x) = I. Now, by 41.2.26, we see that M is I-primary.

We now have this notion of a primary module. The idea is that all the torsion is somehow
concentrated in some prime.
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41.2.29 Example If R is a noetherian ring and p ∈ SpecR, then R/p is p-primary. More
generally, if I ⊂ R is an ideal, then R/I is ideal if and only if Rad(I) is prime. This follows
from 41.2.28.

41.2.30 Remark If 0 → M ′ → M → M ′′ → 0 is an exact sequence with M ′,M,M ′′

nonzero and finitely generated, then M is p-primary if and only if M ′,M ′′ are.

41.2.31 Remark Let M be a finitely generated R-module. Let p ∈ SpecR. Show that
the sum of two p-primary submodules is p-primary. Deduce that there is a p-primary
submodule of M which contains every p-primary submodule.

41.2.32 Remark (Bourbaki) Let M be a finitely generated R-module. Let T ⊂ Ass(M)
be a subset of the associated primes. Prove that there is a submodule N ⊂M such that

Ass(N) = T, Ass(M/N) = Ass(M)− T.

41.3. Primary decomposition

This is the structure theorem for modules over a noetherian ring, in some sense. Throuogh-
out, we fix a noetherian ring R.

Irreducible and coprimary modules

41.3.1 Definition Let M be a finitely generated R-module. A submodule N ⊂ M is
p-coprimary if M/N is p-primary.

Similarly, we can say that N ⊂M is coprimary if it is p-coprimary for some p ∈ SpecR.

We shall now show we can represent any submodule of M as an intersection of coprimary
submodules. In order to do this, we will define a submodule of M to be irreducible if it
cannot be written as a nontrivial intersection of submodules of M . It will follow by general
nonsense that any submodule is an intersection of irreducible submodueles. We will then
see that any irreducible submodule is coprimary.

41.3.2 Definition The submomdule N (M is irreducible if whenever N = N1∩N2 for
N1, N2 ⊂M submodules, then either one of N1, N2 equals N . In other words, it is not the
intersection of larger submodules.

41.3.3 Proposition An irreducible submodule N ⊂M is coprimary.

Proof. Say a ∈ R. We would like to show that the homothety

M/N
a→M/N

is either injective or nilpotent. Consider the following submodules of M/N :

K(n) = {x ∈M/N : anx = 0} .
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Then clearly K(0) ⊂ K(1) ⊂ . . . ; this chain stabilizes as the quotient module is noetherian.
In particular, K(n) = K(2n) for large n.

It follows that if x ∈ M/N is divisible by an (n large) and nonzero, then anx is also
nonzero. Indeed, say x = any 6= 0; then y /∈ K(n), so anx = a2ny 6= 0 or we would have
y ∈ K(2n) = K(n). In M/N , the submodules

an(M/N) ∩ ker(an)

are equal to zero for large n. But our assumption was that N is irreducible. So one of
these submodules of M/N is zero. That is, either an(M/N) = 0 or ker an = 0. We get
either injectivity or nilpotence on M/N . This proves the result.

Irreducible and primary decompositions

We shall now show that in a finitely generated module over a noetherian ring, we can write
0 as an intersection of coprimary modules. This decomposition, which is called a primary
decomposition, will be deduced from purely general reasoning.

41.3.4 Definition An irreducible decomposition of the module M is a representation
N1 ∩N2 · · · ∩Nk = 0, where the Ni ⊂M are irreducible submodules.

41.3.5 Proposition If M is finitely generated, then M has an irreducible decomposition.
There exist finitely many irreducible submodules N1, . . . , Nk with

N1 ∩ · · · ∩Nk = 0.

In other words,

M →
⊕

M/Ni

is injective. So a finitely generated module over a noetherian ring can be imbedded in a
direct sum of primary modules, since by 41.3.3 the M/Ni are primary.

Proof. This is now purely formal.

Among the submodules of M , some may be expressible as intersections of finitely many
irreducibles, while some may not be. Our goal is to show that 0 is such an intersection.
Let M ′ ⊂ M be a maximal submodule of M such that M ′ cannot be written as such an
intersection. If no such M ′ exists, then we are done, because then 0 can be written as an
intersection of finitely many irreducible submodules.

Now M ′ is not irreducible, or it would be the intersection of one irreducible submodule.
It follows M ′ can be written as M ′ = M ′1 ∩M ′2 for two strictly larger submodules of M .
But by maximality, M ′1,M

′
2 admit decompositions as intersections of irreducibles. So M ′

admits such a decomposition as well, a contradiction.

41.3.6 Corollary For any finitely generated M , there exist coprimary submodules N1, . . . , Nk ⊂
M such that N1 ∩ · · · ∩Nk = 0.
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Proof. Indeed, every irreducible submodule is coprimary.

For any M , we have an irreducible decomposition

0 =
⋂
Ni

for the Ni a finite set of irreducible (and thus coprimary) submodules. This decomposition
here is highly non-unique and non-canonical. Let’s try to pare it down to something which
is a lot more canonical.

The first claim is that we can collect together modules which are coprimary for some prime.

41.3.7 Lemma Let N1, N2 ⊂ M be p-coprimary submodules. Then N1 ∩ N2 is also p-
coprimary.

Proof. We have to show that M/N1 ∩N2 is p-primary. Indeed, we have an injection

M/N1 ∩N2 �M/N1 ⊕M/N2

which implies that Ass(M/N1 ∩N2) ⊂ Ass(M/N1)∪Ass(M/N2) = {p}. So we are done.

In particular, if we do not want irreducibility but only primariness in the decomposition

0 =
⋂
Ni,

we can assume that each Ni is pi coprimary for some prime pi with the pi distinct.

41.3.8 Definition Such a decomposition of zero, where the different modules Ni are pi-
coprimary for different pi, is called a primary decomposition.

Uniqueness questions

In general, primary decomposition is not unique. Nonetheless, we shall see that a limited
amount of uniqueness does hold. For instance, the primes that occur are determined.

LetM be a finitely generated module over a noetherian ringR, and supposeN1∩· · ·∩Nk = 0
is a primary decomposition. Let us assume that the decomposition is minimal : that is, if
we dropped one of the Ni, the intersection would no longer be zero. This implies that

Ni 6⊃
⋂
j 6=i

Nj

or we could omit one of the Ni. Then the decomposition is called a reduced primary
decomposition.

Again, what this tells us is that M �
⊕
M/Ni. What we have shown is that M can be

imbedded in a sum of pieces, each of which is p-primary for some prime, and the different
primes are distinct.

This is not unique. However,
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41.3.9 Proposition The primes pi that appear in a reduced primary decomposition of zero
are uniquely determined. They are the associated primes of M .

Proof. All the associated primes of M have to be there, because we have the injection

M �
⊕

M/Ni

so the associated primes of M are among those of M/Ni (i.e. the pi).

The hard direction is to see that each pi is an associated prime. I.e. if M/Ni is pi-primary,
then pi ∈ Ass(M); we don’t need to use primary modules except for primes in the associated
primes. Here we need to use the fact that our decomposition has no redundancy. Without
loss of generality, it suffices to show that p1, for instance, belongs to Ass(M). We will use
the fact that

N1 6⊃ N2 ∩ . . . .
So this tells us that N2 ∩ N3 ∩ . . . is not equal to zero, or we would have a containment.
We have a map

N2 ∩ · · · ∩Nk →M/N1;

it is injective, since the kernel is N1∩N2∩· · ·∩Nk = 0 as this is a decomposition. However,
M/N1 is p1-primary, so N2∩· · ·∩Nk is p1-primary. In particular, p1 is an associated prime
of N2 ∩ · · · ∩Nk, hence of M .

The primes are determined. The factors are not. However, in some cases they are.

41.3.10 Proposition Let pi be a minimal associated prime of M , i.e. not containing
any smaller associated prime. Then the submodule Ni corresponding to pi in the reduced
primary decomposition is uniquely determined: it is the kernel of

M →Mpi .

Proof. We have that
⋂
Nj = {0} ⊂M . When we localize at pi, we find that

(
⋂
Nj)pi =

⋂
(Nj)pi = 0

as localization is an exact functor. If j 6= i, then M/Nj is pj primary, and has only pj
as an associated prime. It follows that (M/Nj)pi has no associated primes, since the only
associated prime could be pj , and that’s not contained in pj . In particular, (Nj)pi = Mpi .

Thus, when we localize the primary decomposition at pi, we get a trivial primary decom-
position: most of the factors are the full Mpi . It follows that (Ni)pi = 0. When we draw a
commutative diagram

Ni
//

��

(Ni)pi = 0

��
M //Mpi .

we find that Ni goes to zero in the localization.

Now if x ∈ ker(M →Mpi , then sx = 0 for some s /∈ pi. When we take the map M →M/Ni,
sx maps to zero; but s acts injectively on M/Ni, so x maps to zero in M/Ni, i.e. is zero in
Ni.
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This has been abstract, so:

41.3.11 Example Let R = Z. Let M = Z⊕ Z/p. Then zero can be written as

Z ∩ Z/p

as submodules of M . But Z is p-coprimary, while Z/p is (0)-coprimary.

This is not unique. We could have considered

{(n, n), n ∈ Z} ⊂M.

However, the zero-coprimary part has to be the p-torsion. This is because (0) is the minimal
ideal.

The decomposition is always unique, in general, if we have no inclusions among the prime
ideals. For Z-modules, this means that primary decomposition is unique for torsion mod-
ules. Any torsion group is a direct sum of the p-power torsion over all primes p.

41.3.12 Remark Suppose R is a noetherian ring and Rp is a domain for each prime ideal
p ⊂ R. Then R is a finite direct product

∏
Ri for each Ri a domain.

To see this, consider the minimal primes pi ∈ SpecR. There are finitely many of them,
and argue that since every localization is a domain, SpecR is disconnected into the pieces
V (pi). It follows that there is a decomposition R =

∏
Ri where SpecRi has pi as the

unique minimal prime. Each Ri satisfies the same condition as R, so we may reduce to the
case of R having a unique minimal prime ideal. In this case, however, R is reduced, so its
unique minimal prime ideal must be zero.

41.4. Artinian rings and modules

The notion of an artinian ring appears to be dual to that of a noetherian ring, since the
chain condition is simply reversed in the definition. However, the artinian condition is much
stronger than the noetherian one. In fact, artinianness actually implies noetherianness, and
much more. Artinian modules over non-artinian rings are frequently of interest as well; for
instance, if R is a noetherian ring and m is a maximal ideal, then for any finitely generated
R-module M , the module M/mM is artinian.

Definitions

41.4.1 Definition A commutative ring R is Artinian every descending chain of ideals
I0 ⊃ I1 ⊃ I2 ⊃ . . . stabilizes.

41.4.2 Definition The same definition makes sense for modules. We can define an R-
module M to be Artinian if every descending chain of submodules stabilizes.

In fact, as we shall see when we study dimension theory, we actually often do want to study
artinian modules over non-artinian rings, so this definition is useful.
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41.4.3 Remark A module is artinian if and only if every nonempty collection of submod-
ules has a minimal element.

41.4.4 Remark A ring which is a finite-dimensional algebra over a field is artinian.

41.4.5 Proposition If 0 → M ′ → M → M ′′ → 0 is an exact sequence, then M is
Artinian if and only if M ′,M ′′ are.

This is proved in the same way as for noetherianness.

41.4.6 Corollary Let R be artinian. Then every finitely generated R-module is artinian.

Proof. Standard.

The main result

This definition is obviously dual to the notion of noetherianness, but it is much more
restrictive. The main result is:

41.4.7 Theorem A commutative ring R is artinian if and only if:

1. R is noetherian.

2. Every prime ideal of R is maximal.1

So artinian rings are very simple—small in some sense. They all look kind of like fields.

We shall prove this result in a series of small pieces. We begin with a piece of the forward
implication in 41.4.7:

41.4.8 Lemma Let R be artinian. Every prime p ⊂ R is maximal.

Proof. Indeed, if p ⊂ R is a prime ideal, R/p is artinian, as it is a quotient of an artinian
ring. We want to show that R/p is a field, which is the same thing as saying that p is
maximal. (In particular, we are essentially proving that an artinian domain is a field.)

Let x ∈ R/p be nonzero. We have a descending chain

R/p ⊃ (x) ⊃ (x2) . . .

which necessarily stabilizes. Then we have (xn) = (xn+1) for some n. In particular, we
have xn = yxn+1 for some y ∈ R/p. But x is a nonzerodivisor, and we find 1 = xy. So x
is invertible. Thus R/p is a field.

Next, we claim there are only a few primes in an artinian ring:

41.4.9 Lemma If R is artinian, there are only finitely many maximal ideals.

1This is much different from the Dedekind ring condition—there, zero is not maximal. An artinian domain
is necessarily a field, in fact.
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Proof. Assume otherwise. Then we have an infinite sequence

m1,m2, . . .

of distinct maximal ideals. Then we have the descending chain

R ⊃ m1 ⊃ m1 ∩m2 ⊃ . . . .

This necessarily stabilizes. So for some n, we have that m1 ∩ · · · ∩ mn ⊂ mn+1. However,
this means that mn+1 contains one of the m1, . . . ,mn since these are prime ideals (a familiar
argument). Maximality and distinctness of the mi give a contradiction.

In particular, we see that SpecR for an artinian ring is just a finite set. In fact, since each
point is closed, as each prime is maximal, the set has the discrete topology. As a result,
SpecR for an artinian ring is Hausdorff. (There are very few other cases.)

This means that R factors as a product of rings. Whenever SpecR can be written as a
disjoint union of components, there is a factoring of R into a product

∏
Ri. So R =

∏
Ri

where each Ri has only one maximal ideal. Each Ri, as a homomorphic image of R, is
artinian. We find, as a result,

add: mention that disconnections of SpecR are the same thing as idempotents.

41.4.10 Proposition Any artinian ring is a finite product of local artinian rings.

Now, let us continue our analysis. We may as well assume that we are working with local
artinian rings R in the future. In particular, R has a unique prime m, which must be the
radical of R as the radical is the intersection of all primes.

We shall now see that the unique prime ideal m ⊂ R is nilpotent by:

41.4.11 Lemma If R is artinian (not necessarily local), then Rad(R) is nilpotent.

It is, of course, always true that any element of the radical Rad(R) is nilpotent, but it is
not true for a general ring R that Rad(R) is nilpotent as an ideal.

Proof. Call J = Rad(R). Consider the decreasing filtration

R ⊃ J ⊃ J2 ⊃ J3 ⊃ . . . .

We want to show that this stabilizes at zero. A priori, we know that it stabilizes somewhere.
For some n, we have

Jn = Jn
′
, n′ ≥ n.

Call the eventual stabilization of these ideals I. Consider ideals I ′ such that

II ′ 6= 0.

There are now two cases:

1. No such I ′ exists. Then I = 0, and we are done: the powers of Jn stabilize at zero.
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2. Otherwise, there is a minimal such I ′ (minimal for satisfying II ′ 6= 0) as R is artinian.
Necessarily I ′ is nonzero, and furthermore there is x ∈ I ′ with xI 6= 0.

It follows by minimality that
I ′ = (x),

so I ′ is principal. Then xI 6= 0; observe that xI is also (xI)I as I2 = I from the
definition of I. Since (xI)I 6= 0, it follows again by minimality that

xI = (x).

Hence, there is y ∈ I such that xy = x; but now, by construction I ⊂ J = Rad(R),
implying that y is nilpotent. It follows that

x = xy = xy2 = · · · = 0

as y is nilpotent. However, x 6= 0 as xI 6= 0. This is a contradiction, which implies
that the second case cannot occur.

We have now proved the lemma.

Finally, we may prove:

41.4.12 Lemma A local artinian ring R is noetherian.

Proof. We have the filtration R ⊃ m ⊃ m2 ⊃ . . . . This eventually stabilizes at zero by
41.4.11. I claim that R is noetherian as an R-module. To prove this, it suffices to show
that mk/mk+1 is noetherian as an R-module. But of course, this is annihilated by m, so it
is really a vector space over the field R/m. But mk/mk+1 is a subquotient of an artinian
module, so is artinian itself. We have to show that it is noetherian. It suffices to show now
that if k is a field, and V a k-vector space, then TFAE:

1. V is artinian.

2. V is noetherian.

3. V is finite-dimensional.

This is evident by linear algebra.

Now, finally, we have shown that an artinian ring is noetherian. We have to discuss the
converse. Let us assume now that R is noetherian and has only maximal prime ideals.
We show that R is artinian. Let us consider SpecR; there are only finitely many minimal
primes by the theory of associated primes: every prime ideal is minimal in this case. Once
again, we learn that SpecR is finite and has the discrete topology. This means that R is a
product of factors

∏
Ri where each Ri is a local noetherian ring with a unique prime ideal.

We might as well now prove:

41.4.13 Lemma Let (R,m) be a local noetherian ring with one prime ideal. Then R is
artinian.

219



41. Noetherian rings and modules 41.4. Artinian rings and modules

Proof. We know that m = rad(R). So m consists of nilpotent elements, so by finite gener-
atedness it is nilpotent. Then we have a finite filtration

R ⊃ m ⊃ · · · ⊃ mk = 0.

Each of the quotients are finite-dimensional vector spaces, so artinian; this implies that R
itself is artinian.

41.4.14 Remark Note that artinian implies noetherian! This statement is true for rings
(even non-commutative rings), but not for modules. Take the same exampleM = lim−→Z/pnZ
over Z. However, there is a module-theoretic statement which is related.

41.4.15 Corollary For a finitely generated module M over any commutative ring R, the
following are equivalent.

1. M is an artinian module.

2. M has finite length (i.e. is noetherian and artinian).

3. R/AnnM is an artinian ring.

Proof. add: proof

41.4.16 Remark If R is an artinian ring, and S is a finite R-algebra (finite as an R-
module), then S is artinian.

41.4.17 Remark Let M be an artinian module over a commutative ring R, f : M →M
an injective homomorphism. Show that f is surjective, hence an isomorphism.

Vista: zero-dimensional non-noetherian rings

41.4.18 Definition (von Neumann) An element a ∈ R is called von Neumann regular
if there is some x ∈ R such that a = axa.

41.4.19 Definition (McCoy) A element a ∈ R is π-regular if some power of a is von
Neumann regular.

41.4.20 Definition A element a ∈ R is strongly π-regular (in the commutative case) if
the chain aR ⊃ a2R ⊃ a3R ⊃ · · · stabilizes.

A ring R is von Neumann regular (resp. (strongly) π-regular) if every element of R is.

41.4.21 Theorem (5.2) For a commutative ring R, the following are equivalent.

1. dimR = 0.

2. R is rad-nil (i.e. the Jacobson radical J(R) is the nilradical ) and R/RadR is von
Neumann regular.

3. R is strongly π-regular.
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4. R is π-regular.

And any one of these implies

5. Any non-zero-divisor is a unit.

Proof. 1⇒ 2⇒ 3⇒ 4⇒ 1 and 4⇒ 5. We will not do 1⇒ 2⇒ 3 here.

(3⇒ 4) Given a ∈ R, there is some n such that anR = an+1R = a2nR, which implies that
an = anxan for some x.

(4⇒ 1) Is p maximal? Let a 6∈ p. Since a is π-regular, we have an = a2nx, so an(1−anx) =
0, so 1− anx ∈ p. It follows that a has an inverse mod p.

(4⇒ 5) Using 1− anx = 0, we get an inverse for a.

41.4.22 Example Any local rad-nil ring is zero dimensional, since 2 holds. In particular,
for a ring S and maximal ideal m, R = S/mn is zero dimensional because it is a rad-nil
local ring.

41.4.23 Example (Split-Null Extension) For a ring A and A-module M , let R = A⊕
M with the multiplication (a,m)(a′,m′) = (aa′, am′+a′m) (i.e. take the multiplication on
M to be zero). In R, M is an ideal of square zero. (A is called a retract of R because it
sits in R and can be recovered by quotienting by some complement.) If A is a field, then
R is a rad-nil local ring, with maximal ideal M .
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In algebraic geometry, working in classical affine space AnC of points in Cn turns out to be
insufficient for various reasons. Instead, it is often more convenient to consider varieties in
projective space PnC, which is the set of lines through the origin in Cn+1. In other words, it
is the set of all n+ 1-tuples [z0, . . . , zn] ∈ Cn+1 − {0} modulo the relation that

(42.0.0.1) [z0, . . . , zn] = [λz0, . . . , λzn], λ ∈ C∗.

Varieties in projective space have many convenient properties that affine varieties do not:
for instance, intersections work out much more nicely when intersections at the extra
“points at infinity” are included. Moreover, when endowed with the complex topology,
(complex) projective varieties are compact, unlike all but degenerate affine varieties (i.e.
finite sets).

It is when defining the notion of a “variety” in projective space that one encounters grad-
edness. Now a variety in Pn must be cut out by polynomials F1, . . . , Fk ∈ C[x0, . . . , xn];
that is, a point represented by [z0, . . . , zn] lies in the associated variety if and only if
Fi(z0, . . . , zn) = 0 for each i. For this to make sense, or to be independent of the choice
of z0, . . . , zn up to rescaling as in (42.0.0.1), it is necessary to assume that each Fi is
homogeneous.

Algebraically, AnC is the set of maximal ideals in the polynomial ring Cn. Projective space
is defined somewhat more geometrically (as a set of lines) but it turns out that there is an
algebraic interpretation here too. The points of projective space are in bijection with the
homogeneous maximal ideals of the polynomial ring C[x0, . . . , xn]. We shall define more
generally the Proj of a graded ring in this chapter. Although we shall not repeatedly refer
to this concept in the sequel, it will be useful for readers interested in algebraic geometry.

We shall also introduce the notion of a filtration. A filtration allows one to endow a given
module with a topology, and one can in fact complete with respect to this topology. This
construction will be studied in ??.

42.1. Graded rings and modules

Much of the material in the present section is motivated by algebraic geometry; see ?,
volume II for the construction of ProjR as a scheme.
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Basic definitions

42.1.1 Definition A graded ring R is a ring together with a decomposition (as abelian
groups)

R = R0 ⊕R1 ⊕ . . .

such that RmRn ⊂ Rm+n for all m,n ∈ Z≥0, and where R0 is a subring (i.e. 1 ∈ R0).
A Z-graded ring is one where the decomposition is into

⊕
n∈ZRn. In either case, the

elements of the subgroup Rn are called homogeneous of degree n.

The basic example to keep in mind is, of course, the polynomial ring R[x1, . . . , xn] for R
any ring. The graded piece of degree n consists of the homogeneous polynomials of degree
n.

Consider a graded ring R.

42.1.2 Definition A graded R-module is an ordinary R-module M together with a de-
composition

M =
⊕
k∈Z

Mk

as abelian groups, such that RmMn ⊂ Mm+n for all m ∈ Z≥0, n ∈ Z. Elements in one of
these pieces are called homogeneous. Any m ∈ M is thus uniquely a finite sum

∑
mni

where each mni ∈Mni is homogeneous of degree ni.

Clearly there is a category of graded R-modules, where the morphisms are the morphisms
of R-modules that preserve the grading (i.e. take homogeneous elements to homogeneous
elements of the same degree).

Since we shall focus on positively graded rings, we shall simply call them graded rings;
when we do have to consider rings with possibly negative gradings, we shall highlight this
explicitly. Note, however, that we allow modules with negative gradings freely.

In fact, we shall note an important construction that will generally shift the graded pieces
such that some of them might be negative:

42.1.3 Definition Given a graded module M , we define the twist M(n) as the same
R-module but with the grading

M(n)k = Mn+k.

This is a functor on the category of graded R-modules.

In algebraic geometry, the process of twisting allows one to construct canonical line bundles
on projective space. Namely, a twist of R itself will lead to a line bundle on projective
space that in general is not trivial. See ?, II.5.

Here are examples:

42.1.4 Example (An easy example) If R is a graded ring, then R is a graded module
over itself.
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42.1.5 Example (Another easy example) If S is any ring, then S can be considered
as a graded ring with S0 = S and Si = 0 for i > 0. Then a graded S-module is just a
Z-indexed collection of (ordinary) S-modules.

42.1.6 Example (The blowup algebra) This example is a bit more interesting, and
will be used in the sequel. Let S be any ring, and let J ⊂ S be an ideal. We can make
R = S ⊕ J ⊕ J2 ⊕ . . . (the so-called blowup algebra) into a graded ring, by defining the
multiplication the normal way except that something in the ith component times something
in the jth component goes into the i+ jth component.

Given any S-module M , there is a graded R-module M ⊕ JM ⊕ J2M ⊕ . . . , where multi-
plication is defined in the obvious way. We thus get a functor from S-modules to graded
R-modules.

42.1.7 Definition Fix a graded ring R. Let M be a graded R-module and N ⊂ M an
R-submodule. Then N is called a graded submodule if the homogeneous components
of anything in N are in N . If M = R, then a graded ideal is also called a homogeneous
ideal.

In particular, a graded submodule is automatically a graded module in its own right.

42.1.8 Lemma 1. The sum of two graded submodules (in particular, homogeneous ide-
als) is graded.

2. The intersection of two graded submodules is graded.

Proof. Immediate.

One can grade the quotients of a graded module by a graded submodule. If N ⊂ M is a
graded submodule, then M/N can be made into a graded module, via the isomorphism of
abelian groups

M/N '
⊕
k∈Z

Mk/Nk.

In particular, if a ⊂ R is a homogeneous ideal, then R/a is a graded ring in a natural
way.

42.1.9 Remark (exercise) Let R be a graded ring. Does the category of graded R-
modules admit limits and colimits?

Homogeneous ideals

Recall that a homogeneous ideal in a graded ring R is simply a graded submodule of R.
We now prove a useful result that enables us tell when an ideal is homogeneous.

42.1.10 Proposition Let R be a graded ring, I ⊂ R an ideal. Then I is a homogeneous
ideal if and only if it can be generated by homogeneous elements.
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Proof. If I is a homogeneous ideal, then by definition

I =
⊕
i

I ∩Ri,

so I is generated by the sets {I ∩Ri}i∈Z≥0
of homogeneous elements.

Conversely, let us suppose that I is generated by homogeneous elements {hα}. Let x ∈ I
be arbitrary; we can uniquely decompose x as a sum of homogeneous elements, x =

∑
xi,

where each xi ∈ Ri. We need to show that each xi ∈ I in fact.

To do this, note that x =
∑
qαhα where the qα belong to R. If we take ith homogeneous

components, we find that

xi =
∑

(qα)i−deg hαhα,

where (qα)i−deg hα refers to the homogeneous component of qα concentrated in the degree
i − deg hα. From this it is easy to see that each xi is a linear combination of the hα and
consequently lies in I.

42.1.11 Example If a, b ⊂ R are homogeneous ideals, then so is ab. This is clear from
proposition 42.1.10.

42.1.12 Example Let k be a field. The ideal (x2 + y) in k[x, y] is not homogeneous.
However, we find from proposition 42.1.10 that the ideal (x2 + y2, y3) is.

Since we shall need to use them to define ProjR in the future, we now prove a result
about homogeneous prime ideals specifically. Namely, “primeness” can be checked just on
homogeneous elements for a homogeneous ideal.

42.1.13 Lemma Let p ⊂ R be a homogeneous ideal. In order that p be prime, it is
necessary and sufficient that whenever x, y are homogeneous elements such that xy ∈ p,
then at least one of x, y ∈ p.

Proof. Necessity is immediate. For sufficiency, suppose a, b ∈ R and ab ∈ p. We must
prove that one of these is in p. Write

a = ak1 + a1 + · · ·+ ak2 , b = bm1 + · · ·+ bm2

as a decomposition into homogeneous components (i.e. ai is the ith component of a), where
ak2 , bm2 are nonzero and of the highest degree.

Let k = k2 − k1,m = m2 −m1. So there are k homogeneous terms in the expression for
a, m in the expression for b. We will prove that one of a, b ∈ p by induction on m + n.
When m + n = 0, then it is just the condition of the lemma. Suppose it true for smaller
values of m+n. Then ab has highest homogeneous component ak2bm2 , which must be in p
by homogeneity. Thus one of ak2 , bm2 belongs to p. Say for definiteness it is ak. Then we
have that

(a− ak2)b ≡ ab ≡ 0 mod p

so that (a− ak2)b ∈ p. But the resolutions of a− ak2 , b have a smaller m+n-value: a− ak2
can be expressed with k−1 terms. By the inductive hypothesis, it follows that one of these
is in p, and since ak ∈ p, we find that one of a, b ∈ p.
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Finiteness conditions

There are various finiteness conditions (e.g. noetherianness) that one often wants to impose
in algebraic geometry. Since projective varieties (and schemes) are obtained from graded
rings, we briefly discuss these finiteness conditions for them.

42.1.14 Definition For a graded ring R, write R+ = R1 ⊕ R2 ⊕ . . . . Clearly R+ ⊂ R is
a homogeneous ideal. It is called the irrelevant ideal.

When we define the Proj of a ring, prime ideals containing the irrelevant ideal will be
no good. The intuition is that when one is working with PnC, the irrelevant ideal in the
corresponding ring C[x0, . . . , xn] corresponds to all homogeneous polynomials of positive
degree. Clearly these have no zeros except for the origin, which is not included in projective
space: thus the common zero locus of the irrelevant ideal should be ∅ ⊂ PnC.

42.1.15 Proposition Suppose R = R0 ⊕ R1 ⊕ . . . is a graded ring. Then if a subset
S ⊂ R+ generates the irrelevant ideal R+ as R-ideal, it generates R as R0-algebra.

The converse is clear as well. Indeed, if S ⊂ R+ generates R as an R0-algebra, clearly it
generates R+ as an R-ideal.

Proof. Let T ⊂ R be the R0-algebra generated by S. We shall show inductively that
Rn ⊂ T . This is true for n = 0. Suppose n > 0 and the assertion true for smaller n. Then,
we have

Rn = RS ∩Rn by assumption

= (R0 ⊕R1 ⊕ · · · ⊕Rn−1)(S) ∩Rn because S ⊂ R+

⊂ (R0[S])(S) ∩Rn by inductive hypothesis

⊂ R0(S).

42.1.16 Theorem The graded ring R is noetherian if and only if R0 is noetherian and R
is finitely generated as R0-algebra.

Proof. One direction is clear by Hilbert’s basis theorem. For the other, suppose R noethe-
rian. Then R0 is noetherian because any sequence I1 ⊂ I2 ⊂ . . . of ideals of R0 leads to
a sequence of ideals I1R ⊂ I2R ⊂ . . . , and since these stabilize, the original I1 ⊂ I2 ⊂ . . .
must stabilize too. (Alternatively, R0 = R/R+, and taking quotients preserves noetherian-
ness.) Moreover, since R+ is a finitely generated R-ideal by noetherianness, it follows that
R is a finitely generated R0-algebra too: we can, by proposition 42.1.15, take as R0-algebra
generators for R a set of generators for the ideal R+.

The basic finiteness condition one often needs is that R should be finitely generated as
an R0-algebra. We may also want to have that R is generated by R1, quite frequently—
in algebraic geometry, this implies a bunch of useful things about certain sheaves being
invertible. (See ?, volume II.2.) As one example, having R generated as R0-algebra by
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R1 is equivalent to having R a graded quotient of a polynomial algebra over R0 (with the
usual grading). Geometrically, this equates to having ProjR contained as a closed subset
of some projective space over R0.

However, sometimes we have the first condition and not the second, though if we massage
things we can often assure generation by R1. Then the next idea comes in handy.

42.1.17 Definition Let R be a graded ring and d ∈ N. We set R(d) =
⊕

k∈Z≥0
Rkd; this

is a graded ring and R0-algebra. If M is a graded R-module and l ∈ {0, 1, . . . , d− 1}, we
write M (d,l) =

⊕
k≡l mod dMk. Then M (d,l) is a graded R(d)-module.

We in fact have a functor ·(d,l) from graded R-modules to graded R(d)-modules.

One of the implications of the next few results is that, by replacing R with R(d), we can
make the condition “generated by terms of degree 1” happen. But first, we show that basic
finiteness is preserved if we filter out some of the terms.

42.1.18 Proposition Let R be a graded ring and a finitely generated R0-algebra. Let M
be a finitely generated R-module.

1. Each Mi is finitely generated over R0, and the Mi become zero when i� 0.

2. M (d,l) is a finitely generated R(d) module for each d, l. In particular, M itself is a
finitely generated R(d)-module.

3. R(d) is a finitely generated R0-algebra.

Proof. Choose homogeneous generators m1, . . . ,mk ∈M . For instance, we can choose the
homogeneous components of a finite set of generators for M . Then every nonzero element
of M has degree at least min(degmi). This proves the last part of (1). Moreover, let
r1, . . . , rp be algebra generators of R over R0. We can assume that these are homogeneous
with positive degrees d1, . . . , dp > 0. Then the R0-module Mi is generated by the elements

ra11 . . . r
ap
p ms

where
∑
ajdj + degms = i. Since the dj > 0 and there are only finitely many ms’s, there

are only finitely many such elements. This proves the rest of (1).

To prove (2), note first that it is sufficient to show that M is finitely generated over R(d),
because the M (d,l) are R(d)-homomorphic images (i.e. quotient by the M (d′,l) for d′ 6= d).
Now M is generated as R0-module by the ra11 . . . r

ap
p ms for a1, . . . , ap ≥ 0 and s = 1, . . . , k.

In particular, by the euclidean algorithm in elementary number theory, it follows that the
ra11 . . . r

ap
p ms for a1, . . . , ap ∈ [0, d−1] and s = 1, . . . , k generate M over R(d), as each power

rdi ∈ R(d). In particular, R is finitely generated over R(d).

When we apply (2) to the finitely generated R-module R+, it follows that R
(d)
+ is a finitely

generated R(d)-module. This implies that R(d) is a finitely generated R0-algebra by propo-
sition 42.1.15.
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In particular, by proposition 43.1.12 (later in the book!) R is integral over R(d): this means
that each element of R satisfies a monic polynomial equation with R(d)-coefficients. This
can easily be seen directly. The dth power of a homogeneous element lies in R(d).

42.1.19 Remark Part (3), the preservation of the basic finiteness condition, could also
be proved as follows, at least in the noetherian case (with S = R(d)). We shall assume
familiarity with the material in ?? for this brief digression.

42.1.20 Lemma Suppose R0 ⊂ S ⊂ R is an inclusion of rings with R0 noetherian. Sup-
pose R is a finitely generated R0-algebra and R/S is an integral extension. Then S is a
finitely generated R0-algebra.

In the case of interest, we can take S = R(d). The point of the lemma is that finite
generation can be deduced for subrings under nice conditions.

Proof. We shall start by finding a subalgebra S′ ⊂ S such that R is integral over S′, but
S′ is a finitely generated R0-algebra. The procedure will be a general observation of the
flavor of “noetherian descent” to be developed in ??. Then, since R is integral over S′ and
finitely generated as an algebra, it will be finitely generated as a S′-module. S, which is a
sub-S′-module, will equally be finitely generated as a S′-module, hence as an R0-algebra.
So the point is to make S finitely generated as a module over a “good” ring.

Indeed, let r1, . . . , rm be generators of R/R0. Each satisfies an integral equation rnkk +
Pk(rk) = 0, where Pk ∈ S[X] has degree less than nk. Let S′ ⊂ S ⊂ R be the subring
generated over R0 by the coefficients of all these polynomials Pk.

Then R is, by definition, integral over S′. Since R is a finitely generated S′-algebra, it
follows by proposition 43.1.12 that it is a finitely generated S′-module. Then S, as a S′-
submodule is a finitely generated S′-module by noetherianness. Therefore, S is a finitely
generated R0-algebra.

This result implies, incidentally, the following useful corollary:

42.1.21 Corollary Let R be a noetherian ring. If a finite group G acts on a finitely
generated R-algebra S, the ring of invariants SG is finitely generated.

Proof. Apply lemma 42.1.20 to R,SG, S. One needs to check that S is integral over SG.
But each s ∈ S satisfies the equation ∏

σ∈G
(X − σ(s)),

which has coefficients in SG.

This ends the digression.

We next return to our main goals, and let R be a graded ring, finitely generated as an
R0-algebra, as before; let M be a finitely generated R-module. We show that we can have
R(d) generated by terms of degree d (i.e. “degree 1” if we rescale) for d chosen large.
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42.1.22 Lemma Hypotheses as above, there is a pair (d, n0) such that

RdMn = Mn+d

for n ≥ n0.

Proof. Indeed, select R-module generators m1, . . . ,mk ∈ M and R0-algebra generators
r1, . . . , rp ∈ R as in the proof of proposition 42.1.18; use the same notation for their
degrees, i.e. dj = deg rj . Let d be the least common multiple of the dj . Consider the
family of elements

si = r
d/di
i ∈ Rd.

Then suppose m ∈ Mn for n > d + sup degmi. We have that m is a sum of products of
powers of the {rj} and the {mi}, each term of which we can assume is of degree n. In this
case, since in each term, at least one of the {rj} must occur to power ≥ d

dj
, we can write

each term in the sum as some sj times something in Mn−d.

In particular, Mn = RdMn−d.

42.1.23 Proposition Suppose R is a graded ring and finitely generated R0-algebra. Then
there is d ∈ N such that R(d) is generated over R0 by Rd.

What this proposition states geometrically is that if we apply the functor R 7→ R(d) for
large d (which, geometrically, is actually harmless), one can arrange things so that ProjR
(not defined yet!) is contained as a closed subscheme of ordinary projective space.

Proof. Consider R as a finitely generated, graded R-module. Suppose d′ is as in the propo-
sition 42.1.23 (replacing d, which we reserve for something else), and choose n0 accordingly.
So we have Rd′Rm = Rm+d′ whenever m ≥ n0. Let d be a multiple of d′ which is greater
than n0.

Then, iterating, we have RdRn = Rd+n if n ≥ d since d is a multiple of d′. In particular, it
follows that Rnd = (Rd)

n for each n ∈ N, which implies the statement of the proposition.

As we will see below, taking R(d) does not affect the Proj, so this is extremely useful.

42.1.24 Example Let k be a field. Then R = k[x2] ⊂ k[x] (with the grading induced
from k[x]) is a finitely generated graded k-algebra, which is not generated by its elements
in degree one (there are none!). However, R(2) = k[x2] is generated by x2.

We next show that taking the R(d) always preserves noetherianness.

42.1.25 Proposition If R is noetherian, then so is R(d) for any d > 0.

Proof. If R is noetherian, then R0 is noetherian and R is a finitely generated R0-algebra
by theorem 42.1.16. proposition 42.1.18 now implies that R(d) is also a finitely generated
R0-algebra, so it is noetherian.

The converse is also true, since R is a finitely generated R(d)-module.
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Localization of graded rings

Next, we include a few topics that we shall invoke later on. First, we discuss the interaction
of homogeneity and localization. Under favorable circumstances, we can give Z-gradings
to localizations of graded rings.

42.1.26 Definition If S ⊂ R is a multiplicative subset of a graded (or Z-graded) ring R
consisting of homogeneous elements, then S−1R is a Z-graded ring: we let the homogeneous
elements of degree n be of the form r/s where r ∈ Rn+deg s. We write R(S) for the subring
of elements of degree zero; there is thus a map R0 → R(S).

If S consists of the powers of a homogeneous element f , we write R(f) for RS . If p is a
homogeneous ideal and S the set of homogeneous elements of R not in p, we write R(p) for
R(S).

Of course, R(S) has a trivial grading, and is best thought of as a plain, unadorned ring.
We shall show that R(f) is a special case of something familiar.

42.1.27 Proposition Suppose f is of degree d. Then, as plain rings, there is a canonical
isomorphism R(f) ' R(d)/(f − 1).

Proof. The homomorphism R(d) → R(f) is defined to map g ∈ Rkd to g/fd ∈ R(f). This
is then extended by additivity to non-homogeneous elements. It is clear that this is multi-
plicative, and that the ideal (f − 1) is annihilated by the homomorphism. Moreover, this
is surjective.

We shall now define an inverse map. Let x/fn ∈ R(f); then x must be a homogeneous

element of degree divisible by d. We map this to the residue class of x in R(d)/(f − 1).
This is well-defined; if x/fn = y/fm, then there is N with

fN (xfm − yfn) = 0,

so upon reduction (note that f gets reduced to 1!), we find that the residue classes of x, y
are the same, so the images are the same.

Clearly this defines an inverse to our map.

42.1.28 Corollary Suppose R is a graded noetherian ring. Then each of the R(f) is
noetherian.

Proof. This follows from the previous result and the fact that R(d) is noetherian (42.1.25).

More generally, we can define the localization procedure for graded modules.

42.1.29 Definition Let M be a graded R-module and S ⊂ R a multiplicative subset
consisting of homogeneous elements. Then we define M(S) as the submodule of the graded
module S−1M consisting of elements of degree zero. When S consists of the powers of a
homogeneous element f ∈ R, we write M(f) instead of M(S). We similarly define M(p) for
a homogeneous prime ideal p.
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Then clearly M(S) is a R(S)-module. This is evidently a functor from graded R-modules to
R(S)-modules.

We next observe that there is a generalization of 42.1.27.

42.1.30 Proposition Suppose M is a graded R-module, f ∈ R homogeneous of degree d.
Then there is an isomorphism

M(f) 'M (d)/(f − 1)M (d)

of R(d)-modules.

Proof. This is proved in the same way as 42.1.27. Alternatively, both are right-exact
functors that commute with arbitrary direct sums and coincide on R, so must be naturally
isomorphic by a well-known bit of abstract nonsense.1

In particular:

42.1.31 Corollary Suppose M is a graded R-module, f ∈ R homogeneous of degree 1.
Then we have

M(f) 'M/(f − 1)M 'M ⊗R R/(f − 1).

The Proj of a ring

Let R = R0 ⊕R1 ⊕ . . . be a graded ring.

42.1.32 Definition Let ProjR denote the set of homogeneous prime ideals of R that do
not contain the irrelevant ideal R+.2

We can put a topology on ProjR by setting, for a homogeneous ideal b,

V (b) = {p ∈ ProjR : p ⊃ b}

. These sets satisfy

1. V (
∑

bi) =
⋂
V (bi).

2. V (ab) = V (a) ∪ V (b).

3. V (Rad a) = V (a).

Note incidentally that we would not get any more closed sets if we allowed all ideals b,
since to any b we can consider its “homogenization.” We could even allow all sets.

In particular, the V ’s do in fact yield a topology on ProjR (setting the open sets to be
complements of the V ’s). As with the affine case, we can define basic open sets. For f
homogeneous of positive degree, define D′(f) to be the collection of homogeneous ideals
(not containing R+) that do not contain f ; clearly these are open sets.

Let a be a homogeneous ideal. Then we claim that:

1Citation needed.
2Recall that an ideal a ⊂ R for R graded is homogeneous if the homogeneous components of a belong to
a.
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42.1.33 Lemma V (a) = V (a ∩R+).

Proof. Indeed, suppose p is a homogeneous prime not containing S+ such that all homo-
geneous elements of positive degree in a (i.e., anything in a ∩ R+) belongs to p. We will
show that a ⊂ p.

Choose a ∈ a∩R0. It is sufficient to show that any such a belongs to p since we are working
with homogeneous ideals. Let f be a homogeneous element of positive degree that is not
in p. Then af ∈ a ∩R+, so af ∈ p. But f /∈ p, so a ∈ p.

Thus, when constructing these closed sets V (a), it suffices to work with ideals contained
in the irrelevant ideal. In fact, we could take a in any prescribed power of the irrelevant
ideal, since taking radicals does not affect V .

42.1.34 Proposition We have D′(f)∩D′(g) = D′(fg). Also, the D′(f) form a basis for
the topology on ProjR.

Proof. The first part is evident, by the definition of a prime ideal. We prove the second.
Note that V (a) is the intersection of the V ((f)) for the homogeneous f ∈ a ∩ R+. Thus
ProjR− V (a) is the union of these D′(f). So every open set is a union of sets of the form
D′(f).

We shall now show that the topology is actually rather familiar from the affine case, which
is not surprising, since the definition is similar.

42.1.35 Proposition D′(f) is homeomorphic to SpecR(f) under the map

p→ pRf ∩R(f)

sending homogeneous prime ideals of R not containing f into primes of R(f).

Proof. Indeed, let p be a homogeneous prime ideal of R not containing f . Consider φ(p) =
pRf ∩ R(f) as above. This is a prime ideal, since pRf is a prime ideal in Rf by basic
properties of localization, and R(f) ⊂ Rf is a subring. (It cannot contain the identity,
because that would imply that a power of f lay in p.)

So we have defined a map φ : D′(f) → SpecR(f). We can define its inverse ψ as follows.
Given q ⊂ R(f) prime, we define a prime ideal p = ψ(q) of R by saying that a homogeneous

element x ∈ R belongs to p if and only if xdeg f/fdeg x ∈ q. It is easy to see that this is
indeed an ideal, and that it is prime by 42.1.13.

Furthermore, it is clear that φ ◦ ψ and ψ ◦ φ are the identity. This is because x ∈ p for
p ∈ D′(f) if and only if fnx ∈ p for some n.

We next need to check that these are continuous, hence homeomorphisms. If a ⊂ R is a
homogeneous ideal, then V (a) ∩D′(f) is mapped to V (aRf ∩ R(f)) ⊂ SpecR(f), and vice
versa.
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42.2. Filtered rings

In practice, one often has something weaker than a grading. Instead of a way of saying that
an element is of degree d, one simply has a way of saying that an element is “of degree at
most d.” This leads to the definition of a filtered ring (and a filtered module). We shall use
this definition in placing topologies on rings and modules and, later, completing them.

Definition

42.2.1 Definition A filtration on a ring R is a sequence of ideals R = I0 ⊃ I1 ⊃ . . .
such that ImIn ⊂ Im+n for each m,n ∈ Z≥0. A ring with a filtration is called a filtered
ring.

A filtered ring is supposed to be a generalization of a graded ring. If R =
⊕
Rk is

graded, then we can make R into a filtered ring in a canonical way by taking the ideal
Im =

⊕
k≥mRk (notice that we are using the fact that R has only pieces in nonnegative

gradings!).

We can make filtered rings into a category: a morphism of filtered rings φ : R → S is a
ring-homomorphism preserving the filtration.

42.2.2 Example (The I-adic filtration) Given an ideal I ⊂ R, we can take powers of
I to generate a filtration. This filtration R ⊃ I ⊃ I2 ⊃ . . . is called the I-adic filtration,
and is especially important when R is local and I the maximal ideal.

If one chooses the polynomial ring k[x1, . . . , xn] over a field with n variables and takes the
(x1, . . . , xn)-adic filtration, one gets the same as the filtration induced by the usual grading.

42.2.3 Example As a specialization of the previous example, consider the power series
ring R = k[[x]] over a field k with one indeterminate x. This is a local ring (with maximal
ideal (x)), and it has a filtration with Ri = (xi). Note that this ring, unlike the polynomial
ring, is not a graded ring in any obvious way.

When we defined graded rings, the first thing we did thereafter was to define the notion of
a graded module over a graded ring. We do the analogous thing for filtered modules.

42.2.4 Definition Let R be a filtered ring with a filtration I0 ⊃ I1 ⊃ . . . . A filtration
on an R-module M is a decreasing sequence of submodules

M = M0 ⊃M1 ⊃M2 ⊃ . . .

such that ImMn ⊂ Mn+m for each m,n. A module together with a filtration is called a
filtered module.

As usual, there is a category of filtered modules over a fixed filtered ring R, with morphisms
the module-homomorphisms that preserve the filtrations.
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42.2.5 Example (The I-adic filtration for modules) Let R be any ring and I ⊂ R
any ideal. Then if we make R into a filtered ring with the I-adic filtration, we can make
any R-module M into a filtered R-module by giving M the filtration

M ⊃ IM ⊃ I2M ⊃ . . . ,

which is also called the I-adic filtration.

The associated graded

We shall now describe a construction that produces graded things from filtered ones.

42.2.6 Definition Given a filtered ring R (with filtration {In}), the associated graded
ring gr(R) is the graded ring

gr(R) =

∞⊕
n=0

In/In+1.

This is made into a ring by the following procedure. Given a ∈ In representing a class
a ∈ In/In+1 and b ∈ Im representing a class b ∈ Im/Im+1, we define ab to be the class in
In+m/In+m+1 represented by ab.

It is easy to check that if different choices of representing elements a, b were made in the
above description, the value of ab thus defined would still be the same, so that the definition
is reasonable.

42.2.7 Example Consider R = Z(p) (the localization at (p)) with the (p)-adic topology.
Then gr(R) = Z/p[t], as a graded ring. For the successive quotients of ideals are of the
form Z/p, and it is easy to check that multiplication lines up in the appropriate form.

In general, as we will see below, when one takes the gr of a noetherian ring with the I-adic
topology for some ideal I, one always gets a noetherian ring.

42.2.8 Definition Let R be a filtered ring, and M a filtered R-module (with filtration
{Mn}). We define the associated graded module gr(M) as the graded gr(R)-module

gr(M) =
⊕
n

Mn/Mn+1

where multiplication by an element of gr(R) is defined in a similar manner as above.

In other words, we have defined a functor gr from the category of filtered R-modules to
the category of graded gr(R) modules.

Let R be a filtered ring, and M a finitely generated filtered R-module. In general, gr(M)
cannot be expected to be a finitely generated gr(R)-module.
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42.2.9 Example Consider the ring Z(p) (the localization of Z at p), which we endow with
the p2-adic (i.e., (p2)-adic) filtration. The associated graded is Z/p2[t].

Consider M = Z(p) with the filtration Mm = (pm), i.e. the usual (p)-adic topology. The
claim is that gr(M) is not a finitely generated Z/p2[t]-module. This will follow from ??
below, but we can see it directly: multiplication by t acts by zero on gr(M) (because
this corresponds to multiplying by p2 and shifting the degree by one). However, gr(M) is
nonzero in every degree. If gr(M) were finitely generated, it would be a finitely generated
Z/p2Z-module, which it is not.

Topologies

We shall now see that filtered rings and modules come naturally with topologies on them.

42.2.10 Definition A topological ring is a ring R together with a topology such that
the natural maps

R×R→ R, (x, y) 7→ x+ y

R×R→ R, (x, y) 7→ xy

R→ R, x 7→ −x

are continuous (where R×R has the product topology).

add: discussion of algebraic objects in categories

In practice, the topological rings that we will be interested will exclusively be linearly
topologized rings.

42.2.11 Definition A topological ring is linearly topologized if there is a neighborhood
basis at 0 consisting of open ideals.

Given a filtered ring R with a filtration of ideals {In}, we can naturally linearly topologize
R. Namely, we take as a basis the cosets x+In for x ∈ R,n ∈ Z≥0. It is then clear that the
{In} form a neighborhood basis at the origin (because any neighborhood x+ In containing
0 must just be In!).

42.2.12 Example For instance, given any ring R and any ideal I ⊂ R, we can consider
the I-adic topology on R. Here an element is “small” (i.e., close to zero) if it lies in a
high power of I.

42.2.13 Proposition A topology on R defined by the filtration {In} is Hausdorff if and
only if

⋂
In = 0.

Proof. Indeed, to say that R is Hausdorff is to say that any two distinct elements x, y ∈ R
can be separated by disjoint neighborhoods. If

⋂
In = 0, we can find N large such that

x−y /∈ IN . Then x+IN , y+IN are disjoint neighborhoods of x, y. The converse is similar:
if
⋂
In 6= 0, then no neighborhoods can separate a nonzero element in

⋂
In from 0.
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Similarly, if M is a filtered R-module with a filtration {Mn}, we can topologize M by
choosing the {Mn} to be a neighborhood basis at the origin. Then M becomes a topological
group, that is a group with a topology such that the group operations are continuous. In
the same way, we find:

42.2.14 Proposition The topology on M is Hausdorff if and only if
⋂
Mn = 0.

Moreover, because of the requirement that RmMn ⊂ Mn+m, it is easy to see that the
map

R×M →M

is itself continuous. Thus, M is a topological module.

Here is another example. Suppose M is a linearly topologized module with a basis of sub-
modules {Mα} at the origin. Then any submodule N ⊂M becomes a linearly topologized
module with a basis of submodules {N ∩Mα} at the origin with the relative topology.

42.2.15 Proposition Suppose M is filtered with the {Mn}. If N ⊂M is any submodule,
then the closure N is the intersection

⋂
N +Mn.

Proof. Recall that x ∈ N is the same as stipulating that every neighborhood of x intersect
N . In other words, any basic neighborhood of x has to intersect N . This means that for
each n, x+Mn ∩N 6= ∅, or in other words x ∈Mn +N .

42.3. The Artin-Rees Lemma

We shall now show that for noetherian rings and modules, the I-adic topology is sta-
ble under passing to submodules; this useful result, the Artin-Rees lemma, will become
indispensable in our analysis of dimension theory in the future.

More precisely, consider the following problem. Let R be a ring and I ⊂ R an ideal. Then
for any R-module M , we can endow M with the I-adic filtration {InM}, which defines a
topology on M . If N ⊂M is a submodule, then N inherits the subspace topology from M
(i.e. that defined by the filtration {InM ∩N}). But N can also be topologized by simply
taking the I-adic topology on it. The Artin-Rees lemma states that these two approaches
give the same result.

The Artin-Rees Lemma

42.3.1 Theorem (Artin-Rees lemma) Let R be noetherian, I ⊂ R an ideal. Suppose
M is a finitely generated R-module and M ′ ⊂ M a submodule. Then the I-adic topology
on M induces the I-adic topology on M ′. More precisely, there is a constant c such that

In+cM ∩M ′ ⊂ InM ′.

So the two filtrations {InM ∩M ′}, {InM ′} on M ′ are equivalent up to a shift.
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Proof. The strategy to prove Artin-Rees will be as follows. Call a filtration {Mn} on an
R-module M (which is expected to be compatible with the I-adic filtration on R, i.e.
InMm ⊂Mm+n for all n,m) I-good if IMn = Mn+1 for large n� 0. Right now, we have
the very I-good filtration {InM} on M , and the induced filtration {InM ∩M ′} on M ′.
The Artin-Rees lemma can be rephrased as saying that this filtration on M ′ is I-good: in
fact, this is what we shall prove. It follows that if one has an I-good filtration on M , then
the induced filtration on M ′ is itself I-good.

To do this, we shall give an interpretation of I-goodness in terms of the blowup algebra,
and use its noetherianness. Recall that this is defined as S = R ⊕ I ⊕ I2 + . . . , where
multiplication is defined in the obvious manner (see example 42.1.6). It can be regarded
as a subring of the polynomial ring R[t] where the coefficient of ti is required to be in Ii.
The blowup algebra is clearly a graded ring.

Given a filtration {Mn} on an R-module M (compatible with the I-adic filtration of M),
we can make

⊕∞
n=0Mn into a graded S-module in an obvious manner.

Here is the promised interpretation of I-goodness:

42.3.2 Lemma Then the filtration {Mn} of the finitely generated R-module M is I-good
if and only if

⊕
Mn is a finitely generated S-module.

Proof. Let S1 ⊂ S be the subset of elements of degree one. If
⊕
Mn is finitely generated as

an S-module, then S1(
⊕
Mn) and

⊕
Mn agree in large degrees by lemma 42.1.22; however,

this means that IMn−1 = Mn for n� 0, which is I-goodness.

Conversely, if {Mn} is an I-good filtration, then once the I-goodness starts (say, for n > N ,
we have IMn = Mn+1), there is no need to add generators beyond MN . In fact, we can
use R-generators for M0, . . . ,MN in the appropriate degrees to generate

⊕
Mn as an R′-

module.

Finally, let {Mn} be an I-good filtration on the finitely generated R-module M . Let
M ′ ⊂ M be a submodule; we will, as promised, show that the induced filtration on M ′ is
I-good. Now the associated module

⊕∞
n=0(InM ∩M ′) is an S-submodule of

⊕∞
n=0Mn,

which by lemma 42.3.2 is finitely generated. We will show next that S is noetherian, and
consequently submodules of finitely generated modules are finitely generated. Applying
lemma 42.3.2 again, we will find that the induced filtration must be I-good.

42.3.3 Lemma Hypotheses as above, the blowup algebra R′ is noetherian.

Proof. Choose generators x1, . . . , xn ∈ I; then there is a map R[y1, . . . , yn] → S sending
yi → xi (where xi is in degree one). This is surjective. Hence by the basis theorem
(corollary 41.1.13), R′ is noetherian.
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The Krull intersection theorem

We now prove a useful consequence of the Artin-Rees lemma and Nakayama’s lemma. In
fancier language, this states that the map from a noetherian local ring into its completion
is an embedding. A priori, this might not be obvious. For instance, it might be surprising
that the inverse limit of the highly torsion groups Z/pn turns out to be the torsion-free
ring of p-adic integers.

42.3.4 Theorem (Krull intersection theorem) Let R be a local noetherian ring with
maximal ideal m. Then, ⋂

mi = (0).

Proof. Indeed, the m-adic topology on
⋂
mi is the restriction of the m-adic topology of R

on
⋂

mi by the Artin-Rees lemma (42.3.1). However,
⋂
mi is contained in every m-adic

neighborhood of 0 in R; the induced topology on
⋂
mi is thus the indiscrete topology.

But to say that the m-adic topology on a module N is indiscrete is to say that mN = N ,
so N = 0 by Nakayama. The result is thus clear.

By similar logic, or by localizing at each maximal ideal, we find:

42.3.5 Corollary If R is a commutative ring and I is contained in the Jacobson radical
of R, then

⋂
In = 0.

It turns out that the Krull intersection theorem can be proved in the following elementary
manner, due to Perdry in ?. The argument does not use the Artin-Rees lemma. One can
prove:

42.3.6 Theorem (?) Suppose R is a noetherian ring, I ⊂ R an ideal. Suppose b ∈
⋂
In.

Then as ideals (b) = (b)I.

In particular, it follows easily that
⋂
In = 0 under either of the following conditions:

1. I is contained in the Jacobson radical of R.

2. R is a domain and I is proper.

Proof. Let a1, . . . , ak ∈ I be generators. For each n, the ideal In consists of the values of all
homogeneous polynomials in R[x1, . . . , xk] of degree n evaluated on the tuple (a1, . . . , ak),
as one may easily see.

It follows that if b ∈
⋂
In, then for each n there is a polynomial Pn ∈ R[x1, . . . , xk] which

is homogeneous of degree n and which satisfies

Pn(a1, . . . , ak) = b.

The ideal generated by all the Pn in R[x1, . . . , xk] is finitely generated by the Hilbert basis
theorem. Thus there is N such that

PN = Q1P1 +Q2P2 + · · ·+QN−1PN−1
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for some polynomials Qi ∈ R[x1, . . . , xk]. By taking homogeneous components, we can
assume moreover that Qi is homogeneous of degree N − i for each i. If we evaluate each
at (a1, . . . , ak) we find

b = b(Q1(a1, . . . , ak) + · · ·+QN−1(a1, . . . , ak)).

But the Qi(a1, . . . , ak) lie in I as all the ai do and Qi is homogeneous of positive degree.
Thus b equals b times something in I.
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The notion of integrality is familiar from number theory: it is similar to “algebraic” but
with the polynomials involved are required to be monic. In algebraic geometry, integral
extensions of rings correspond to correspondingly nice morphisms on the Spec’s—when the
extension is finitely generated, it turns out that the fibers are finite. That is, there are only
finitely many ways to lift a prime ideal to the extension: if A→ B is integral and finitely
generated, then SpecB → SpecA has finite fibers.

Integral domains that are integrally closed in their quotient field will play an important
role for us. Such “normal domains” are, for example, regular in codimension one, which
means that the theory of Weil divisors (see ??) applies to them. It is particularly nice
because Weil divisors are sufficient to determine whether a function is regular on a normal
variety.

A canonical example of an integrally closed ring is a valuation ring; we shall see in this
chapter that any integrally closed ring is an intersection of such.

43.1. Integrality

Fundamentals

As stated in the introduction to the chapter, integrality is a condition on rings parallel to
that of algebraicity for field extensions.

43.1.1 Definition Let R be a ring, and R′ an R-algebra. An element x ∈ R′ is said to be
integral over R if x satisfies a monic polynomial equation in R[X], say

xn + r1x
n−1 + · · ·+ rn = 0, r1, . . . , rn ∈ R.

We can say that R′ is integral over R if every x ∈ R′ is integral over R.

Note that in the definition, we are not requiring R to be a subring of R′.

43.1.2 Example 1+
√
−3

2 is integral over Z; it is in fact a sixth root of unity, thus satisfying

the equation X6 − 1 = 0. However, 1+
√

5
2 is not integral over Z. To explain this, however,

we will need to work a bit more (see proposition 43.1.5 below).

43.1.3 Example Let L/K be a field extension. Then L/K is integral if and only if it
is algebraic, since K is a field and we can divide polynomial equations by the leading
coefficient to make them monic.
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43.1.4 Example Let R be a graded ring. Then the subring R(d) ⊂ R was defined in defi-
nition 42.1.17; recall that this consists of elements of R all of whose nonzero homogeneous
components live in degrees that are multiples of d. Then the dth power of any homogeneous
element in R is in R(d). As a result, every homogeneous element of R is integral over R(d).

We shall now interpret the condition of integrality in terms of finite generation of certain
modules. Suppose R is a ring, and R′ an R-algebra. Let x ∈ R′.

43.1.5 Proposition x ∈ R′ is integral over R if and only if the subalgebra R[x] ⊂ R′

(generated by R, x) is a finitely generated R-module.

This notation is an abuse of notation (usually R[x] refers to a polynomial ring), but it
should not cause confusion.

This result for instance lets us show that 1+
√
−5

2 is not integral over Z, because when you
keep taking powers, you get arbitrarily large denominators: the arbitrarily large denomi-
nators imply that it cannot be integral.

Proof. If x ∈ R′ is integral, then x satisfies

xn + r1x
n−1 + · · ·+ rn = 0, ri ∈ R.

Then R[x] is generated as an R-module by 1, x, . . . , xn−1. This is because the submodule
of R′ generated by 1, x, . . . , xn−1 is closed under multiplication by R and by multiplication
by x (by the above equation).

Now suppose x generates a subalgebra R[x] ⊂ R′ which is a finitely generated R-module.
Then the increasing sequence of R-modules generated by {1}, {1, x} ,

{
1, x, x2

}
, . . . must

stabilize, since the union is R[x].1 It follows that some xn can be expressed as a linear
combination of smaller powers of x. Thus x is integral over R.

So, if R′ is an R-module, we can say that an element x ∈ R′ is integral over R if either of
the following equivalent conditions are satisfied:

1. There is a monic polynomial in R[X] which vanishes on x.

2. R[x] ⊂ R′ is a finitely generated R-module.

43.1.6 Example Let F be a field, V a finite-dimensional F -vector space, T : V → V a
linear transformation. Then the ring generated by T and F inside EndF (V ) (which is a
noncommutative ring) is finite-dimensional over F . Thus, by similar reasoning, T must
satisfy a polynomial equation with coefficients in F (e.g. the characteristic polynomial).

1As an easy exercise, one may see that if a finitely generated module M is the union of an increasing
sequence of submodules M1 ⊂M2 ⊂M3 ⊂ . . . , then M = Mn for some n; we just need to take n large
enough such that Mn contains each of the finitely many generators of M .
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Of course, if R′ is integral over R, R′ may not be a finitely generated R-module. For
instance, Q is not a finitely generated Q-module, although the extension is integral. As we
shall see in the next section, this is always the case if R′ is a finitely generated R-algebra.

We now will add a third equivalent condition to this idea of “integrality,” at least in the
case where the structure map is an injection.

43.1.7 Proposition Let R be a ring, and suppose R is a subring of R′. x ∈ R′ is integral
if and only if there exists a finitely generated faithful R-module M ⊂ R′ such that R ⊂M
and xM ⊂M .

A module M is faithful if xM = 0 implies x = 0. That is, the map from R into the
Z-endomorphisms of M is injective. If R is a subring of R′ (i.e. the structure map R→ R′

is injective), then R′ for instance is a faithful R-module.

Proof. It’s obvious that the second condition above (equivalent to integrality) implies the
condition of this proposition. Indeed, one could just take M = R[x].

Now let us prove that if there exists such an M which is finitely generated, then x is
integral. Just because M is finitely generated, the submodule R[x] is not obviously finitely
generated. In particular, this implication requires a bit of proof.

We shall prove that the condition of this proposition implies integrality. Suppose y1, . . . , yk ∈
M generate M as R-module. Then multiplication by x gives an R-module map M → M .
In particular, we can write

xyi =
∑

aijyj

where each aij ∈ R. These {aij} may not be unique, but let us make some choices; we get
a k-by-k matrix A ∈Mk(R). The claim is that x satisfies the characteristic polynomial of
A.

Consider the matrix
(x1−A) ∈Mn(R′).

Note that (x1 − A) annihilates each yi, by the choice of A. We can consider the adjoint
B = (x1−A)adj . Then

B(x1−A) = det(x1−A)1.

This product of matrices obviously annihilates each vector yi. It follows that

(det(x1−A)yi = 0, ∀i,

which implies that det(x1 − A) kills M . This implies that det(x1 − A) = 0 since M is
faithful.

As a result, x satisfies the characteristic polynomial.

43.1.8 Remark (exercise) LetR be a noetherian local domain with maximal ideal m. As
we will define shortly, R is integrally closed if every element of the quotient field K = K(R)
integral over R belongs to R itself. Then if x ∈ K and xm ⊂ m, we have x ∈ R.
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43.1.9 Remark (exercise) Let us say that an A-module is n-generated if it is generated
by at most n elements.

Let A and B be two rings such that A ⊂ B, so that B is an A-module.

Let n ∈ N. Let u ∈ B. Then, the following four assertions are equivalent:

1. There exists a monic polynomial P ∈ A [X] with degP = n and P (u) = 0.

2. There exist a B-module C and an n-generated A-submodule U of C such that uU ⊂ U
and such that every v ∈ B satisfying vU = 0 satisfies v = 0. (Here, C is an A-module,
since C is a B-module and A ⊂ B.)

3. There exists an n-generated A-submodule U of B such that 1 ∈ U and uU ⊂ U .

4. As an A-module, A[u] is spanned by 1, u, . . . , un−1.

We proved this to show that the set of integral elements is well behaved.

43.1.10 Proposition Let R ⊂ R′. Let S = {x ∈ R′ : x is integral over R}. Then S is a
subring of R′. In particular, it is closed under addition and multiplication.

Proof. Suppose x, y ∈ S. We can consider the finitely generated modules R[x], R[y] ⊂ R′

generated (as algebras) by x over R. By assumption, these are finitely generated R-
modules. In particular, the tensor product

R[x]⊗R R[y]

is a finitely generated R-module (by proposition 13.3.12).

We have a ring-homomorphism R[x] ⊗R R[y] → R′ which comes from the inclusions
R[x], R[y]� R′. Let M be the image of R[x]⊗R R[y] in R′. Then M is an R-submodule
of R′, indeed an R-subalgebra containing x, y. Also, M is finitely generated. Since
x+ y, xy ∈M and M is a subalgebra, it follows that

(x+ y)M ⊂M, xyM ⊂M.

Thus x+ y, xy are integral over R.

Let us consider the ring Z[
√
−5]; this is the canonical example of a ring where unique

factorization fails. This is because 6 = 2× 3 = (1 +
√
−5)(1−

√
−5). One might ask: what

about Z[
√
−3]? It turns out that Z[

√
−3] lacks unique factorization as well. Indeed, here

we have
(1−

√
−3)(1 +

√
−3) = 4 = 2× 2.

These elements can be factored no more, and 1 −
√
−3 and 2 do not differ by units. So

in this ring, we have a failure of unique factorization. Nonetheless, the failure of unique
factorization in Z[

√
−3] is less noteworthy, because Z[

√
−3] is not integrally closed. Indeed,

it turns out that Z[
√
−3] is contained in the larger ring Z

[
1+
√
−3

2

]
, which does have unique

243



43. Integrality and valuation rings 43.1. Integrality

factorization, and this larger ring is finite over Z[
√
−3].2 Since being integrally closed is

a prerequisite for having unique factorization (see ?? below), the failure in Z[
√
−3] is not

particularly surprising.

Note that, by contrast, Z[1+
√
−5

2 ] does not contain Z[
√
−5] as a finite index subgroup—it

cannot be slightly enlarged in the same sense. When one enlarges Z[
√
−5], one has to add

a lot of stuff. We will see more formally that Z[
√
−5] is integrally closed in its quotient

field, while Z[
√
−3] is not. Since unique factorization domains are automatically integrally

closed, the failure of Z[
√
−5] to be a UFD is much more significant than that of Z[

√
−3].

Le sorite for integral extensions

In commutative algebra and algebraic geometry, there are a lot of standard properties that
a morphism of rings φ : R → S can have: it could be of finite type (that is, S is finitely
generated over φ(R)), it could be finite (that is, S is a finite R-module), or it could be
integral (which we have defined in definition 43.1.1). There are many more examples that
we will encounter as we dive deeper into commutative algebra. In algebraic geometry,
there are corresponding properties of morphisms of schemes, and there are many more
interesting ones here.

In these cases, there is usually—for any reasonable property—a standard and familiar list
of properties that one proves about them. We will refer to such lists as “sorites,” and prove
our first one now.

43.1.11 Proposition (Le sorite for integral morphisms) 1. For any ring R and
any ideal I ⊂ R, the map R→ R/I is integral.

2. If φ : R→ S and ψ : S → T are integral morphisms, then so is ψ ◦ φ : R→ T .

3. If φ : R → S is an integral morphism and R′ is an R-algebra, then the base-change
R′ → R′ ⊗R S is integral.

Proof. The first property is obvious. For the second, the condition of integrality in a
morphism of rings depends on the inclusion of the image in the codomain. So we can
suppose that R ⊂ S ⊂ T . Suppose t ∈ T . By assumption, there is a monic polynomial
equation

tn + s1t
n−1 + · · ·+ sn = 0

that t satisfies, where each si ∈ S.

In particular, we find that t is integral overR[s1, . . . , sn]. As a result, the moduleR[s1, . . . , sn, t]
is finitely generated over the ring R′ = R[s1, . . . , sn]. By the following proposition 43.1.12,
R′ is a finitely generated R-module. In particular, R[s1, . . . , sn, t] is a finitely generated
R-module (not just a finitely generated R′-module).

2In fact, Z[
√
−3] is an index two subgroup of Z

[
1+
√
−3

2

]
, as the ring Z[ 1+

√
−3

2
] can be described as the

set of elements a + b
√
−3 where a, b are either both integers or both integers plus 1

2
, as is easily seen:

this set is closed under addition and multiplication.
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Thus the R-module R[s1, . . . , sn, t] is a faithful R′ module, finitely generated over R, which
is preserved under multiplication by t.

We now prove a result that can equivalently be phrased as “finite type plus integral implies
finite” for a map of rings.

43.1.12 Proposition Let R′ be a finitely generated, integral R-algebra. Then R′ is a
finitely generated R-module: that is, the map R→ R′ is finite.

Proof. Induction on the number of generators of R′ as R-algebra. For one generator, this
follows from Proposition 43.1.5. In general, we will have R′ = R[α1, . . . , αn] for some
αi ∈ R′. By the inductive hypothesis, R[α1, . . . , αn−1] is a finite R-module; by the case
of one generator, R′ is a finite R[α1, . . . , αn−1]-module. This establishes the result by the
next exercise.

43.1.13 Remark (exercise) Let R → S, S → T be morphisms of rings. Suppose S is a
finite R-module and T a finite T -module. Then T is a finite R-module.

Integral closure

Let R,R′ be rings.

43.1.14 Definition If R ⊂ R′, then the set S = {x ∈ R′ : x is integral} is called the
integral closure of R in R′. We say that R is integrally closed in R′ if S = R′.

When R is a domain, and K is the quotient field, we shall simply say that R is integrally
closed if it is integrally closed in K. Alternatively, some people say that R is normal in
this case.

Integral closure (in, say, the latter sense) is thus an operation that maps integral domains
to integral domains. It is easy to see that the operation is idempotent: the integral closure
of the integral closure is the integral closure.

43.1.15 Example The integers Z ⊂ C have as integral closure (in C) the set of complex
numbers satisfying a monic polynomial with integral coefficients. This set is called the set
of algebraic integers.

For instance, i is an algebraic integer because it satisfies the equation X2 + 1 = 0. 1−
√
−3

2
is an algebraic integer, as we talked about last time; it is a sixth root of unity. On the

other hand, 1+
√
−5

2 is not an algebraic integer.

43.1.16 Example Take Z ⊂ Q. The claim is that Z is integrally closed in its quotient
field Q, or simply—integrally closed.
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Proof. We will build on this proof later. Here is the point. Suppose a
b ∈ Q satisfying an

equation
P (a/b) = 0, P (t) = tn + c1t

n−1 + · · ·+ c0, ∀ci ∈ Z.

Assume that a, b have no common factors; we must prove that b has no prime factors, so
is ±1. If b had a prime factor, say q, then we must obtain a contradiction.

We interrupt with a definition.

43.1.17 Definition The valuation at q (or q-adic valuation) is the map vq : Q∗ → Z
is the function sending qk(a/b) to k if q - a, b. We extend this to all rational numbers via
v(0) =∞.

In general, this just counts the number of factors of q in the expression.

Note the general property that

(43.1.17.1) vq(x+ y) ≥ min(vq(x), vq(y)).

If x, y are both divisible by some power of q, so is x+ y; this is the statement above. We
also have the useful property

(43.1.17.2) vq(xy) = vq(x) + vq(y).

Now return to the proof that Z is normal. We would like to show that vq(a/b) ≥ 0. This
will prove that b is not divisible by q. When we show this for all q, it will follow that
a/b ∈ Z.

We are assuming that P (a/b) = 0. In particular,(a
b

)n
= −c1

(a
b

)n−1
− · · · − c0.

Apply vq to both sides:
nvq(a/b) ≥ min

i>0
vq(ci(a/b)

n−i).

Since the ci ∈ Z, their valuations are nonnegative. In particular, the right hand side is at
least

min
i>0

(n− i)vq(a/b).

This cannot happen if vq(a/b) < 0, because n− i < n for each i > 0.

This argument applies more generally. If K is a field, and R ⊂ K is a subring “defined by
valuations,” such as the vq, then R is integrally closed in its quotient field. More precisely,
note the reasoning of the previous example: the key idea was that Z ⊂ Q was characterized
by the rational numbers x such that vq(x) ≥ 0 for all primes q. We can abstract this idea
as follows. If there exists a family of functions V from K∗ → Z (such as {vq : Q∗ → Z})
satisfying (43.1.17.1) and (43.1.17.2) above such that R is the set of elements such that
v(x) ≥ 0, v ∈ V (along with 0), then R is integrally closed in K. We will talk more about
this, and about valuation rings, below.
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43.1.18 Example We saw earlier (example 43.1.2) that Z[
√
−3] is not integrally closed,

as 1+
√
−3

2 is integral over this ring and in the quotient field, but not in the ring.

We shall give more examples in the next subsec.

Geometric examples

Let us now describe the geometry of a non-integrally closed ring. Recall that finitely
generated (reduced) C-algebras are supposed to correspond to affine algebraic varieties. A
smooth variety (i.e., one that is a complex manifold) will always correspond to an integrally
closed ring (though this relies on a deep result that a regular local ring is a factorization
domain, and consequently integrally closed): non-normality is a sign of singularities.

43.1.19 Example Here is a ring which is not integrally closed. Take C[x, y]/(x2 − y3).
Algebraically, this is the subring of the polynomial ring C[t] generated by t2 and t3.

In the complex plane, C2, this corresponds to the subvariety C ⊂ C2 defined by x2 = y3.
In R2, this can be drawn: it has a singularity at (x, y) = 0.

Note that x2 = y3 if and only if there is a complex number z such that x = z3, y = z2.
This complex number z can be recovered via x/y when x, y 6= 0. In particular, there is a
map C → C which sends z → (z3, z2). At every point other than the origin, the inverse
can be recovered using rational functions. But this does not work at the origin.

We can think of C[x, y]/(x2−y3) as the subring R′ of C[z] generated by {zn, n 6= 1}. There
is a map from C[x, y]/(x2 − y3) sending x → z3, y → z2. Since these two domains are
isomorphic, and R′ is not integrally closed, it follows that C[x, y]/(x2−y3) is not integrally
closed. The element z can be thought of as an element of the fraction field of R′ or of
C[x, y]/(x2 − y3). It is integral, though.

The failure of the ring to be integrally closed has to do with the singularity at the origin.

We now give a generalization of the above example.

43.1.20 Example This example is outside the scope of the present course. Say that
X ⊂ Cn is given as the zero locus of some holomorphic functions {fi : Cn → C}. We just
gave an example when n = 2. Assume that 0 ∈ X, i.e. each fi vanishes at the origin.

Let R be the ring of germs of holomorphic functions 0, in other words holomorphic functions
from small open neighborhoods of zero. Each of these fi becomes an element of R. The
ring R/({fi}) is called the ring of germs of holomorphic functions on X at zero.

Assume that R is a domain. This assumption, geometrically, means that near the point
zero in X, X can’t be broken into two smaller closed analytic pieces. The fraction field of
R is to be thought of as the ring of germs of meromorphic functions on X at zero.

We state the following without proof:

43.1.21 Theorem Let g/g′ be an element of the fraction field, i.e. g, g′ ∈ R. Then g/g′

is integral over R if and only if g/g′ is bounded near zero.
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In the previous example of X defined by x2 = y3, the function x/y (defined near the origin
on the curve) is bounded near the origin, so it is integral over the ring of germs of regular
functions. The reason it is not defined near the origin is not that it blows up. In fact, it
extends continuously, but not holomorphically, to the rest of the variety X.

43.2. Lying over and going up

We now interpret integrality in terms of the geometry of Spec. In general, for R → S a
ring-homomorphism, the induced map SpecS → SpecR need not be topologically nice; for
instance, even if S is a finitely generated R-algebra, the image of SpecS in SpecR need
not be either open or closed.3

We shall see that under conditions of integrality, more can be said.

Lying over

In general, given a morphism of algebraic varieties f : X → Y , the image of a closed subset
Z ⊂ X is far from closed. For instance, a regular function f : X → C that is a closed map
would have to be either surjective or constant (if X is connected, say). Nonetheless, under
integrality hypotheses, we can say more.

43.2.1 Proposition (Lying over) If φ : R → R′ is an integral morphism, then the in-
duced map

SpecR′ → SpecR

is a closed map; it is surjective if φ is injective.

Another way to state the last claim, without mentioning SpecR′, is the following. Assume
φ is injective and integral. Then if p ⊂ R is prime, then there exists q ⊂ R′ such that p is
the inverse image φ−1(q).

Proof. First suppose φ injective, in which case we must prove the map SpecR′ → SpecR
surjective. Let us reduce to the case of a local ring. For a prime p ∈ SpecR, we must show
that p arises as the inverse image of an element of SpecR′. So we replace R with Rp. We
get a map

φp : Rp → (R− p)−1R′

which is injective if φ is, since localization is an exact functor. Here we have localized both
R,R′ at the multiplicative subset R− p.

Note that φp is an integral extension too. This follows because integrality is preserved by
base-change. We will now prove the result for φp; in particular, we will show that there is

3It is, however, true that if R is noetherian (see Chapter 41) and S finitely generated over R, then the
image of SpecS is constructible, that is, a finite union of locally closed subsets. To be added: this
result should be added sometime.
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a prime ideal of (R − p)−1R′ that pulls back to pRp. These will imply that if we pull this
prime ideal back to R′, it will pull back to p in R. In detail, we can consider the diagram

Spec(R− p)−1R′

��

// SpecRp

��
SpecR′ // SpecR

which shows that if pRp appears in the image of the top map, then p arises as the image of
something in SpecR′. So it is sufficient for the proposition (that is, the case of φ injective)
to handle the case of R local, and p the maximal ideal.

In other words, we need to show that:

If R is a local ring, φ : R ↪→ R′ an injective integral morphism, then the
maximal ideal of R is the inverse image of something in SpecR′.

Assume R is local with maximal ideal p. We want to find a prime ideal q ⊂ R′ such
that p = φ−1(q). Since p is already maximal, it will suffice to show that p ⊂ φ−1(q). In
particular, we need to show that there is a prime ideal q such that pR′ ⊂ q. The pull-back
of this will be p.

If pR′ 6= R′, then q exists, since every proper ideal of a ring is contained in a maximal
ideal. We will in fact show

(43.2.1.1) pR′ 6= R′,

or that p does not generate the unit ideal in R′. If we prove (43.2.1.1), we will thus be able
to find our q, and we will be done.

Suppose the contrary, i.e. pR′ = R′. We will derive a contradiction using Nakayama’s
lemma (lemma 13.1.22). Right now, we cannot apply Nakayama’s lemma directly because
R′ is not a finite R-module. The idea is that we will “descend” the “evidence” that
(43.2.1.1) fails to a small subalgebra of R′, and then obtain a contradiction. To do this,
note that 1 ∈ pR′, and we can write

1 =
∑

xiφ(yi)

where xi ∈ R′, yi ∈ p. This is the “evidence” that (43.2.1.1) fails, and it involves only a
finite amount of data.

Let R′′ be the subalgebra of R′ generated by φ(R) and the xi. Then R′′ ⊂ R′ and is finitely
generated as an R-algebra, because it is generated by the xi. However, R′′ is integral
over R and thus finitely generated as an R-module, by proposition 43.1.12. This is where
integrality comes in.

So R′′ is a finitely generated R-module. Also, the expression 1 =
∑
xiφ(yi) shows that

pR′′ = R′′. However, this contradicts Nakayama’s lemma. That brings the contradiction,
showing that p cannot generate (1) in R′, and proving the surjectivity part of lying over
theorem.
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Finally, we need to show that if φ : R → R′ is any integral morphism, then SpecR′ →
SpecR is a closed map. Let X = V (I) be a closed subset of SpecR′. Then the image of
X in SpecR is the image of the map

SpecR′/I → SpecR

obtained from the morphism R → R′ → R′/I, which is integral; thus we are reduced to
showing that any integral morphism φ has closed image on the Spec. Thus we are reduced
to X = SpecR′, if we throw out R′ and replace it by R′/I.

In other words, we must prove the following statement. Let φ : R → R′ be an integral
morphism; then the image of SpecR′ in SpecR is closed. But, quotienting by kerφ and
taking the map R/ kerφ → R′, we may reduce to the case of φ injective; however, then
this follows from the surjectivity result already proved.

In general, there will be many lifts of a given prime ideal. Consider for instance the inclusion
Z ⊂ Z[i]. Then the prime ideal (5) ∈ SpecZ can be lifted either to (2 + i) ∈ SpecZ[i] or
(2− i) ∈ SpecZ[i]. These are distinct prime ideals: 2+i

2−i /∈ Z[i]. But note that any element
of Z divisible by 2 + i is automatically divisible by its conjugate 2 − i, and consequently
by their product 5 (because Z[i] is a UFD, being a euclidean domain).

Nonetheless, the different lifts are incomparable.

43.2.2 Proposition Let φ : R → R′ be an integral morphism. Then given p ∈ SpecR,
there are no inclusions among the elements q ∈ SpecR′ lifting p.

In other words, if q, q′ ∈ SpecR′ lift p, then q 6⊂ q′.

Proof. We will give a “slick” proof by various reductions. Note that the operations of
localization and quotienting only shrink the Spec’s: they do not “merge” heretofore distinct
prime ideals into one. Thus, by quotienting R by p, we may assume R is a domain and
that p = 0. Suppose we had two primes q ( q′ of R′ lifting (0) ∈ SpecR. Quotienting
R′ by q, we may assume that q = 0. We could even assume R ⊂ R′, by quotienting by
the kernel of φ. The next lemma thus completes the proof, because it shows that q′ = 0,
contradiction.

43.2.3 Lemma Let R ⊂ R′ be an inclusion of integral domains, which is an integral
morphism. If q ∈ SpecR′ is a nonzero prime ideal, then q ∩R is nonzero.

Proof. Let x ∈ q′ be nonzero. There is an equation

xn + r1x
n−1 + · · ·+ rn = 0, ri ∈ R,

that x satisfies, by assumption. Here we can assume rn 6= 0; then rn ∈ q′∩R by inspection,
though. So this intersection is nonzero.

43.2.4 Corollary Let R ⊂ R′ be an inclusion of integral domains, such that R′ is integral
over R. Then if one of R,R′ is a field, so is the other.
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Proof. Indeed, SpecR′ → SpecR is surjective by proposition 43.2.1: so if SpecR′ has one
element (i.e., R′ is a field), the same holds for SpecR (i.e., R is a field). Conversely, suppose
R a field. Then any two prime ideals in SpecR′ pull back to the same element of SpecR.
So, by proposition 43.2.2, there can be no inclusions among the prime ideals of SpecR′.
But R′ is a domain, so it must then be a field.

43.2.5 Remark (exercise) Let k be a field. Show that k[Q≥0] is integral over the poly-
nomial ring k[T ]. Although this is a huge extension, the prime ideal (T ) lifts in only one
way to Spec k[Q≥0].

43.2.6 Remark (exercise) Suppose A ⊂ B is an inclusion of rings over a field of char-
acteristic p. Suppose Bp ⊂ A, so that B/A is integral in a very strong sense. Show that
the map SpecB → SpecA is a homeomorphism.

Going up

Let R ⊂ R′ be an inclusion of rings with R′ integral over R. We saw in the lying over
theorem (proposition 43.2.1) that any prime p ∈ SpecR has a prime q ∈ SpecR′ “lying
over” p, i.e. such that R ∩ q = p. We now want to show that we can lift finite inclusions
of primes to R′.

43.2.7 Proposition (Going up) Let R ⊂ R′ be an integral inclusion of rings. Suppose
p1 ⊂ p2 ⊂ · · · ⊂ pn ⊂ R is a finite ascending chain of prime ideals in R. Then there is an
ascending chain q1 ⊂ q2 ⊂ · · · ⊂ qn in SpecR′ lifting this chain.

Moreover, q1 can be chosen arbitrarily so as to lift p1.

Proof. By induction and lying over (proposition 43.2.1), it suffices to show:

Let p1 ⊂ p2 be an inclusion of primes in SpecR. Let q1 ∈ SpecR′ lift p1.
Then there is q2 ∈ SpecR′, which satisfies the dual conditions of lifting p2 and
containing q1.

To show that this is true, we apply proposition 43.2.1 to the inclusion R/p1 ↪→ R′/q1.
There is an element of SpecR′/q1 lifting p2/p1; the corresponding element of SpecR′ will
do for q2.

43.3. Valuation rings

A valuation ring is a special type of local ring. Its distinguishing characteristic is that
divisibility is a “total preorder.” That is, two elements of the quotient field are never
incompatible under divisibility. We shall see in this section that integrality can be detected
using valuation rings only.

Geometrically, the valuation ring is something like a local piece of a smooth curve. In fact,
in algebraic geometry, a more compelling reason to study valuation rings is provided by the
valuative criteria for separatedness and properness (cf. ? or ?). One key observation about
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valuation rings that leads the last results is that any local domain can be “dominated”
by a valuation ring with the same quotient field (i.e. mapped into a valuation ring via
local homomorphism), but valuation rings are the maximal elements in this relation of
domination.

Definition

43.3.1 Definition A valuation ring is a domain R such that for every pair of elements
a, b ∈ R, either a | b or b | a.

43.3.2 Example Z is not a valuation ring. It is neither true that 2 divides 3 nor that 3
divides 2.

43.3.3 Example Z(p), which is the set of all fractions of the form a/b ∈ Q where p - b, is
a valuation ring. To check whether a/b divides a′/b′ or vice versa, one just has to check
which is divisible by the larger power of p.

43.3.4 Proposition Let R be a domain with quotient field K. Then R is a valuation ring
if and only if for every x ∈ K, either x or x−1 lies in R.

Proof. Indeed, if x = a/b, a, b ∈ R, then either a | b or b | a, so either x or x−1 ∈ R. This
condition is equivalent to R’s being a valuation ring.

Valuations

The reason for the name “valuation ring” is provided by the next definition. As we shall
see, any valuation ring comes from a “valuation.”

By definition, an ordered abelian group is an abelian group A together with a set of positive
elements A+ ⊂ A. This set is required to be closed under addition and satisfy the property
that if x ∈ A, then precisely one of the following is true: x ∈ A+, −x ∈ A+, and x = 0.
This allows one to define an ordering < on A by writing x < y if y− x ∈ A+. Given A, we
often formally adjoin an element ∞ which is bigger than every element in A.

43.3.5 Definition Let K be a field. A valuation on K is a map v : K → A ∪ {∞} for
some ordered abelian group A satisfying:

1. v(0) =∞ and v(K∗) ⊂ A.

2. For x, y ∈ K∗, v(xy) = v(x) + v(y). That is, v|K∗ is a homomorphism.

3. For x, y ∈ K, v(x+ y) ≥ min(v(x), v(y)).

Suppose that K is a field and v : K → A ∪ {∞} is a valuation (i.e. v(0) = ∞). Define
R = {x ∈ K : v(x) ≥ 0}.

43.3.6 Proposition R as just defined is a valuation ring.
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Proof. First, we prove that R is a ring. R is closed under addition and multiplication by
the two conditions

v(xy) = v(x) + v(y)

and
v(x+ y) ≥ min v(x), v(y),

so if x, y ∈ R, then x+ y, xy have nonnegative valuations.

Note that 0 ∈ R because v(0) = ∞. Also v(1) = 0 since v : K∗ → A is a homomorphism.
So 1 ∈ R too. Finally, −1 ∈ R because v(−1) = 0 since A is totally ordered. It follows
that R is also a group.

Let us now show that R is a valuation ring. If x ∈ K∗, either v(x) ≥ 0 or v(x−1) ≥ 0 since
A is totally ordered.4 So either x, x−1 ∈ R.

In particular, the set of elements with nonnegative valuation is a valuation ring. The
converse also holds. Whenever you have a valuation ring, it comes about in this manner.

43.3.7 Proposition Let R be a valuation ring with quotient field K. There is an ordered
abelian group A and a valuation v : K∗ → A such that R is the set of elements with
nonnegative valuation.

Proof. First, we construct A. In fact, it is the quotient of K∗ by the subgroup of units
R∗ of R. We define an ordering by saying that x ≤ y if y/x ∈ R—this doesn’t depend on
the representatives in K∗ chosen. Note that either x ≤ y or y ≤ x must hold, since R is a
valuation ring. The combination of x ≤ y and y ≤ x implies that x, y are equivalent classes.
The nonnegative elements in this group are those whose representatives in K∗ belong to
R.

It is easy to see that K∗/R∗ in this way is a totally ordered abelian group with the image
of 1 as the unit. The reduction map K∗ → K∗/R∗ defines a valuation whose corresponding
ring is just R. We have omitted some details; for instance, it should be checked that the
valuation of x+ y is at least the minimum of v(x), v(y).

To summarize:

Every valuation ring R determines a valuation v from the fraction field of R
into A ∪ {∞} for A a totally ordered abelian group such that R is just the
set of elements of K with nonnegative valuation. As long as we require that
v : K∗ → A is surjective, then A is uniquely determined as well.

43.3.8 Definition A valuation ring R is discrete if we can choose A to be Z.

43.3.9 Example Z(p) is a discrete valuation ring.

The notion of a valuation ring is a useful one.

4Otherwise 0 = v(x) + v(x−1) < 0, contradiction.
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General remarks

Let R be a commutative ring. Then SpecR is the set of primes of R, equipped with a certain
topology. The space SpecR is almost never Hausdorff. It is almost always a bad idea to
apply the familiar ideas from elementary topology (e.g. the fundamental group) to SpecR.
Nonetheless, it has some other nice features that substitute for its non-Hausdorffness.

For instance, if R = C[x, y], then SpecR corresponds to C2 with some additional nonclosed
points. The injection of C2 with its usual topology into SpecR is continuous. While in
SpecR you don’t want to think of continuous paths, you can in C2.

Suppose you had two points x, y ∈ C2 and their images in SpecR. Algebraically, you can
still think about algebraic curves passing through x, y. This is a subset of x, y defined by
a single polynomial equation. This curve will have what’s called a “generic point,” since
the ideal generated by this curve will be a prime ideal. The closure of this generic point
will be precisely this algebraic curve—including x, y.

43.3.10 Remark If p, p′ ∈ SpecR, then

p′ ∈ {p}

iff
p′ ⊃ p.

Why is this? Well, the closure of {p} is just V (p), since this is the smallest closed subset
of SpecR containing p.

The point of this discussion is that instead of paths, one can transmit information from
point to point in SpecR by having one point be in a closure of another. However, we will
show that this relation is contained by the theory of valuation rings.

43.3.11 Theorem Let R be a domain containing a prime ideal p. Let K be the fraction
field of R.

Then there is a valuation v on K defining a valuation ring R′ ⊂ K such that

1. R ⊂ R′.

2. p = {x ∈ R : v(x) > 0}.

Let us motivate this by the remark:

43.3.12 Remark A valuation ring is automatically a local ring. A local ring is a ring
where either x, 1 − x is invertible for all x in the ring. Let us show that this is true for a
valuation ring.

If x belongs to a valuation ring R with valuation v, it is invertible if v(x) = 0. So if x, 1−x
were both noninvertible, then both would have positive valuation. However, that would
imply that v(1) ≥ min v(x), v(1− x) is positive, contradiction.
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If R′ is any valuation ring (say defined by a valuation v), then R′ is local with
maximal ideal consisting of elements with positive valuation.

The theorem above says that there’s a good supply of valuation rings. In particular, if
R is any domain, p ⊂ R a prime ideal, then we can choose a valuation ring R′ ⊃ R
such that p is the intersection of the maximal ideal of R′ intersected with R. So the map
SpecR′ → SpecR contains p.

Proof. Without loss of generality, replace R by Rp, which is a local ring with maximal ideal
pRp. The maximal ideal intersects R only in p.

So, we can assume without loss of generality that

1. R is local.

2. p is maximal.

Let P be the collection of all subrings R′ ⊂ K such that R′ ⊃ R but pR′ 6= R′. Then P is
a poset under inclusion. The poset is nonempty, since R ∈ P . Every totally ordered chain
in P has an upper bound. If you have a totally ordered subring of elements in P , then you
can take the union. We invoke:

43.3.13 Lemma Let Rα be a chain in P and R′ =
⋃
Rα. Then R′ ∈ P .

Proof. Indeed, it is easy to see that this is a subalgebra of K containing R. The thing to
observe is that

pR′ =
⋃
α

pRα;

since by assumption, 1 /∈ pRα (because each Rα ∈ P ), 1 /∈ pR′. In particular, R′ /∈ P .

By the lemma, Zorn’s lemma to the poset P . In particular, P has a maximal element R′.
By construction, R′ is some subalgebra of K and pR′ 6= R′. Also, R′ is maximal with
respect to these properties.

We show first that R′ is local, with maximal ideal m satisfying

m ∩R = p.

The second part is evident from locality of R′, since m must contain the proper ideal pR′,
and p ⊂ R is a maximal ideal.

Suppose that x ∈ R′; we show that either x, 1− x belongs to R′∗ (i.e. is invertible). Take
the ring R′[x−1]. If x is noninvertible, this properly contains R′. By maximality, it follows
that pR′[x−1] = R′[x−1].

And we’re out of time. We’ll pick this up on Monday.
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Let us set a goal.

First, recall the notion introduced last time. A valuation ring is a domain R where for
all x in the fraction field of R, either x or x−1 lies in R. We saw that if R is a valuation
ring, then R is local. That is, there is a unique maximal ideal m ⊂ R, automatically
prime. Moreover, the zero ideal (0) is prime, as R is a domain. So if you look at the
spectrum SpecR of a valuation ring R, there is a unique closed point m, and a unique
generic point (0). There might be some other prime ideals in SpecR; this depends on
where the additional valuation lives.

43.3.14 Example Suppose the valuation defining the valuation ring R takes values in R.
Then the only primes are m and zero.

Let R now be any ring, with SpecR containing prime ideals p ⊂ q. In particular, q lies in
the closure of p. As we will see, this implies that there is a map

φ : R→ R′

such that p = φ−1(0) and q = φ−1(m), where m is the maximal ideal of R′. This statement
says that the relation of closure in SpecR is always controlled by valuation rings. In yet
another phrasing, in the map

SpecR′ → SpecR

the closed point goes to q and the generic point to p. This is our eventual goal.

To carry out this goal, we need some more elementary facts. Let us discuss things that
don’t have any obvious relation to it.

Back to the goal

Now we return to the goal of the lecture. Again, R was any ring, and we had primes
p ⊂ q ⊂ R. We wanted a valuation ring R′ and a map φ : R → R′ such that zero pulled
back to p and the maximal ideal pulled back to q.

What does it mean for p to be the inverse image of (0) ⊂ R′? This means that p = kerφ.
So we get an injection

R/p� R′.

We will let R′ be a subring of the quotient field K of the domain R/p. Of course, this
subring will contain R/p.

In this case, we will get a map R→ R′ such that the pull-back of zero is p. What we want,
further, to be true is that R′ is a valuation ring and the pull-back of the maximal ideal is
q.

This is starting to look at the problem we discussed last time. Namely, let’s throw out R,
and replace it with R/p. Moreover, we can replace R with Rq and assume that R is local
with maximal ideal q. What we need to show is that a valuation ring R′ contained in the
fraction field of R, containing R, such that the intersection of the maximal ideal of R′ with
R is equal to q ⊂ R. If we do this, then we will have accomplished our goal.
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43.3.15 Lemma Let R be a local domain. Then there is a valuation subring R′ of the
quotient field of R that dominates R, i.e .the map R→ R′ is a local homomorphism.

Let’s find R′ now.

Choose R′ maximal such that qR′ 6= R′. Such a ring exists, by Zorn’s lemma. We gave
this argument at the end last time.

43.3.16 Lemma R′ as described is local.

Proof. Look at qR′ ⊂ R′; it is a proper subset, too, by assumption. In particular, qR′ is
contained in some maximal ideal m ⊂ R′. Replace R′ by R′′ = R′m. Note that

R′ ⊂ R′′

and
qR′′ 6= R′′

because mR′′ 6= R′′. But R′ is maximal, so R′ = R′′, and R′′ is a local ring. So R′ is a local
ring.

Let m be the maximal ideal of R′. Then m ⊃ qR, so m ∩ R = q. All that is left to prove
now is that R′ is a valuation ring.

43.3.17 Lemma R′ is integrally closed.

Proof. Let R′′ be its integral closure. Then mR′′ 6= R′′ by lying over, since m (the maximal
ideal of R′) lifts up to R′′. So R′′ satisfies

qR′′ 6= R′′

and by maximality, we have R′′ = R′.

To summarize, we know that R′ is a local, integrally closed subring of the quotient field of
R, such that the maximal ideal of R′ pulls back to q in R. All we now need is:

43.3.18 Lemma R′ is a valuation ring.

Proof. Let x lie in the fraction field. We must show that either x or x−1 ∈ R′. Say x /∈ R′.
This means by maximality of R′ that R′′ = R′[x] satisfies

qR′′ = R′′.

In particular, we can write

1 =
∑

qix
i, qi ∈ qR′ ⊂ R′.

This implies that

(1− q0) +
∑
i>0

−qixi = 0.
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But 1− q0 is invertible in R′, since R′ is local. We can divide by the highest power of x:

x−N +
∑
i>0

−qi
1− q0

x−N+i = 0.

In particular, 1/x is integral over R′; this implies that 1/x ∈ R′ since R′ is integrally closed
and q0 is a nonunit. So R′ is a valuation ring.

We can state the result formally.

43.3.19 Theorem Let R be a ring, p ⊂ q prime ideals. Then there is a homomorphism
φ : R→ R′ into a valuation ring R′ with maximal ideal m such that

φ−1(0) = p

and
φ−1(m) = q.

There is a related fact which we now state.

43.3.20 Theorem Let R be any domain. Then the integral closure of R in the quotient
field K is the intersection ⋂

Rα

of all valuation rings Rα ⊂ K containing R.

So an element of the quotient field is integral over R if and only if its valuation is nonneg-
ative at every valuation which is nonnegative on R.

Proof. The ⊂ argument is easy, because one can check that a valuation ring is integrally
closed. (Exercise.) The interesting direction is to assume that v(x) ≥ 0 for all v nonnegative
on R.

Let us suppose x is nonintegral. Suppose R′ = R[1/x] and I be the ideal (x−1) ⊂ R′.
There are two cases:

1. I = R′. Then in the ring R′, x−1 is invertible. In particular, x−1P (x−1) = 1.
Multiplying by a high power of x shows that x is integral over R. Contradiction.

2. Suppose I ( R′. Then I is contained in a maximal ideal q ⊂ R′. There is a valuation
subring R′′ ⊂ K , containing R′, such that the corresponding valuation is positive on
q. In particular, this valuation is positive on x−1, so it is negative on x, contradiction.

So the integral closure has this nice characterization via valuation rings. In some sense,
the proof that Z is integrally closed has the property that every integrally closed ring is
integrally closed for that reason: it’s the common nonnegative locus for some valuations.
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43.4. The Hilbert Nullstellensatz

The Nullstellensatz is the basic algebraic fact, which we have invoked in the past to jus-
tify various examples, that connects the idea of the Spec of a ring to classical algebraic
geometry.

Statement and initial proof of the Nullstellensatz

There are several ways in which the Nullstellensatz can be stated. Let us start with the
following very concrete version.

43.4.1 Theorem All maximal ideals in the polynomial ring R = C[x1, . . . , xn] come from
points in Cn. In other words, if m ⊂ R is maximal, then there exist a1, . . . , an ∈ C such
that m = (x1 − a1, . . . , xn − an).

The maximal spectrum of R = C[x1, . . . , xn] is thus identified with Cn.

We shall now reduce Theorem 43.4.1 to an easier claim. Let m ⊂ R be a maximal ideal.
Then there is a map

C→ R→ R/m

where R/m is thus a finitely generated C-algebra, as R is. The ring R/m is also a field by
maximality.

We would like to show that R/m is a finitely generated C-vector space. This would imply
that R/m is integral over C, and there are no proper algebraic extensions of C. Thus,
if we prove this, it will follow that the map C → R/m is an isomorphism. If ai ∈ C
(1 ≤ i ≤ n) is the image of xi in R/m = C, it will follow that (x1 − a1, . . . , xn − an) ⊂ m,
so (x1 − a1, . . . , xn − an) = m.

Consequently, the Nullstellensatz in this form would follow from the next claim:

43.4.2 Proposition Let k be a field, L/k an extension of fields. Suppose L is a finitely
generated k-algebra. Then L is a finite k-vector space.

This is what we will prove.

We start with an easy proof in the special case:

43.4.3 Lemma Assume k is uncountable (e.g. C, the original case of interest). Then the
above proposition is true.

Proof. Since L is a finitely generated k-algebra, it suffices to show that L/k is algebraic. If
not, there exists x ∈ L which isn’t algebraic over k. So x satisfies no nontrivial polynomials.
I claim now that the uncountably many elements 1

x−λ , λ ∈ K are linearly independent over
K. This will be a contradiction as L is a finitely generated k-algebra, hence at most
countably dimensional over k. (Note that the polynomial ring is countably dimensional
over k, and L is a quotient.)
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So let’s prove this. Suppose not. Then there is a nontrivial linear dependence∑ ci
x− λi

= 0, ci, λi ∈ K.

Here the λj are all distinct to make this nontrivial. Clearing denominators, we find∑
i

ci
∏
j 6=i

(x− λj) = 0.

Without loss of generality, c1 6= 0. This equality was in the field L. But x is transcendental
over k. So we can think of this as a polynomial ring relation. Since we can think of this as
a relation in the polynomial ring, we see that doing so, all but the i = 1 term in the sum is
divisible by x−λ1 as a polynomial. It follows that, as polynomials in the indeterminate x,

x− λ1 | c1

∏
j 6=1

(x− λj).

This is a contradiction since all the λi are distinct.

This is kind of a strange proof, as it exploits the fact that C is uncountable. This shouldn’t
be relevant.

The normalization lemma

Let’s now give a more algebraic proof. We shall exploit the following highly useful fact in
commutative algebra:

43.4.4 Theorem (Noether normalization lemma) Let k be a field, and R = k[x1, . . . , xn]/p
be a finitely generated domain over k (where p is a prime ideal in the polynomial ring).

Then there exists a polynomial subalgebra k[y1, . . . , ym] ⊂ R such that R is integral over
k[y1, . . . , ym].

Later we will see that m is the dimension of R.

There is a geometric picture here. Then SpecR is some irreducible algebraic variety in kn

(plus some additional points), with a smaller dimension than n if p 6= 0. Then there exists
a finite map to km. In particular, we can map surjectively SpecR→ km which is integral.
The fibers are in fact finite, because integrality implies finite fibers. (We have not actually
proved this yet.)

How do we actually find such a finite projection? In fact, in characteristic zero, we just
take a vector space projection Cn → Cm. For a “generic” projection onto a subspace of
the appropriate dimension, the projection will will do as our finite map. In characteristic
p, this may not work.
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Proof. First, note that m is uniquely determined as the transcendence degree of the quo-
tient field of R over k.

Among the variables x1, . . . , xn ∈ R (which we think of as in R by an abuse of notation),
choose a maximal subset which is algebraically independent. This subset has no nontrivial
polynomial relations. In particular, the ring generated by that subset is just the polynomial
ring on that subset. We can permute these variables and assume that

{x1, . . . , xm}

is the maximal subset. In particular, R contains the polynomial ring k[x1, . . . , xm] and is
generated by the rest of the variables. The rest of the variables are not adjoined freely
though.

The strategy is as follows. We will implement finitely many changes of variable so that R
becomes integral over k[x1, . . . , xm].

The essential case is where m = n− 1. Let us handle this. So we have

R0 = k[x1, . . . , xm] ⊂ R = R0[xn]/p.

Since xn is not algebraically independent, there is a nonzero polynomial f(x1, . . . , xm, xn) ∈
p.

We want f to be monic in xn. This will buy us integrality. A priori, this might not be true.
We will modify the coordinate system to arrange that, though. Choose N � 0. Define for
1 ≤ i ≤ m,

x′i = xi + xN
i

n .

Then the equation becomes:

0 = f(x1, . . . , xm, xn) = f(
{
x′i − xN

i

n

}
, xn).

Now f(x1, . . . , xn, xn+1) looks like some sum∑
λa1...bx

a1
1 . . . xamm xbn, λa1...b ∈ k.

But N is really really big. Let us expand this expression in the x′i and pay attention to
the largest power of xn we see. We find that

f(
{
x′i − xNin

}
, xn)

has the largest power of xn precisely where, in the expression for f , am is maximized first,
then am−1, and so on. The largest exponent would have the form

xamN
m+am−1Nm−1+···+b

n .

We can’t, however, get any exponents of xn in the expression f(
{
x′i − xNin

}
, xn) other

than these. If N is super large, then all these exponents will be different from each other.
In particular, each power of xn appears precisely once in the expansion of f . We see in
particular that xn is integral over x′1, . . . , x

′
n. Thus each xi is as well.

So we find
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R is integral over k[x′1, . . . , x
′
m].

We have thus proved the normalization lemma in the codimension one case. What about
the general case? We repeat this. Say we have

k[x1, . . . , xm] ⊂ R.

Let R′ be the subring of R generated by x1, . . . , xm, xm+1. The argument we just gave
implies that we can choose x′1, . . . , x

′
m such that R′ is integral over k[x′1, . . . , x

′
m], and the

x′i are algebraically independent. We know in fact that R′ = k[x′1, . . . , x
′
m, xm+1].

Let us try repeating the argument while thinking about xm+2. LetR′′ = k[x′1, . . . , x
′
m, xm+2]

modulo whatever relations that xm+2 has to satisfy. So this is a subring of R. The same ar-
gument shows that we can change variables such that x′′1, . . . , x

′′
m are algebraically indepen-

dent and R′′ is integral over k[x′′1, . . . , x
′′
m]. We have furthermore that k[x′′1, . . . , x

′′
m, xm+2] =

R′′.

Having done this, let us give the argument where m = n− 2. You will then see how to do
the general case. Then I claim that:

R is integral over k[x′′1, . . . , x
′′
m].

For this, we need to check that xm+1, xm+2 are integral (because these together with the
x′′i generate R′′[xm+2][xm+2] = R. But xm+2 is integral over this by construction. The
integral closure of k[x′′1, . . . , x

′′
m] in R thus contains

k[x′′1, . . . , x
′′
m, xm+2] = R′′.

However, R′′ contains the elements x′1, . . . , x
′
m. But by construction, xm+1 is integral over

the x′1, . . . , x
′
m. The integral closure of k[x′′1, . . . , x

′′
m] must contain xm+2. This completes

the proof in the case m = n− 2. The general case is similar; we just make several changes
of variables, successively.

Back to the Nullstellensatz

Consider a finitely generated k-algebra R which is a field. We need to show that R is
a finite k-module. This will prove the proposition. Well, note that R is integral over a
polynomial ring k[x1, . . . , xm] for some m. If m > 0, then this polynomial ring has more
than one prime. For instance, (0) and (x1, . . . , xm). But these must lift to primes in R.
Indeed, we have seen that whenever you have an integral extension, the induced map on
spectra is surjective. So

SpecR→ Spec k[x1, . . . , xm]

is surjective. If R is a field, this means Spec k[x1, . . . , xm] has one point and m = 0. So R
is integral over k, thus algebraic. This implies that R is finite as it is finitely generated.
This proves one version of the Nullstellensatz.

Another version of the Nullstellensatz, which is more precise, says:
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43.4.5 Theorem Let I ⊂ C[x1, . . . , xn]. Let V ⊂ Cn be the subset of Cn defined by the
ideal I (i.e. the zero locus of I).

Then Rad(I) is precisely the collection of f such that f |V = 0. In particular,

Rad(I) =
⋂

m⊃I,m maximal

m.

In particular, there is a bijection between radical ideals and algebraic subsets of Cn.

The last form of the theorem, which follows from the expression of maximal ideals in the
polynomial ring, is very similar to the result

Rad(I) =
⋂

p⊃I,p prime

p,

true in any commutative ring. However, this general result is not necessarily true.

43.4.6 Example The intersection of all primes in a DVR is zero, but the intersection of
all maximals is nonzero.

Proof of theorem 43.4.5. It now suffices to show that for every p ⊂ C[x1, . . . , xn] prime, we
have

p =
⋂

m⊃I maximal

m

since every radical ideal is an intersection of primes.

Let R = C[x1, . . . , xn]/p. This is a domain finitely generated over C. We want to show that
the intersection of maximal ideals in R is zero. This is equivalent to the above displayed
equality.

So fix f ∈ R−{0}. Let R′ be the localization R′ = Rf . Then R′ is also an integral domain,
finitely generated over C. R′ has a maximal ideal m (which a priori could be zero). If we
look at the map R′ → R′/m, we get a map into a field finitely generated over C, which is
thus C. The composite map

R→ R′ → R′/m

is just given by an n-tuple of complex numbers, i.e. to a point in Cn which is even in V as
it is a map out of R. This corresponds to a maximal ideal in R. This maximal ideal does
not contain f by construction.

43.4.7 Remark (exercise) Prove the following result, known as “Zariski’s lemma” (which
easily implies the Nullstellensatz): if k is a field, k′ a field extension of k which is a finitely
generated k-algebra, then k′ is finite algebraic over k. Use the following argument of Mc-
Cabe (in ?):

1. k′ contains a subring S of the form S = k[x1, . . . , xt] where the x1, . . . , xt are alge-
braically independent over k, and k′ is algebraic over the quotient field of S (which
is a polynomial ring).

2. If k′ is not algebraic over k, then S 6= k is not a field.
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3. Show that there is y ∈ S such that k′ is integral over Sy. Deduce that Sy is a field.

4. Since Spec(Sy) = {0}, argue that y lies in every non-zero prime ideal of SpecS.
Conclude that 1 + y ∈ k, and S is a field—contradiction.

A little affine algebraic geometry

In what follows, let k be algebraically closed, and let A be a finitely generated k-algebra.
Recall that SpecmA denotes the set of maximal ideals in A. Consider the natural k-algebra
structure on Funct(SpecmA, k). We have a map

A→ Funct(SpecmA, k)

which comes from the Weak Nullstellensatz as follows. Maximal ideals m ⊂ A are in bi-
jection with maps ϕm : A → k where ker(ϕm) = m, so we define a 7−→ [m 7−→ ϕm(a)]. If
A is reduced, then this map is injective because if a ∈ A maps to the zero function, then
a ∈ ∩m → a is nilpotent → a = 0.

43.4.8 Definition A function f ∈ Funct(SpecmA, k) is called algebraic if it is in the
image of A under the above map. (Alternate words for this are polynomial and regular.)

Let A and B be finitely generated k-algebras and φ : A→ B a homomorphism. This yields
a map Φ : SpecmB → SpecmA given by taking pre-images.

43.4.9 Definition A map Φ : SpecmB → SpecmA is called algebraic if it comes from a
homomorphism φ as above.

To demonstrate how these definitions relate to one another we have the following proposi-
tion.

43.4.10 Proposition A map Φ : SpecmB → SpecmA is algebraic if and only if for
any algebraic function f ∈ Funct(SpecmA, k), the pullback f ◦ Φ ∈ Funct(SpecmB, k) is
algebraic.

Proof. Suppose that Φ is algebraic. It suffices to check that the following diagram is
commutative:

Funct(SpecmA, k)
−◦Φ // Funct(SpecmB, k)

A

OO

φ
// B

OO

where φ : A→ B is the map that gives rise to Φ.

264



43. Integrality and valuation rings 43.5. Serre’s criterion and its variants

[⇐] Suppose that for all algebraic functions f ∈ Funct(SpecmA, k), the pull-back f ◦ Φ
is algebraic. Then we have an induced map, obtained by chasing the diagram counter-
clockwise:

Funct(SpecmA, k)
−◦Φ // Funct(SpecmB, k)

A

OO

φ
// B

OO

From φ, we can construct the map Φ′ : SpecmB → SpecmA given by Φ′(m) = φ−1(m).
I claim that Φ = Φ′. If not, then for some m ∈ SpecmB we have Φ(m) 6= Φ′(m). By
definition, for all algebraic functions f ∈ Funct(SpecmA, k), f ◦ Φ = f ◦ Φ′ so to arrive at
a contradiction we show the following lemma:
Given any two distinct points in SpecmA = V (I) ⊂ kn, there exists some algebraic f that
separates them. This is trivial when we realize that any polynomial function is algebraic,
and such polynomials separate points.

43.5. Serre’s criterion and its variants

We are going to now prove a useful criterion for a noetherian ring to be a product of normal
domains, due to Serre: it states that a (noetherian) ring is normal if and only if most of
the localizations at prime ideals are discrete valuation rings (this corresponds to the ring
being regular in codimension one, though we have not defined regularity yet) and a more
technical condition that we will later interpret in terms of depth. One advantage of this
criterion is that it does not require the ring to be a product of domains a priori.

Reducedness

There is a “baby” version of Serre’s criterion for testing whether a ring is reduced, which
we star with.

Recall:

43.5.1 Definition A ring R is reduced if it has no nonzero nilpotents.

43.5.2 Proposition If R is noetherian, then R is reduced if and only if it satisfies the
following conditions:

1. Every associated prime of R is minimal (no embedded primes).

2. If p is minimal, then Rp is a field.

Proof. First, assume R reduced. What can we say? Say p is a minimal prime; then Rp has
precisely one prime ideal (namely, m = pRp). It is in fact a local artinian ring, though we
don’t need that fact. The radical of Rp is just m. But R was reduced, so Rp was reduced;
it’s an easy argument that localization preserves reducedness. So m = 0. The fact that 0
is a maximal ideal in Rp says that it is a field.
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On the other hand, we still have to do part 1. R is reduced, so Rad(R) =
⋂

p∈SpecR p = 0.
In particular, ⋂

p minimal

p = 0.

The map

R→
∏

p minimal

R/p

is injective. The associated primes of the product, however, are just the minimal primes.
So Ass(R) can contain only minimal primes.

That’s one direction of the proposition. Let us prove the converse now. Assume R satisfies
the two conditions listed. In other words, Ass(R) consists of minimal primes, and each Rp

for p ∈ Ass(R) is a field. We would like to show that R is reduced. Primary decomposition
tells us that there is an injection

R ↪→
∏

pi minimal

Mi, Mi pi − primary.

In this case, each Mi is primary with respect to a minimal prime. We have a map

R ↪→
∏

Mi →
∏

(Mi)pi ,

which is injective, because when you localize a primary module at its associated prime,
you don’t kill anything by definition of primariness. Since we can draw a diagram

R //

��

∏
Mi

��∏
Rpi

//
∏

(Mi)pi

and the map R →
∏

(Mi)pi is injective, the downward arrow on the right injective. Thus
R can be embedded in a product of the fields

∏
Rpi , so is reduced.

This proof actually shows:

43.5.3 Proposition (Scholism) A noetherian ring R is reduced iff it injects into a prod-
uct of fields. We can take the fields to be the localizations at the minimal primes.

43.5.4 Example Let R = k[X] be the coordinate ring of a variety X in Cn. Assume X is
reduced. Then MaxSpecR is a union of irreducible components Xi, which are the closures
of the minimal primes of R. The fields you get by localizing at minimal primes depend
only on the irreducible components, and in fact are the rings of meromorphic functions on
Xi. Indeed, we have a map

k[X]→
∏

k[Xi]→
∏

k(Xi).

If we don’t assume that R is radical, this is not true.
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There is a stronger condition than being reduced we could impose. We could say:

43.5.5 Proposition If R is a noetherian ring, then R is a domain iff

1. R is reduced.

2. R has a unique minimal prime.

Proof. One direction is obvious. A domain is reduced and (0) is the minimal prime.

The other direction is proved as follows. Assume 1 and 2. Let p be the unique minimal
prime of R. Then Rad(R) = 0 = p as every prime ideal contains p. As (0) is a prime ideal,
R is a domain.

We close by making some remarks about this embedding of R into a product of fields.

43.5.6 Definition Let R be any ring, not necessarily a domain. Let K(R) be the localized
ring S−1R where S is the multiplicatively closed set of nonzerodivisors in R. K(R) is called
the total ring of fractions of R.

When R is a field, this is the quotient field.

First, to get a feeling for this, we show:

43.5.7 Proposition Let R be noetherian. The set of nonzerodivisors S can be described
by S = R−

⋃
p∈Ass(R) p.

Proof. If x ∈ p ∈ Ass(R), then x must kill something in R as it is in an associated prime.
So x is a zerodivisor.

Conversely, suppose x is a zerodivisor, say xy = 0 for some y ∈ R − {0}. In particular,
x ∈ Ann(y). We have an injection R/Ann(y) ↪→ R sending 1 to y. But R/Ann(y) is
nonzero, so it has an associated prime p of R/Ann(y), which contains Ann(y) and thus x.
But Ass(R/Ann(y)) ⊂ Ass(R). So x is contained in a prime in Ass(R).

Assume now that R is reduced. Then K(R) = S−1R where S is the complement of the
union of the minimal primes. At least, we can claim:

43.5.8 Proposition Let R be reduced and noetherian. Then K(R) =
∏

pi minimalRpi.

So K(R) is the product of fields into which R embeds.

We now continue the discussion begun last time. Let R be noetherian and M a finitely
generated R-module. We would like to understand very rough features of M . We can
embed M into a larger R-module. Here are two possible approaches.

1. S−1M , where S is a large multiplicatively closed subset of M . Let us take S to be
the set of all a ∈ R such that M

a→ M is injective, i.e. a is not a zerodivisor on M .
Then the map

M → S−1M

is an injection. Note that S is the complement of the union of Ass(R).
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2. Another approach would be to use a primary decomposition

M ↪→
∏

Mi,

where each Mi is pi-primary for some prime pi (and these primes range over Ass(M)).
In this case, it is clear that anything not in each pi acts injectively. So we can draw
a commutative diagram

M

��

//
∏
Mi

��∏
Mpi

//
∏

(Mi)pi

.

The map going right and down is injective. It follows that M injects into the product
of its localizations at associated primes.

The claim is that these constructions agree if M has no embedded primes. I.e., if there
are no nontrivial containments among the associated primes of M , then S−1M (for S =
R−

⋃
p∈Ass(M) p) is just

∏
Mp. To see this, note that any element of S must act invertibly

on
∏
Mp. We thus see that there is always a map

S−1M →
∏

p∈Ass(M)

Mp.

43.5.9 Proposition This is an isomorphism if M has no embedded primes.

Proof. Let us go through a series of reductions. Let I = Ann(M) = {a : aM = 0}. Without
loss of generality, we can replace R by R/I. This plays nice with the associated primes.

The assumption is now that Ass(M) consists of the minimal primes of R.

Without loss of generality, we can next replace R by S−1R and M by S−1M , because that
doesn’t affect the conclusion; localization plays nice with associated primes.

Now, however, R is artinian: i.e., all primes of R are minimal (or maximal). Why is this?
Let R be any noetherian ring and S = R−

⋃
p minimal p. Then I claim that S−1R is artinian.

We’ll prove this in a moment.

So R is artinian, hence a product
∏
Ri where each Ri is local artinian. Without loss of

generality, we can replace R by Ri by taking products. The condition we are trying to
prove is now that

S−1M →Mm

for m ⊂ R the maximal ideal. But S is the complement of the union of the minimal primes,
so it is R−m as R has one minimal (and maximal) ideal. This is obviously an isomorphism:
indeed, both are M .

To be added: proof of artianness

43.5.10 Corollary Let R be a noetherian ring with no embedded primes (i.e. Ass(R)
consists of minimal primes). Then K(R) =

∏
pi minimalRpi.

If R is reduced, we get the statement made last time: there are no embedded primes, and
K(R) is a product of fields.
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The image of M → S−1M

Let’s ask now the following question. Let R be a noetherian ring, M a finitely generated
R-module, and S the set of nonzerodivisors on M , i.e. R−

⋃
p∈Ass(M) p. We have seen that

there is an imbedding
φ : M ↪→ S−1M.

What is the image? Given x ∈ S−1M , when does it belong to the imbedding above.

To answer such a question, it suffices to check locally. In particular:

43.5.11 Proposition x belongs to the image of M in S−1M iff for every p ∈ SpecR, the
image of x in (S−1M)p lies inside Mp.

This isn’t all that interesting. However, it turns out that you can check this at a smaller
set of primes.

43.5.12 Proposition In fact, it suffices to show that x is in the image of φp for every
p ∈ Ass(M/sM) where s ∈ S.

This is a little opaque; soon we’ll see what it actually means. The proof is very simple.

Proof. Remember that x ∈ S−1M . In particular, we can write x = y/s where y ∈M, s ∈ S.
What we’d like to prove that x ∈ M , or equivalently that y ∈ sM .5 In particular, we
want to know that y maps to zero in M/sM . If not, there exists an associated prime
p ∈ Ass(M/sM) such that y does not get killed in (M/sM)p. We have assumed, however,
for every associated prime p ∈ Ass(M), x ∈ (S−1M)p lies in the image of Mp. This states
that the image of y in this quotient (M/sM)p is zero, or that y is divisible by s in this
localization.

The case we actually care about is the following:

Take R as a noetherian domain and M = R. Then S = R − {0} and S−1M is just the
fraction field K(R). The goal is to describe R as a subset of K(R). What we have proven
is that R is the intersection in the fraction field

R =
⋂

p∈Ass(R/s),s∈R−0

Rp.

So to check that something belongs to R, we just have to check that in a certain set of
localizations.

Let us state this as a result:

43.5.13 Theorem If R is a noetherian domain

R =
⋂

p∈Ass(R/s),s∈R−0

Rp

5In general, this would be equivalent to ty ∈ tsM for some t ∈ S; but S consists of nonzerodivisors on M .
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Serre’s criterion

We can now state a result.

43.5.14 Theorem (Serre) Let R be a noetherian domain. Then R is integrally closed iff
it satisfies

1. For any p ⊂ R of height one, Rp is a DVR.

2. For any s 6= 0, R/s has no embedded primes (i.e. all the associated primes of R/s
are height one).

Here is the non-preliminary version of the Krull theorem.

43.5.15 Theorem (Algebraic Hartogs) Let R be a noetherian integrally closed ring.
Then

R =
⋂

p height one

Rp,

where each Rp is a DVR.

Proof. Now evident from the earlier result theorem 43.5.13 and Serre’s criterion.

Earlier in the class, we proved that a domain was integrally closed if and only if it could
be described as an intersection of valuation rings. We have now shown that when R is
noetherian, we can take discrete valuation rings.

43.5.16 Remark In algebraic geometry, say R = C[x1, . . . , xn]/I. Its maximal spectrum
is a subset of Cn. If I is prime, and R a domain, this variety is irreducible. We are trying
to describe R inside its field of fractions.

The field of fractions are like the “meromorphic functions”; R is like the holomorphic
functions. Geometrically, this states to check that a meromorphic function is holomorphic,
you can just check this by computing the “poleness” along each codimension one subvariety.
If the function doesn’t blow up on each of the codimension one subvarieties, andR is normal,
then you can extend it globally.

This is an algebraic version of Hartog’s theorem: this states that a holomorphic function
on C2 − (0, 0) extends over the origin, because this has codimension > 1.

All the obstructions of extending a function to all of SpecR are in codimension one.

Now, we prove Serre’s criterion.

Proof. Let us first prove that R is integrally closed if 1 and 2 occur. We know that

R =
⋂

p∈Ass(R/x),x 6=0

Rp;

by condition 1, each such p is of height one, and Rp is a DVR. So R is the intersection of
DVRs and thus integrally closed.

The hard part is going in the other direction. Assume R is integrally closed. We want to
prove the two conditions. In R, consider the following conditions on a prime ideal p:
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1. p is an associated prime of R/x for some x 6= 0.

2. p is height one.

3. pp is principal in Rp.

First, 3 implies 2 implies 1. 3 implies that p contains an element x which generates p after
localizing. It follows that there can be no prime between (x) and p because that would be
preserved under localization. Similarly, 2 implies 1 is easy. If p is minimal over (x), then
p ∈ AssR/(x) since the minimal primes in the support are always associated.

We are trying to prove the inverse implications. In that case, the claims of the theorem
will be proved. We have to show that 1 implies 3. This is an argument we really saw last
time, but let’s see it again. Say p ∈ Ass(R/x). We can replace R by Rp so that we can
assume that p is maximal. We want to show that p is generated by one element.

What does the condition p ∈ Ass(R/x) buy us? It tells us that there is y ∈ R/x such that
Ann(y) = p. In particular, there is y ∈ R such that py ⊂ (x) and y /∈ (x). We have the
element y/x ∈ K(R) which sends p into R. That is,

(y/x)p ⊂ R.

There are two cases to consider, as in last time:

1. (y/x)p = R. Then p = R(x/y) so p is principal.

2. (y/x)p 6= R. In particular, (y/x)p ⊂ p. Then since p is finitely generated, we find
that y/x is integral over R, hence in R. This is a contradiction as y /∈ (x).

Only the first case is now possible. So p is in fact principal.
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144. Flatness revisited

In the past, we have already encountered the notion of flatness. We shall now study it in
more detail. We shall start by introducing the notion of faithful flatness and introduce the
idea of “descent.” Later, we shall consider other criteria for (normal) flatness that we have
not yet explored.

We recall (definition 13.4.7) that a module M over a commutative ring R is flat if the
functor N 7→ N ⊗R M is an exact functor. An R-algebra is flat if it is flat as a module.
For instance, we have seen that any localization of R is a flat algebra, because localization
is an exact functor.

All this has not been added yet!

144.1. Faithful flatness

Faithfully flat modules

Let R be a commutative ring.

144.1.1 Definition The R-module M is faithfully flat if any complex N ′ → N → N ′′ of
R-modules is exact if and only if the tensored sequence N ′⊗RM → N ⊗RM → N ′′⊗RM
is exact.

Clearly, a faithfully flat module is flat.

144.1.2 Example The direct sum of faithfully flat modules is faithfully flat.

144.1.3 Example A (nonzero) free module is faithfully flat, because R itself is flat (ten-
soring with R is the identity functor).

We shall now prove several useful criteria about faithfully flat modules.

144.1.4 Proposition An R-module M is faithfully flat if and only if it is flat and if
M ⊗R N = 0 implies N = 0 for any N .
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Proof. Suppose M faithfully flat Then M is flat, clearly. In addition, if N is any R-module,
consider the sequence

0→ N → 0;

it is exact if and only if
0→M ⊗R N → 0

is exact. Thus N = 0 if and only if M ⊗R N = 0.

Conversely, suppose M is flat and satisfies the additional condition. We need to show that
if N ′ ⊗R M → N ⊗R M → N ′′ ⊗R M is exact, so is N ′ → N → N ′′. Since M is flat,
taking homology commutes with tensoring with M . In particular, if H is the homology of
N ′ → N → N ′′, then H ⊗RM is the homology of N ′ ⊗RM → N ⊗RM → N ′′ ⊗RM . It
follows that H ⊗RM = 0, so H = 0, and the initial complex is exact.

144.1.5 Example Another illustration of the above technique is the following observation:
if M is faithfully flat and N → N ′ is any morphism, then N → N ′ is an isomorphism if and
only if M⊗N ′ →M⊗N is an isomorphism. This follows because the condition that a map
be an isomorphism can be phrased as the exactness of a certain (uninteresting) complex.

144.1.6 Remark (exercise) The direct sum of a flat module and a faithfully flat module
is faithfully flat.

From the above result, we can get an important example of a faithfully flat algebra over a
ring.

144.1.7 Example Let R be a commutative ring, and {fi} a finite set of elements that
generate the unit ideal in R (or equivalently, the basic open sets D(fi) = SpecRfi form
a covering of SpecR). Then the algebra

∏
Rfi is faithfully flat over R (i.e., is so as a

module). Indeed, as a product of localizations, it is certainly flat.

So by proposition 144.1.4, we are left with showing that if M is any R-module and Mfi = 0
for all i, then M = 0. Fix m ∈M , and consider the ideal Ann(m) of elements annihilating
m. Since m maps to zero in each localization Mfi , there is a power of fi in Ann(m) for
each i. This easily implies that Ann(m) = R, so m = 0. (We used the fact that if the {fi}
generate the unit ideal, so do

{
fNi
}

for any N ∈ Z≥0.)

A functor F between two categories is said to be faithful if the induced map on the hom-
sets hom(x, y)→ hom(Fx, Fy) is always injective. The following result explains the use of
the term “faithful.”

144.1.8 Proposition A module M is faithfully flat if and only if it is flat and the functor
N → N ⊗RM is faithful.

Proof. Let M be flat. We need to check that M is faithfully flat if and only if the natural
map

homR(N,N ′)→ homR(N ⊗RM,N ′ ⊗RM)
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is injective. Suppose first M is faithfully flat and f : N → N ′ goes to zero f ⊗ 1M :
N ⊗RM → N ′ ⊗RM . We know by flatness that

im(f)⊗RM = im(f ⊗ 1M )

so that if f ⊗ 1M = 0, then im(f) ⊗ M = 0. Thus by faithful flatness, im(f) = 0 by
Proposition 144.1.4.

Conversely, let us suppose M flat and the functor N → N ⊗R M faithful. Let N 6= 0;
then 1N 6= 0 as maps N → N . It follows that 1N ⊗ 1M and 0 ⊗ 1M = 0 are different as
endomorphisms of M ⊗R N . Thus M ⊗R N 6= 0. By Proposition 144.1.4, we are done
again.

144.1.9 Example Note, however, that Z ⊕ Z/2 is a Z-module such that tensoring by it
is a faithful but not exact functor.

Finally, we prove one last criterion:

144.1.10 Proposition M is faithfully flat if and only if M is flat and mM 6= M for all
maximal ideals m ⊂ R.

Proof. If M is faithfully flat, then M is flat, and M ⊗R R/m = M/mM 6= 0 for all m as
R/m 6= 0, by Proposition 144.1.4. So we get one direction.

Alternatively, suppose M is flat and M ⊗RR/m 6= 0 for all maximal m. Since every proper
ideal is contained in a maximal ideal, it follows that M ⊗RR/I 6= 0 for all proper ideals I.
We shall use this and Proposition 144.1.4 to prove that M is faithfully flat

Let N now be any nonzero module. Then N contains a cyclic submodule, i.e. one isomor-
phic to R/I for some proper I. The injection

R/I ↪→ N

becomes an injection
R/I ⊗RM ↪→ N ⊗RM,

and since R/I ⊗R M 6= 0, we find that N ⊗R M 6= 0. By Proposition 144.1.4, it follows
that M is faithfully flat

144.1.11 Corollary A nonzero finitely generated flat module over a local ring is faithfully
flat.

Proof. This follows from proposition 144.1.10 and Nakayama’s lemma.

A finitely presented flat module over a local ring is in fact free, but we do not prove this
(except when the ring is noetherian, see ??).

Proof. Indeed, let R be a local ring with maximal ideal m, and M a finitely generated flat
R-module. Then by Nakayama’s lemma, M/mM 6= 0, so that M must be faithfully flat.

144.1.12 Proposition Faithfully flat modules are closed under direct sums and tensor
products.

Proof. Exercise.

274



144. Flatness revisited 144.1. Faithful flatness

Faithfully flat algebras

Let φ : R→ S be a morphism of rings, making S into an R-algebra.

144.1.13 Definition S is a faithfully flat R-algebra if it is faithfully flat as an R-
module.

144.1.14 Example The map R → R[x] from a ring into its polynomial ring is always
faithfully flat. This is clear.

Next, we indicate the usual “sorite” for faithfully flat morphisms:

144.1.15 Proposition Faithfully flat morphisms are closed under composition and base
change.

That is, if R→ S, S → T are faithfully flat, so is R→ T . Similarly, if R→ S is faithfully
flat and R′ any R-algebra, then R′ → S ⊗R R′ is faithfully flat.

The reader may wish to try this proof as an exercise.

Proof. The first result follows because the composite of the two faithful and exact functors
(tensoring ⊗RS and tensoring ⊗ST gives the composite ⊗RT ) yields a faithful and exact
functor.

In the second case, let M be an R′-module. Then M⊗R′ (R′⊗RS) is canonically isomorphic
to M ⊗R S. From this it is clear if the functor M 7→ M ⊗R S is faithful and exact, so is
M 7→M ⊗R′ (R′ ⊗R S).

Flat maps are usually injective, but they need not be. For instance, if R is a product
R1 × R2, then the projection map R → R1 is flat. This never happens for faithfully flat
maps. In particular, a quotient can never be faithfully flat.

144.1.16 Proposition If S is a faithfully flat R-algebra, then the structure map R → S
is injective.

Proof. Indeed, let us tensor the map R → S with S, over R. We get a morphism of
S-modules

S → S ⊗R S,

sending s 7→ 1⊗ s. This morphism has an obvious section S⊗R S → S sending a⊗ b 7→ ab.
Since it has a section, it is injective. But faithful flatness says that the original map R→ S
must be injective itself.

144.1.17 Example The converse of proposition 144.1.16 definitely fails. Consider the
localization Z(2); it is a flat Z-algebra, but not faithfully flat (for instance, tensoring with
Z/3 yields zero).

144.1.18 Remark (exercise) Suppose φ : R → S is a flat, injective morphism of rings
such that S/φ(R) is a flat R-module. Then show that φ is faithfully flat.
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Flat morphisms need not be injective, but they are locally injective. We shall see this
using:

144.1.19 Proposition A flat local homomorphism of local rings is faithfully flat. In par-
ticular, it is injective.

Proof. Let φ : R → S be a local homomorphism of local rings with maximal ideals m, n.
Then by definition φ(m) ⊂ n. It follows that S 6= φ(m)S, so by Proposition 144.1.10 we
win.

The point of the above proof was, of course, the fact that the ring-homomorphism was local.
If we just had that φ(m)S ( S for every maximal ideal m ⊂ R, that would be sufficient for
the argument.

144.1.20 Corollary Let φ : R → S be a flat morphism. Let q ∈ SpecS, p = φ−1(q) the
image in SpecR. Then Rp → Sq is faithfully flat, hence injective.

Proof. We only need to show that the map is flat by proposition 144.1.19. Let M ′ ↪→ M
be an injection of Rp → Sq-modules. Note that M ′,M are then R-modules as well. Then

M ′ ⊗Rp Sq = (M ′ ⊗R Rp)⊗Rp Sq = M ′ ⊗R Sq.

Similarly for M . This shows that tensoring over Rp with Sq is the same as tensoring over
R with Sq. But Sq is flat over S, and S is flat over R, so by proposition 144.1.15, Sq is flat
over R. Thus the result is clear.

Descent of properties under faithfully flat base change

Let S be an R-algebra. Often, things that are true about objects over R (for instance, R-
modules) will remain true after base-change to S. For instance, if M is a finitely generated
R-module, then M ⊗R S is a finitely generated S-module. In this section, we will show
that we can conclude the reverse implication when S is faithfully flat over R.

144.1.21 Remark (exercise) Let R → S be a faithfully flat morphism of rings. If S is
noetherian, so is R. The converse is false!

144.1.22 Remark (exercise) Many properties of morphisms of rings are such that if
they hold after one makes a faithfully flat base change, then they hold for the original
morphism. Here is a simple example. Suppose S is a faithfully flat R-algebra. Let R′ be
any R-algebra. Suppose S′ = S ⊗R R′ is finitely generated over R′. Then S is finitely
generated over R.

To see that, note that R′ is the colimit of its finitely generated R-subalgebras Rα. Thus S′

is the colimit of the Rα⊗R S, which inject into S′; finite generation implies that one of the
Rα ⊗R S → S′ is an isomorphism. Now use the fact that isomorphisms “descend” under
faithfully flat morphisms.

In algebraic geometry, one can show that many properties of morphisms of schemes allow
for descent under faithfully flat base-change. See ?, volume IV-2.
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Topological consequences

There are many topological consequences of faithful flatness on the Spec’s. These are
explored in detail in volume 4-2 of ?. We shall only scratch the surface. The reader should
bear in mind the usual intuition that flatness means that the fibers “look similar” to one
other.

144.1.23 Proposition Let R → S be a faithfully flat morphism of rings. Then the map
SpecS → SpecR is surjective.

Proof. Since R → S is injective, we may regard R as a subring of S. We shall first show
that:

144.1.24 Lemma If I ⊂ R is any ideal, then R ∩ IS = I.

Proof. To see this, note that the morphism

R/I → S/IS

is faithfully flat, since faithful flatness is preserved by base-change, and this is the base-
change of R→ S via R→ R/I. In particular, it is injective. Thus IS ∩R = I.

Now to see surjectivity, we use a general criterion:

144.1.25 Lemma Let φ : R → S be a morphism of rings and suppose p ∈ SpecR. Then
p is in the image of SpecS → SpecR if and only if φ−1(φ(p)S) = p.

This lemma will prove the proposition.

Proof. Suppose first that p is in the image of SpecS → SpecR. In this case, there is
q ∈ SpecS such that p is the preimage of q. In particular, q ⊃ φ(p)S, so that, if we take
pre-images,

p ⊃ φ−1(φ(p)S),

while the other inclusion is obviously true.

Conversely, suppose that p ⊂ φ−1(φ(p)S). In this case, we know that

φ(R− p) ∩ φ(p)S = ∅.

Now T = φ(R− p) is a multiplicatively closed subset. There is a morphism

(144.1.25.1) Rp → T−1S

which sends elements of p into non-units, by (144.1.25.1) so it is a local homomorphism.
The maximal ideal of T−1S pulls back to that of Rp. By the usual commutative diagrams,
it follows that p is the preimage of something in SpecS.
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144.1.26 Remark The converse also holds. If φ : R→ S is a flat morphism of rings such
that SpecS → SpecR is surjective, then φ is faithfully flat. Indeed, lemma 144.1.25 shows
then that for any prime ideal p ⊂ R, φ(p) fails to generate S. This is sufficient to imply
that S is faithfully flat by proposition 144.1.10.

144.1.27 Remark A “slicker” argument that faithful flatness implies surjectiveness on
spectra can be given as follows. Let R → S be faithfully flat. Let p ∈ SpecR; we want to
show that p is in the image of SpecS. Now base change preserves faithful flatness. So we
can replace R by R/p, S by S/pS, and assume that R is a domain and p = 0. Indeed, the
commutative diagram

SpecS/pS

��

// SpecR/p

��
SpecS // SpecR

shows that p is in the image of SpecS → SpecR if and only if {0} is in the image of
SpecS/pS → SpecR/p.

We can make another reduction: by localizing at p (that is, {0}), we may assume that R
is local and thus a field. So we have to show that if R is a field and S a faithfully flat
R-algebra, then SpecS → SpecR is surjective. But since S is not the zero ring (by faithful
flatness!), it is clear that S has a prime ideal and SpecS → SpecR is thus surjective.

In fact, one can show that the morphism SpecS → SpecR is actually an identification,
that is, a quotient map. This is true more generally for faithfully flat and quasi-compact
morphisms of schemes; see ?, volume 4-2.

144.1.28 Theorem Let φ : R→ S be a faithfully flat morphism of rings. Then SpecS →
SpecR is a quotient map of topological spaces.

In other words, a subset of SpecR is closed if and only if its pre-image in SpecS is closed.

Proof. We need to show that if F ⊂ SpecR is such that its pre-image in SpecS is closed,
then F itself is closed. ADD THIS PROOF

144.2. Faithfully flat descent

Fix a ring R, and let S be an R-algebra. Then there is a natural functor from R-modules
to S-modules sending N 7→ S ⊗R N . In this section, we shall be interested in going
in the opposite direction, or in characterizing the image of this functor. Namely, given
an S-module, we want to “descend” to an R-module when possible; given a morphism
of S-modules, we want to know when it comes from a morphism of R-modules by base
change.

To be added: this entire section!
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The Amitsur complex

To be added: citation needed

Suppose B is an A-algebra. Then we can construct a complex of A-modules

0→ A→ B → B ⊗A B → B ⊗A B ⊗A B → . . .

as follows. For each n, we denote by B⊗n the tensor product of B with itself n times (over
A). There are morphisms of A-algebras

di : B⊗n → B⊗n+1, 0 ≤ i ≤ n+ 1

where the map sends

b1 ⊗ · · · ⊗ bn 7→ b1 ⊗ · · · ⊗ bi−1 ⊗ 1⊗ bi ⊗ · · · ⊗ bn,

so that the 1 is placed in the ith spot. Then the coboundary ∂ : B⊗n → B⊗n+1 is defined
as
∑

(−1)idi. It is easy to check that this forms a complex of A-modules.

144.2.1 Definition The above complex of B-modules is called the Amitsur complex
of B over A, and we denote it AB/A. It is clearly functorial in B; a map of A-algebras
B → C induces a morphism of complexes AB/A → AC/A.

Note that the Amitsur complex behaves very nicely with respect to base-change. If A′ is
an A-algebra and B′ = B ⊗A A′ is the base extension, then AB′/A′ = AB/A ⊗A A′, which
follows easily from the fact that base-change commutes with tensor products.

In general, the Amitsur complex is not even exact. For instance, if it is exact in degree
one, then the map A → B is necessarily injective. If, however, the morphism is faithfully
flat, then we do get exactness:

144.2.2 Theorem If B is a faithfully flat A-algebra, then the Amitsur complex of B/A is
exact. In fact, if M is any A-module, then AB/A ⊗AM is exact.

Proof. We prove this first under the assumption that A → B has a section. In this case,
we will even have:

144.2.3 Lemma Suppose A → B is a morphism of rings with a section B → A. Then
the Amitsur complex AB/A is homotopically trivial. (In particular, AB/A ⊗AM is acyclic
for all M .)

Proof. Let s : B → A be the section; by assumption, this is a morphism of A-algebras.
We shall define a chain contraction of AB/A. To do this, we must define a collection of
morphisms of A-modules hn+1 : B⊗n+1 → B⊗n, and this we do by sending

b1 ⊗ · · · ⊗ bn+1 7→ s(bn+1) (b1 ⊗ · · · ⊗ bn) .
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It is still necessary to check that the {hn+1} form a chain contraction; in other words,
that ∂hn + hn+1∂ = 1B⊗n . By linearity, we need only check this on elements of the form
b1 ⊗ · · · ⊗ bn. Then we find

∂hn(b1 ⊗ bn) = s(b1)
∑

(−1)ib2 ⊗ · · · ⊗ 1⊗ · · · ⊗ bn

where the 1 is in the ith place, while

hn+1∂(b1 ⊗ · · · ⊗ bn) = b1 ⊗ · · · ⊗ bn +
∑
i>0

s(b1)(−1)i−1b2 ⊗ · · · ⊗ 1⊗ · · · ⊗ bn

where again the 1 is in the ith place. The assertion is from this clear. Note that if AB/A
is contractible, we can tensor the chain homotopy with M to see that AB/A⊗AM is chain
contractible for any M .

With this lemma proved, we see that the Amitsur complex AB/A (or even AB/A ⊗AM) is
acyclic whenever B/A admits a section. Now if we make the base-change by the morphism
A→ B, we get the morphism B → B ⊗A B. That is,

B ⊗A
(
AB/A ⊗AM

)
= AB⊗AB/B ⊗B (M ⊗A B).

The latter is acyclic because B → B ⊗A B admits a section (namely, b1 ⊗ b2 7→ b1b2).
So the complex AB/A ⊗AM becomes acyclic after base-changing to B; this, however, is a
faithfully flat base-extension, so the original complex was itself exact.

144.2.4 Remark A powerful use of the Amitsur complex in algebraic geometry is to show
that the cohomology of a quasi-coherent sheaf on an affine scheme is trivial. In this case,
the Cech complex (of a suitable covering) turns out to be precisely the Amitsur complex
(with the faithfully flat morphism A →

∏
Afi for the {fi} a family generating the unit

ideal). This argument generalizes to showing that the étale cohomology of a quasi-coherent
sheaf on an affine is trivial; cf. ?.

Descent for modules

Let A → B be a faithfully flat morphism of rings. Given an A-module M , we have a
natural way of getting a B-module MB = M ⊗A B. We want to describe the image of this
functor; alternatively, given a B-module, we want to describe the image of this functor.

Given an A-module M and the associated B-module MB = M ⊗A B, there are two ways
of getting B ⊗A B-modules from MB, namely the two tensor products MB ⊗B (B ⊗A B)
according as we pick the first map b 7→ b⊗ 1 from B → B ⊗A B or the second b 7→ 1⊗ b.
We shall denote these by MB ⊗A B and B ⊗A MB with the action clear. But these are
naturally isomorphic because both are obtained from M by base-extension A⇒ B ⊗A B,
and the two maps are the same. Alternatively, these two tensor products are M⊗AB⊗AB
and B ⊗AM ⊗A B and these are clearly isomorphic by the braiding isomorphism1 of the
first two factors as B⊗AB-modules (with the B⊗AB part acting on the B’s in the above
tensor product!).

1It is not the braiding isomorphism MB⊗AB ' B⊗AMB , which is not an isomorphism of B⊗AB-modules.
This is the isomorphism that sends m⊗ b⊗ b′ to b⊗m⊗ b′.
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144.2.5 Definition The category of descent data for the faithfully flat extension A→
B is defined as follows. An object in this category consists of the following data:

1. A B-module N .

2. An isomorphism of B ⊗A B-modules φ : N ⊗A B ' B ⊗A N . This isomorphism is
required to make the following diagram2 of B ⊗A B ⊗A B-modules commutative:

(144.2.5.1) B ⊗A B ⊗A N
φ23 //

φ13

))

B ⊗A N ⊗A B

φ12uu
N ⊗A B ⊗A B

Here φij means that the permutation of the ith and jth factors of the tensor product
is done using the isomorphism φ.

A morphism between objects (N,φ), (N ′, ψ) is a morphism of B-modules f : N → N ′ that
makes the diagram

(144.2.5.2) N ⊗A B

f⊗1
��

φ // B ⊗A N

1⊗f
��

N ′ ⊗A B
ψ // B ⊗A N ′

As we have seen, there is a functor F from A-modules to descent data. Strictly speaking,
we should check the commutativity of (144.2.5.1), but this is clear: for N = M ⊗A B,
(144.2.5.1) looks like

B ⊗A B ⊗AM ⊗A B
φ23 //

φ13

**

B ⊗AM ⊗A B ⊗A B

φ12tt
M ⊗A B ⊗A B ⊗A B

Here all the maps are just permutations of the factors (that is, the braiding isomorphisms
in the structure of symmetric tensor category on the category of A-modules), so it clearly
commutes.

The main theorem is:

144.2.6 Theorem (Descent for modules) The above functor from A-modules to de-
scent data for A→ B is an equivalence of categories.

We follow ? in the proof.

2This is the cocycle condition.
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Proof. We start by describing the inverse functor from descent data to A-modules. Recall
that if M is an A-module, then M can be characterized as the submodule of MB consisting
of m ∈ MB such that 1 ⊗m and m ⊗ 1 corresponded to the same thing in MB ⊗A B '
B ⊗A MB. (The case M = A was particularly transparent: elements of A were elements
x ∈ B such that x⊗ 1 = 1⊗ x in B ⊗A B.) In other words, we had the exact sequence

0→M →MB →MB ⊗A B.

We want to imitate this for descent data. Namely, we want to construct a functor G from
descent data to A-modules. Given descent data (N,φ) where φ : N ⊗A B ' B ⊗A N is an
isomorphism of B ⊗A B-modules, we define GN to be

GN = ker(N
n7→1⊗n−ψ(n⊗1)→ B ⊗A N).

It is clear that this is an A-module, and that it is functorial in the descent data. We have
also shown that GF (M) is naturally isomorphic to M for any A-module M .

We need to show the analog for FG(N,φ); in other words, we need to show that any
descent data arises via the F -construction. Even before that, we need to describe a natural
transformation from FG(N,φ) to the identity. Fix a descent data (N,φ). Then G(N,φ)
gives an A-submodule M ⊂ N . We get a morphism

f : MB = M ⊗A B → N

by the universal property. This sends m ⊗ b 7→ bm. The claim is that this is a map of
descent data. In other words, we have to show that (144.2.5.2) commutes. The diagram
looks like

MB ⊗A B

f⊗1
��

// B ⊗AMB

1⊗f
��

N ⊗A B
φ // B ⊗A N

.

In other words, if m⊗ b ∈MB and b′ ∈ B, we have to show that φ(bm⊗ b′) = (1⊗ f)(b⊗
m⊗ b′) = b⊗ b′m.

However,
φ(bm⊗ b′) = (b⊗ b′)φ(m⊗ 1) = (b⊗ b′)(1⊗m) = b⊗ b′m

in view of the definition of M = GN as the set of elements such that φ(m ⊗ 1) = 1 ⊗m,
and the fact that φ is an isomorphism of B ⊗A B-modules. The equality we wanted to
prove is thus clear.

So we have the two natural transformations between FG,GF and the respective identity
functors. We have already shown that one of them is an isomorphism. Now we need to
show that if (N,φ) is descent data as above, and M = G(N,φ), the map F (M) → (N,φ)
is an isomorphism. In other words, we have to show that the map

M ⊗A B → N

is an isomorphism.
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Here we shall draw a commutative diagram. Namely, we shall essentially use the Amitsur
complex for the faithfully flat map B → B⊗AB. We shall obtain a commutative an exact
diagram:

0 //M ⊗A B

��

// N ⊗A B

φ
��

// N ⊗A B ⊗A B

φ−1
13
��

0 // N // B ⊗A N // B ⊗A B ⊗A N

.

Here the map
N ⊗A B → N ⊗A B ⊗A B

sends n ⊗ b 7→ n ⊗ 1 ⊗ b − φ(1 ⊗ n) ⊗ b. Consequently the first row is exact, B being flat
over A. The bottom map

B ⊗A N → B ⊗A N ⊗A N

sends b ⊗ n 7→ b ⊗ 1 ⊗ n − 1 ⊗ b ⊗ n. It follows by the Amitsur complex that the bottom
row is exact too. We need to check that the diagram commutes. Since the two vertical
maps on the right are isomorphisms, it will follow that M ⊗A B → N is an isomorphism,
and we shall be done.

Fix n ⊗ b ∈ N ⊗A B. We need to figure out where it goes in B ⊗A B ⊗A N under
the two maps. Going right gives n ⊗ 1 ⊗ b − φ12(1 ⊗ n ⊗ b). Going down then gives
φ−1

13 (n⊗ 1⊗ b)− φ−1
13 φ12(1⊗ n⊗ b) = φ−1

13 (n⊗ 1⊗ b)− φ−1
23 (1⊗ n⊗ b), where we have used

the cocycle condition. So this is one of the maps N ⊗A B → B ⊗A B ⊗A N .

Now we consider the other way n⊗ b can map to B ⊗A B ⊗A N .

Going down gives φ(n⊗b), and then going right gives the difference of two maps N⊗AB →
B ⊗A B ⊗A N , which are the same as above.

Example: Galois descent

To be added: this section

144.3. The Tor functor

Introduction

Fix M . The functor N 7→ N ⊗RM is a right-exact functor on the category of R-modules.
We can thus consider its left-derived functors as in ??. Recall:

144.3.1 Definition The derived functors of the tensor product functor N 7→ N ⊗RM are
denoted by ToriR(N,M), i ≥ 0. We shall sometimes denote omit the subscript R.
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So in particular, Tor0
R(M,N) = M⊗N . A priori, Tor is only a functor of the first variable,

but in fact, it is not hard to see that Tor is a covariant functor of two variables M,N . In
fact, ToriR(M,N) ' ToriR(N,M) for any two R-modules M,N . For proofs, we refer to ??.
ADD: THEY ARE NOT IN THAT CHAPTER YET.

Let us recall the basic properties of Tor that follow from general facts about derived
functors. Given an exact sequence

0→ N ′ → N → N ′′ → 0

we have a long exact sequence

Tori(N ′,M)→ Tori(N,M)→ Tori(N ′′,M)→ Tori−1(N ′,M)→ . . .

Since Tor is symmetric, we can similarly get a long exact sequence if we are given a short
exact sequence of M ’s.

Recall, moreover, that Tor can be computed explicitly (in theory). If we have modules
M,N , and a projective resolution P∗ → N , then ToriR(M,N) is the ith homology of the
complex M ⊗ P∗. We can use this to compute Tor in the case of abelian groups.

144.3.2 Example We compute Tor∗Z(A,B) whenever A,B are abelian groups and B is
finitely generated. This immediately reduces to the case of B either Z or Z/dZ for some d
by the structure theorem. When B = Z, there is nothing to compute (derived functors are
not very interesting on projective objects!). Let us compute Tor∗Z(A,Z/dZ) for an abelian
group A.

Actually, let us be more general and consider the case where the ring is replaced by Z/m
for some m such that d | m. Then we will compute Tor∗Z/m(A,Z/d) for any Z/m-module
A. The case m = 0 will handle the ring Z. Consider the projective resolution

· · ·
m/d// Z/mZ d // Z/mZ

m/d // Z/mZ d // Z/mZ // Z/dZ // 0.

We apply A⊗Z/mZ ·. Since tensoring (over Z/m!) with Z/mZ does nothing, we obtain the
complex

· · ·
m/d // A

d // A
m/d // A

d // A // 0.

The groups Tor
Z/mZ
n (A,Z/dZ) are simply the homology groups (ker/im) of the complex,

which are simply

Tor
Z/mZ
0 (A,Z/dZ) ∼= A/dA

TorZ/mZ
n (A,Z/dZ) ∼= dA/(m/d)A n odd, n ≥ 1

TorZ/mZ
n (A,Z/dZ) ∼= m/dA/dA n even, n ≥ 2,

where kA = {a ∈ A | ka = 0} denotes the set of elements of A killed by k.

The symmetry of the tensor product also provides with a simple proof that Tor commutes
with filtered colimits.
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144.3.3 Proposition Let M be an R-module, {Ni} a filtered system of R-modules. Then
the natural morphism

lim−→
i

ToriR(M,Ni)→ ToriR(M, lim−→
i

Ni)

is an isomorphism.

Proof. We can see this explicitly. Let us compute the Tor functors by choosing a projective
resolution P∗ →M of M (note that which factor we use is irrelevant, by symmetry!). Then
the left side is the colimit lim−→H(P∗⊗Ni), while the right side is H(P∗⊗ lim−→Ni). But tensor
products commute with filtered (or arbitrary) colimits, since the tensor product admits a
right adjoint. Moreover, we know that homology commutes with filtered colimits. Thus
the natural map is an isomorphism.

Tor and flatness

Tor provides a simple way of detecting flatness. Indeed, one of the basic applications of
this is that for a flat module M , the tor-functors vanish for i ≥ 1 (whatever be N). Indeed,
recall that Tor(M,N) is computed by taking a projective resolution of N ,

· · · → P2 → P1 → P0 →M → 0

tensoring with M , and taking the homology. But tensoring with M is exact if we have
flatness, so the higher Tor modules vanish.

The converse is also true. In fact, something even stronger holds:

144.3.4 Proposition M is flat iff Tor1(M,R/I) = 0 for all finitely generated ideals I ⊂
R.

Proof. We have just seen one direction. Conversely, suppose Tori(M,R/I) = 0 for all
finitely generated ideals I and i > 0. Then the result holds, first of all, for all ideals I,
because of proposition 144.3.3 and the fact that R/I is always the colimit of R/J as J
ranges over finitely generated ideals J ⊂ I.

We now show that Tori(M,N) = 0 whenever N is finitely generated. To do this, we induct
on the number of generators of N . When N has one generator, it is cyclic and we are
done. Suppose we have proved the result whenever for modules that have n− 1 generators
or less, and suppose N has n generators. Then we can consider an exact sequence of the
form

0→ N ′ ↪→ N � N ′′ → 0

where N ′ has n− 1 generators and N ′′ is cyclic. Then the long exact sequence shows that
Tori(M,N) = 0 for all i ≥ 1.

Thus we see that Tori(M,N) = 0 whenever N is finitely generated. Since any module is a
filtered colimit of finitely generated ones, we are done by proposition 144.3.3.
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Note that there is an exact sequence 0→ I → R→ R/I → 0 and so

Tor1(M,R) = 0→ Tor1(M,R/I)→ I ⊗M →M

is exact, and by this:

144.3.5 Corollary If the map
I ⊗M →M

is injective for all ideals I, then M is flat.

144.4. Flatness over noetherian rings

We shall be able to obtain simpler criterion for flatness when the ring in question is noethe-
rian local. For instance, we have already seen:

144.4.1 Theorem If M is a finitely generated module over a noetherian local ring R (with
residue field k), then M is free if and only if Tor1(k,M) = 0.

In particular, flatness is the same thing as the vanishing of one Tor module, and it equates
to freeness. Now, we want to generalize this result to the case where M is not necessarily
finitely generated over R, but finitely generated over an R-algebra that is also noetherian
local. In particular, we shall get useful criteria for when an extension of noetherian local
rings (which in general is not finite, or even finitely generated) is flat.

We shall prove two main criteria. The local criterion is a direct generalization of the
above result (the vanishing of one Tor group). The infinitesimal criterion reduces checking
flatness of M to checking flatness of M ⊗RR/mt over R/mt; in particular, it reduces to the
case where the base ring is artinian. Armed with these, we will be able to prove a rather
difficult theorem that states that we can always find lots of flat extensions of noetherian
local rings.

Flatness over a noetherian local ring

We shall place ourselves in the following situation. R,S are noetherian local rings with
maximal ideals m ⊂ R, n ⊂ S, and S is an R-algebra (and the morphism R → S is local,
so mS ⊂ n). We will want to know when a S-module is flat over R. In particular, we want
a criterion for when S is flat over R.

144.4.2 Theorem The finitely generated S-module M is flat over R iff

Tor1
R(k,M) = 0.

In this case, M is even free.
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It is actually striking how little the condition that M is a finitely generated S-module
enters, or how irrelevant it seems in the statement. The argument will, however, use
the fact that M is separated with respect to the m-adic topology, which relies on Krull’s
intersection theorem (note that since mS ⊂ n, the m-adic topology on M is separated).

Proof. Necessity is immediate. What we have to prove is sufficiency.

First, we claim that if N is an R-module of finite length, then

(144.4.2.1) Tor1
R(N,M) = 0.

This is because N has by dévissage (proposition 41.2.12) a finite filtration Ni whose quo-
tients are of the form R/p for p prime and (by finite length hypothesis) p = m. So we have
a filtration on M whose successive quotients are isomorphic to k. We can then climb up
the filtration to argue that Tor1(Ni,M) = 0 for each i.

Indeed, the claim (144.4.2.1) is true N0 = 0 ⊂ N trivially. We climb up the filtration piece
by piece inductively; if Tor1

R(Ni,M) = 0, then the exact sequence

0→ Ni → Ni+1 → k → 0

yields an exact sequence

Tor1
R(Ni,M)→ Tor1

R(Ni+1,M)→ 0

from the long exact sequence of Tor and the hypothesis on M . The claim is proved.

Now we want to prove that M is flat. The idea is to show that I ⊗RM → M is injective
for any ideal I ⊂ R. We will use some diagram chasing and the Krull intersection theorem
on the kernel K of this map, to interpolate between it and various quotients by powers of
m. First we write some exact sequences.

We have an exact sequence

0→ mt ∩ I → I → I/I ∩mt → 0

which we tensor with M :

mt ∩ I ⊗M → I ⊗M → I/I ∩mt ⊗M → 0.

The sequence
0→ I/I ∩mt → R/mt → R/(I + mt)→ 0

is also exact, and tensoring with M yields an exact sequence:

0→ I/I ∩mt ⊗M →M/mtM →M/(mt + I)M → 0

because Tor1
R(M,R/(I + mt)) = 0 by (144.4.2.1), as R/(I + mt) is of finite length.
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Let us draw the following commutative diagram:

(144.4.2.2) 0

��
mt ∩ I ⊗M // I ⊗M // I/I ∩mt ⊗M

��
M/mtM

Here the column and the row are exact. As a result, if an element in I ⊗M goes to zero in
M (a fortiori in M/mtM) it must come from mt ∩ I ⊗M for all t. Thus, by the Artin-Rees
lemma, it belongs to mt(I ⊗M) for all t, and the Krull intersection theorem (applied to S,
since mS ⊂ n) implies it is zero.

The infinitesimal criterion for flatness

144.4.3 Theorem Let R be a noetherian local ring, S a noetherian local R-algebra. Let
M be a finitely generated module over S. Then M is flat over R iff M/mtM is flat over
R/mt for all t > 0.

Proof. One direction is easy, because flatness is preserved under base-change R → R/mt.
For the other direction, suppose M/mtM is flat over R/mt for all t. Then, we need to show
that if I ⊂ R is any ideal, then the map I ⊗R M → M is injective. We shall argue that
the kernel is zero using the Krull intersection theorem.

Fix t ∈ N. As before, the short exact sequence of R/mt-modules 0→ I/(mt ∩ I)∩R/mt →
R/(mt ∩ I)→ 0 gives an exact sequence (because M/mtM is R/mt-flat)

0→ I/I ∩mt ⊗M →M/mtM →M/(mt + I)M → 0

which we can fit into a diagram, as in (144.4.2.2)

0

��
mt ∩ I ⊗M // I ⊗M // I/I ∩mt ⊗M

��
M/mtM

.

The horizontal sequence was always exact, as before. The vertical sequence can be argued
to be exact by tensoring the exact sequence

0→ I/I ∩mt → R/mt → R/(I + mt)→ 0

of R/mt-modules with M/mtM , and using flatness of M/mtM over R/mt (and ??). Thus
we get flatness of M as before.
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Incidentally, if we combine the local and infinitesimal criteria for flatness, we get a little
more.

144.4.4 Remark (comment) The gr criterion for flatness

Suppose (R,m) is a noetherian local ring and (S, n) a local R-algebra. As usual, we are
interested in criteria for when a finitely generated S-module M is flat over R.

We can, of course, endow M with the m-adic topology. Then M is a filtered module over
the filtered ring R (with the m-adic topology). We have morphisms for each i,

mi/mi+1 ⊗R/m M/mM → miM/mi+1M

that induce map
gr(R)⊗R/m M/mM → gr(M).

If M is flat over

Generalizations of the local and infinitesimal criteria

In the previous subsecs, we obtained results that gave criteria for when, given a local
homomorphism of noetherian local rings (R,m) → (S, n), a finitely generated S-module
was R-flat. These criteria generally were related to the Tor groups of the module with
respect to R/m. We are now interested in generalizing the above results to the setting
where m is replaced by an ideal that maps into the Jacobson radical of S. In other words,

φ : R→ S

will be a homomorphism of noetherian rings, and J ⊂ R will be an ideal such that φ(J) is
contained in every maximal ideal of S.

Ideally, we are aiming for results of the following type:

144.4.5 Theorem (Generalized local criterion for flatness) Let φ : R → S be a
morphism of noetherian rings, J ⊂ R an ideal with φ(J) contained in the Jacobson radical
of S. Let M be a finitely generated S-module. Then M is R-flat if and only if M/JM is
R/J-flat and TorR1 (R/J,M) = 0.

Note that this is a generalization of theorem 144.4.2. In that case, R/J was a field and
the R/J-flatness of M/JM was automatic. One key step in the proof of theorem 144.4.2
was to go from the hypothesis that Tor1(M,k) = 0 to Tor1(M,N) = 0 whenever N was
an R-module of finite length. We now want to do the same in this generalized case; the
analogy would be that, under the hypotheses of theorem 144.4.5, we would like to conclude
that TorR1 (M,N) = 0 whenever N is a finitely generated R-module annihilated by I. This
is not quite as obvious because we cannot generally find a filtration on N whose successive
quotients are R/J (unlike in the case where J was maximal). Therefore we shall need two
lemmas.
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144.4.6 Remark One situation where the strong form of the local criterion, theorem 144.4.5,
is used is in Grothendieck’s proof (cf. EGA IV-11, ?) that the locus of points where a
coherent sheaf is flat is open (in commutative algebra language, if A is noetherian and M
finitely generated over a finitely generated A-algebra B, then the set of primes q ∈ SpecB
such that Mq is A-flat is open in SpecB).

144.4.7 Lemma (Serre) Suppose R is a ring, S an R-algebra, and M an S-module.
Then the following are equivalent:

1. M ⊗R S is S-flat and TorR1 (M,S) = 0.

2. TorR1 (M,N) = 0 whenever N is any S-module.

We follow ?.

Proof. Let P be an S-module (considered as fixed), and Q any (variable) R-module. Recall
that there is a homology spectral sequence

TorSp (TorRq (Q,S), P ) =⇒ TorRp+q(Q,P ).

Recall that this is the Grothendieck spectral sequence of the composite functors

Q 7→ Q⊗R S, Q′ 7→ Q′ ⊗S P

because
(Q⊗R S)⊗S P ' Q⊗R P.

To be added: This, and generalities on spectral sequences, need to be added!
From this spectral sequence, it will be relatively easy to deduce the result.

1. Suppose M ⊗R S is S-flat and TorR1 (M,S) = 0. We want to show that 2 holds,
so let N be any S-module. Consider the E2 page of the above spectral sequence
TorSp (TorRq (M,S), N) =⇒ TorRp+q(M,N). In the terms such that p+ q = 1, we have

the two terms TorS0 (TorR1 (M,S), N),TorS1 (TorR0 (M,S), N). But by hypotheses these
are both zero. It follows that TorR1 (M,N) = 0.

2. Suppose TorR1 (M,N) = 0 for each S-module N . Since this is a homology spectral
sequence, this implies that the E10

2 term vanishes (since nothing will be able to hit
this term). In particular TorS1 (M ⊗R S,N) = 0 for each S-module N . It follows that
M⊗RS is S-flat. Hence the higher terms TorSp (M⊗RS,N) = 0 as well, so the botton
row of the E2 page (except (0, 0)) is thus entirely zero. It follows that the E2

01 term
vanishes if E01

∞ is trivial. This gives that TorR1 (M,S) ⊗S N = 0 for every S-module
N , which clearly implies TorR1 (M,S) = 0.

As a result, we shall be able to deduce the result alluded to in the motivation following the
statement of theorem 144.4.5.

144.4.8 Lemma Let R be a noetherian ring, J ⊂ R an ideal, M an R-module. Then
TFAE:
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1. TorR1 (M,R/J) = 0 and M/JM is R/J-flat.

2. TorR1 (M,N) = 0 for any finitely generated R-module N annihilated by a power of J .

Proof. This is immediate from lemma 144.4.7, once one notes that any N as in the state-
ment admits a finite filtration whose successive quotients are annihilated by J .

Proof of theorem 144.4.5. Only one direction is nontrivial, so suppose M is a finitely gen-
erated S-module, with M/JM flat over R/J and TorR1 (M,R/J) = 0. We know by the
lemma that TorR1 (M,N) = 0 whenever N is finitely generated and annihilated by a power
of J .

So as to avoid repeating the same argument over and over, we encapsulate it in the following
lemma.

144.4.9 Lemma Let the hypotheses be as in theorem 144.4.5 Suppose for every ideal I ⊂
R, and every t ∈ N, the map

I/I ∩ J t ⊗M →M/J tM

is an injection. Then M is R-flat.

Proof. Indeed, then as before, the kernel of I⊗RM →M lives inside the image of (I∩J t)⊗
M → I ⊗R M for every t; by the Artin-Rees lemma, and the Krull intersection theorem
(since

⋂
J t(I ⊗RM) = {0}), it follows that this kernel is zero.

It is now easy to finish the proof. Indeed, we can verify the hypotheses of the lemma by
noting that

I/I ∩ J t ⊗M → I ⊗M

is obtained by tensoring with M the sequence

0→ I/I ∩ J t → R/(I ∩ J t)→ R/(I + J t)→ 0.

Since TorR1 (M,R/(I + J t)) = 0, we find that the map as in the lemma is an injection, and
so we are done.

The reader can similarly formulate a version of the infinitesimal criterion in this more
general case using lemma 144.4.9 and the argument in theorem 144.4.3. (In fact, the
spectral sequence argument of this section is not necessary.) We shall not state it here, as
it will appear as a component of theorem 144.4.10. We leave the details of the proof to the
reader.
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The final statement of the flatness criterion

We shall now bundle the various criteria for flatness into one big result, following ?:

144.4.10 Theorem Let A,B be noetherian rings, φ : A→ B a morphism making B into
an A-algebra. Let I be an ideal of A such that φ(I) is contained in the Jacobson radical of
B. Let M be a finitely generated B-module. Then the following are equivalent:

1. M is A-flat.

2. (Local criterion) M/IM is A/I-flat and TorA1 (M,A/I) = 0.

3. (Infinitesimal criterion) M/InM is A/In-flat for each n.

4. (Associated graded criterion) M/IM is A/I-flat and M/IM⊗A/IIn/In+1 → InM/In+1M
is an isomorphism for each n.

The last criterion can be phrased as saying that the I-adic associated graded of M is
determined by M/IM .

Proof. We have already proved that the first three are equivalent. It is easy to see that
flatness of M implies that

(144.4.10.1) M/IM ⊗A/I In/In+1 → InM/In+1M

is an isomorphism for each n. Indeed, this easily comes out to be the quotient of M ⊗A In
by the image of M ⊗A In+1, which is InM/In+1M since the map M ⊗A In → InM is an
isomorphism. Now we need to show that this last condition implies flatness. To do this,
we may (in view of the infinitesimal criterion) assume that I is nilpotent, by base-changing
to A/In. We are then reduced to showing that TorA1 (M,A/I) = 0 (by the local criterion).
Then we are, finally, reduced to showing:

144.4.11 Lemma Let A be a ring, I ⊂ A be a nilpotent ideal, and M any A-module. If
(144.4.10.1) is an isomorphism for each n, then TorA1 (M,A/I) = 0.

Proof. This is equivalent to the assertion, by a diagram chase, that

I ⊗AM →M

is an injection. We shall show more generally that In ⊗AM →M is an injection for each
n. When n� 0, this is immediate, I being nilpotent. So we can use descending induction
on n.

Suppose In+1 ⊗AM → In+1M is an isomorphism. Consider the diagram

In+1 ⊗AM //

��

In ⊗AM //

��

In/In+1 ⊗AM → 0

��
0 // In+1M // InM // InM/In+1M // 0.

By hypothesis, the outer two vertical arrows are isomorphisms. Thus the middle vertical
arrow is an isomorphism as well. This completes the induction hypothesis.
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Here is an example of the above techniques:

144.4.12 Proposition Let (A,m), (B, n), (C, n′) be noetherian local rings. Suppose given
a commutative diagram of local homomorphisms

B // C

A

??__

Suppose B,C are flat A-algebras, and B/mB → C/mC is a flat morphism. Then B → C
is flat.

Geometrically, this means that flatness can be checked fiberwise if both objects are flat
over the base. This will be a useful technical fact.

Proof. We will use the associated graded criterion for flatness with the ideal I = mB ⊂ B.
(Note that we are not using the criterion with the maximal ideal here!) Namely, we shall
show that

(144.4.12.1) In/In+1 ⊗B/I C/IC → InC/In+1C

is an isomorphism. By theorem 144.4.10, this will do it. Now we have:

In/In+1 ⊗B/I C/IC ' mnB/mn+1B ⊗B/mB C/mC
' (mn/mn+1)⊗A B/mB ⊗B C/mC
' (mn/mn+1)⊗A B ⊗B C/mC
' (mn/mn+1)⊗A C/mC
' mnC/mn+1C ' InC/In+1C.

In this chain of equalities, we have used the fact that B,C were flat over A, so their
associated gradeds with respect to m ⊂ A behave nicely. It follows that (144.4.12.1) is an
isomorphism, completing the proof.

Flatness over regular local rings

Here we shall prove a result that implies geometrically, for instance, that a finite morphism
between smooth varieties is always flat.

144.4.13 Theorem (“Miracle” flatness theorem) Let (A,m) be a regular local (noethe-
rian) ring. Let (B, n) be a Cohen-Macaulay, local A-algebra such that

dimB = dimA+ dimB/mB.

Then B is flat over A.

Recall that inequality ≤ always holds in the above for any morphism of noetherian local
rings (??), and equality always holds with flatness supposed. We get a partial converse.
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Proof. We shall work by induction on dimA. Let x ∈ m be a non-zero divisor, so the first
element in a regular sequence of parameters. We are going to show that (A/(x), B/(x))
satisfies the same hypotheses. Indeed, note that

dimB/(x) ≤ dimA/(x) + dimB/mB

by the usual inequality. Since dimA/(x) = dimA− 1, we find that quotienting by x drops
the dimension of B by at least one: that is, dimB/(x) ≤ dimB− 1. By the principal ideal
theorem, we have equality,

dimB/(x) = dimB − 1.

The claim is that x is a non-zero divisor in B, and consequently we can argue by induction.
Indeed, but B is Cohen-Macaulay. Thus, any zero-divisor in B lies in a minimal prime
(since all associated primes of B are minimal); thus quotienting by a zero-divisor would
not bring down the degree. So x is a nonzerodivisor in B.

In other words, we have found x ∈ A which is both A-regular and B-regular (i.e. nonze-
rodivisors on both), and such that the hypotheses of the theorem apply to the pair
(A/(x), B/(x)). It follows that B/(x) is flat over A/(x) by the inductive hypothesis. The
next lemma will complete the proof.

144.4.14 Lemma Suppose (A,m) is a noetherian local ring, (B, n) a noetherian local A-
algebra, and M a finite B-module. Suppose x ∈ A is a regular element of A which is also
regular on M . Suppose moreover M/xM is A/(x)-flat. Then M is flat over A.

Proof. This follows from the associated graded criterion for flatness (see the omnibus result
theorem 144.4.10). Indeed, if we use the notation of that result, we take I = (x). We are
given that M/xM is A/(x)-flat. So we need to show that

M/xM ⊗A/(x) (xn)/(xn+1)→ xnM/xn+1M

is an isomorphism for each n. This, however, is implied because (xn)/(xn+1) is isomorphic
to A/(x) by regularity, and multiplication

M
xn→ xnM, xM

xn→ xn+1M

are isomorphisms by M -regularity.

Example: construction of flat extensions

As an illustration of several of the techniques in this chapter and previous ones, we shall
show, following ? (volume III, chapter 0) that, given a local ring and an extension of
its residue field, one may find a flat extension of this local ring with the bigger field as
its residue field. One application of this is in showing (in the context of Zariski’s Main
Theorem) that the fibers of a birational projective morphism of noetherian schemes (where
the target is normal) are geometrically connected. We shall later give another application
in the theory of étale morphisms.
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144.4.15 Theorem Let (R,m) be a noetherian local ring with residue field k. Suppose K
is an extension of k. Then there is a noetherian local R-algebra (S, n) with residue field K
such that S is flat over R and n = mS.

Proof. Let us start by motivating the theorem when K is generated over k by one element.
This case can be handled directly, but the general case will require a somewhat tricky
passage to the limit. There are two cases.

1. First, suppose K = k(t) for t ∈ K transcendental over k. In this case, we will
take S to be a suitable localization of R[t]. Namely, we consider the prime3 ideal
mR[t] ⊂ R[t], and let S = (R[t])mR[t]. Then S is clearly noetherian and local, and
moreover mS is the maximal ideal of S. The residue field of S is S/mS, which is
easily seen to be the quotient field of R[t]/mR[t] = k[t], and is thus isomorphic to
K. Moreover, as a localization of a polynomial ring, S is flat over R. Thus we have
handled the case of a purely transcendental extension generated by one element.

2. Let us now suppose K = k(a) for a ∈ K algebraic over k. Then a satisfies a monic
irreducible polynomial p(T ) with coefficients in k. We lift p to a monic polynomial
p(T ) ∈ R[T ]. The claim is that then, S = R[T ]/(p(T )) will suffice.

Indeed, S is clearly flat over R (in fact, it is free of rank deg p). As it is finite over
R, S is noetherian. Moreover, S/mS = k[T ]/(p(T )) ' K. It follows that mS ⊂ S
is a maximal ideal and that the residue field is K. Since any maximal ideal of S
contains mS by Nakayama,4 we see that S is local as well. Thus we have showed that
S satisfies all the conditions we want.

So we have proved the theorem when K is generated by one element over k. In general,
we can iterate this procedure finitely many times, so that the assertion is clear when K is
a finitely generated extension of k. Extending to infinitely generated extensions is trickier.

Let us first argue that we can write K/k as a “transfinite limit” of monogenic extensions.
Consider the set of well-ordered collections C′ of subfields between k and K (containing
k) such that if L ∈ C′ has an immediate predecessor L′, then L/L′ is generated by one
element. First, such collections C′ clearly exist; we can take the one consisting only of k.
The set of such collections is clearly a partially ordered set such that every chain has an
upper bound. By Zorn’s lemma, there is a maximal such collection of subfields, which we
now call C.

The claim is that C has a maximal field, which is K. Indeed, if it had no maximal element,
we could adjoin the union

⋃
F∈C F to C and make C bigger, contradicting maximality. If

this maximal field of C were not K, then we could add another element to this maximal
subfield and get a bigger collection than C, contradiction.

So thus we have a set of fields Kα (with α, the index, ranging over a well-ordered set)
between k and K, such that if α has a successor α′, then K ′α is generated by one element
over Kα. Moreover K is the largest of the Kα, and k is the smallest.

3It is prime because the quotient is the domain k[t].
4To be added: citation needed
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We are now going to define a collection of rings Rα by transfinite induction on α. We start
the induction with R0 = R (where 0 is the smallest allowed α). The inductive hypothesis
that we will want to maintain is that Rα is a noetherian local ring with maximal ideal mα,
flat over R and satisfying mRα = mα; we require, moreover, that the residue field of Rα be
Kα. Thus if we can do this at each step, we will be able to work up to K and get the ring
S that we want. We are, moreover, going to construct the Rα such that whenever β < α,
Rα is a Rβ-algebra.

Let us assume that Rβ has been defined for all β < α and satisfies the conditions. Then
we want to define Rα in an appropriate way. If we can do this, then we will have proved
the result. There are two cases:

1. α has an immediate predecessor αpre. In this case, we can define Rα from Rαpre as
above (because Kα/Kαpre is monogenic).

2. α has no immediate predecessor. Then we define Rα = lim−→β<α
Rβ. The following

lemma will show that Rα satisfies the appropriate hypotheses.

This completes the proof, modulo lemma 144.4.16.

We shall need the following lemma to see that we preserve noetherianness when we pass
to the limit.

144.4.16 Lemma Suppose given an inductive system {(Aα,mα)} of noetherian rings and
flat local homomorphisms, starting with A0. Suppose moreover that mαAβ = mβ whenever
α < β.

Then A = lim−→Aα is a noetherian local ring, flat over each Aα. Moreover, if m ⊂ A is the
maximal ideal, then mαA = m. The residue field of A is lim−→Aα/mα.

Proof. First, it is clear that A is a local ring (?? To be added: reference!) with maximal
ideal equal to mαA for any α in the indexing set, and that A has the appropriate residue
field. Since filtered colimits preserve flatness, flatness of A is also clear. We need to show
that A is noetherian; this is the crux of the lemma.

To prove that A is noetherian, we are going to show that its m-adic completion Â is
noetherian. Fortunately, we have a convenient criterion for this. If m̂ = mÂ, then Â is
complete with respect to the m̂-adic topology. So if we show that Â/m̂ is noetherian and

m̂/m̂2 is a finitely generated Â-module, we will have shown that Â is noetherian by ??.

But Â/m̂ is a field, so obviously noetherian. Also, m̂/m̂2 = m/m2, and by flatness of A,
this is

A⊗Aα mα/m
2
α

for any α. Since Aα is noetherian, we see that this is finitely generated. The criterion ??
now shows that the completion Â is noetherian.

Finally, we need to deduce that A is itself noetherian. To do this, we shall show that Â is
faithfully flat over A. Since noetherianness “descends” under faithfully flat extensions (To
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be added: citation needed), this will be enough. It suffices to show that Â is flat over
each Aα. For this, we use the infinitesimal criterion; we have that

Â⊗Aα Aα/mt
α = Â/m̂t = A/mt = A/Amt

α,

which is flat over Aα/m
t
α since A is flat over Aα.

It follows that Â is flat over each Aα. If we want to see that A→ Â is flat, we let I ⊂ A be
a finitely generated ideal; we shall prove that I ⊗A Â→ Â is injective (which will establish
flatness). We know that there is an ideal Iα ⊂ Aα for some Aα such that

I = IαA = Iα ⊗Aα A.

Then
I ⊗A Â = Iα ⊗Aα Â

which injects into Â as Aα → Â is flat.

144.4.17 Remark (comment) Let us first show that A is separated with respect to the
m-adic topology. Fix x ∈ A. Then x lies in the subring Aα for some fixed α depending on
α (note that Aα → A is injective since a flat morphism of local rings is faithfully flat). If
x ∈ mn = Amn

α, then x ∈ mn
α by faithful flatness and lemma 144.1.24. So if x ∈ mn for

all n, then x ∈ mn
α for all n; the separatedness of Aα with respect to the mα-adic topology

now shows x = 0.

Generic flatness

Suppose given a module M over a noetherian domain R. Then M ⊗R K(R) is a finitely
generated free module over the field K(R). Since K(R) is the inductive limit lim−→Rf as f
ranges over (R−{0})/R∗ and K(R)⊗RM ' lim−→f∈(R−{0})/R∗Mf , it follows by the general

theory of ?? that there exists f ∈ R− {0} such that Mf is free over Rf .

Here SpecRf = D(f) ⊂ SpecR should be thought of as a “big” subset of SpecR (in
fact, as one can check, it is dense and open). So the moral of this argument is that M is
“generically free.” If we had the language of schemes, we could make this more precise.
But the idea is that localizing at M corresponds to restricting the sheaf associated to M to
D(f) ⊂ SpecR; on this dense open subset, we get a free sheaf. (The reader not comfortable
with such “finitely presented” arguments will find another one below, that also works more
generally.)

Now we want to generalize this to the case where M is finitely generated not over R, but
over a finitely generated R-algebra. In particular, M could itself be a finitely generated
R-algebra!

144.4.18 Theorem (Generic freeness) Let S be a finitely generated algebra over the
noetherian domain R, and let M be a finitely generated S-module. Then there is f ∈ R−{0}
such that Mf is a free (in particular, flat) R-module.
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Proof. We shall first reduce the result to one about rings instead of modules. By Hilbert’s
basis theorem, we know that S is noetherian. By dévissage (proposition 41.2.12), there is
a finite filtration of M by S-submodules,

0 = M0 ⊂M1 ⊂ · · · ⊂Mk = M

such that the quotients Mi+1/Mi are isomorphic to quotients S/pi for the pi ∈ SpecS.

Since localization is an exact functor, it will suffice to show that there exists an f such that
(S/pi)f is a free R-module for each f . Indeed, it is clear that if a module admits a finite
filtration all of whose successive quotients are free, then the module itself is free. We may
thus even reduce to the case where M = S/p.

So we are reduced to showing that if we have a finitely generated domain T over R, then
there exists f ∈ R − {0} such that Tf is a free R-module. If R → T is not injective, then
the result is obvious (localize at something nonzero in the kernel), so we need only handle
the case where R→ T is a monomorphism.

By the Noether normalization theorem, there are d elements of T⊗RK(R), which we denote
by t1, . . . , td, which are algebraically independent over K(R) and such that T ⊗R K(R) is
integral over K(R)[t1, . . . , td]. (Here d is the transcendence degree of K(T )/K(R).) If we
localize at some highly divisible element, we can assume that t1, . . . , td all lie in T itself.
Let us assume that the result for domains is true whenever the transcendence degree is < d,
so that we can induct.

Then we know that R[t1, . . . , td] ⊂ T is a polynomial ring. Moreover, each of the finitely
many generators of T/R satisfies a monic polynomial equation over K(R)[t1, . . . , td] (by the
integrality part of Noether normalization). If we localize R at a highly divisible element,
we may assume that the coefficients of these polynomials belong to R[t1, . . . , td]. We have
thus reduced to the following case. T is a finitely generated domain over R, integral over
the polynomial ring R[t1, . . . , td]. In particular, it is a finitely generated module over the
polynomial ring R[t1, . . . , td]. Thus we have some r and an exact sequence

0→ R[t1, . . . , td]
r → T → Q→ 0,

where Q is a torsion R[t1, . . . , td]
r-module. Since the polynomial ring is free, we are reduced

to showing that by localizing at a suitable element of R, we can make Q free.

But now we can do an inductive argument. Q has a finite filtration by T -modules whose
quotients are isomorphic to T/p for nonzero primes p with p 6= 0 as T is torsion; these are
still domains finitely generated over R, but such that the associated transcendence degree
is less than d. We have already assumed the statement proven for domains where the
transcendence degree is < d. Thus we can find a suitable localization that makes all these
free, and thus Q free; it follows that with this localization, T becomes free too.
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50. Homological algebra à la
Cartan–Eilenberg

Introduction

Homological algebra begins with the notion of a differential object, that is, an object with

an endomorphism C
∂→ C such that ∂2 = 0. This equation leads to the obvious inclusion

Im(∂) ⊂ Ker(∂), but the inclusion generally is not equality. We will find that the difference
between Ker(∂) and Im(∂), called the homology, is a highly useful variant of a differential
object: its first basic property is that if an exact sequence

0 −→ C ′ −→ C −→ C ′′ −→ 0

of differential graded objects is given, the homology of C is related to that of C ′ and C ′′

through a long exact sequence. The basic example, and the one we shall focus on, is where
C is a chain complex (Ck)k∈Z, and ∂ is the differential induced by the boundary operators
∂k : Ck → Ck−1. In this case, homology simply measures the failure of a complex to be
exact.

After introducing these preliminaries, we develop the theory of derived functors. Given a
functor that is only left or right-exact, derived functors allow for an extension of a partially
exact sequence to a long exact sequence. The most important examples to us, Tor and
Ext, provide characterizations of flatness, projectivity, and injectivity.

The classic reference for this part of homological algebra is Cartan & Eilenberg (1999).

50.1. (Co)Chain complexes and their (co) homology

Chain complexes

The chain complex is the most fundamental construction in homological algebra.

50.1.1 Definition Let R be a ring. A chain complex (over R) is a family of (left) R-
modules (Ck)k∈Z together with so-called boundary operators ∂k : Ck → Ck−1, k ∈ Z, such
that ∂k−1∂k = 0 for all k ∈ Z. The boundary map ∂ is also called the differential. Often,
notation is abused and the indices for the boundary map are dropped. A chain complex is
often simply denoted by (C•, ∂) or even only by C•.

One calls a chain complex C• bounded below (respectively bounded above) if there exists an
n ∈ Z such that Ck = 0 for all k ≤ n (respectively Ck = 0 for all k ≥ n). If one has Ck = 0
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for all k < 0 (respectively Ck = 0 for all k > 0), the chain complex C• is called positive
(respectively negative). A chain complex C• is called bounded if it is both bounded below
and bounded above.

50.1.2 Example Any family of R-modules (Ck)k∈Z with the boundary operators identi-
cally zero forms a chain complex.

We will see plenty of more examples in due time.

50.1.3 Proposition If (C•, ∂) is a chain complex, then Im ∂k+1 ⊂ Ker ∂k for each k ∈ Z.

Proof. The claim is an immediate consequence of the relation ∂k∂k+1 = 0.

The observation from the proposition leads us to the following definition.

50.1.4 Definition Let (C•, ∂) be a chain complex. For each k ∈ Z one calls the module
Ck the module of k-chains. The submodule of k-cycles Zk ⊂ Ck is the kernel Ker(∂k). The
submodule of k-boundaries Bk ⊂ Ck is the image Im(∂k+1). The k-th homology group of
the complex (C•, ∂) is now defined as the R-module Hk(C•) := Hk(C•, ∂) := Zk/Bk. The
family H•(C•) =

(
Hk(C•)

)
k∈Z is usually referred to as the homology of (C•, ∂).

A chain complex (C•, ∂) for which Zk = Bk or equivalently Hk(C•) = 0 for every k ∈ Z is
called exact.

50.1.5 Remark In general, a chain complex need not be exact, and this failure of exact-
ness is measured by its homology.

50.1.6 Examples (a) In a chain complex (C•, ∂) where all the boundary maps are trivial,
i.e. where ∂ = 0, one has Hk(C•) = Ck for all k ∈ Z.

(b) The homology H•(C•) of a chain complex C• can and will be understood as a chain
complex again with boundary maps being trivial. This interpretation will be very useful
when studying formality in rational or real homotopy theory, see ??.

We have defined chain complexes now, but we have no notion of a morphism between chain
complexes yet. We do this next; it turns out that chain complexes form a category when
morphisms are appropriately defined.

50.1.7 Definition A morphism of chain complexes (over the ring R) from (C•, ∂) to
(D•, δ) or a chain map is a family of R-module maps fk : Ck → Dk, k ∈ Z, such that
fk−1∂k = δkfk for all k ∈ Z. In other words this means that the diagram

Ck+1 Ck Ck−1

Dk+1 Dk Dk−1

fk+1

∂k+1

fk

∂k

fk−1

δk+1 δk

commutes. We will denote such a morphism of chain complexes by f : (C•, ∂)→ (D•, δ).
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50.1.8 Remark To further simplify notation, often all differentials regardless of what
chain complex they are part of are denoted ∂, thus the commutativity relation on chain
maps is simply f∂ = ∂f with indices and distinction between the boundary operators
dropped. Sometimes, though, when a distinction is really necessary, one writes ∂C or ∂D

to denote the boundery map of C• respectively D•. We will make sure in this book that
the context or the notation will always make clear what is meant.

50.1.9 Proposition and Definition Chain complexes over a ring R together with their
chain maps as morphisms become a category which we denote by Ch•(R-Mod) or just Ch•
when the ground ring R is clear. The chain complexes bounded below (respectively bounded
above, bounded, positive, or negative) form a full subcategory of Ch•(R-Mod). The resulting
subcategories are denoted by Ch+

• (R-Mod), Ch−• (R-Mod), Chb
•(R-Mod), Ch≥0

• (R-Mod), and
Ch≤0
• (R-Mod), respectively.

Proof. If (C•, ∂) is a chain complex, then the family of identity maps idCk : Ck → Ck is
clearly a chain map which we denote by idC• . If f : (C•, ∂) → (D•, δ) and g : (D•, δ) →
(E•, %) are chain maps, then g ◦ f : (C•, ∂)→ (E•, %) with components (g ◦ f)k := gk ◦ fk :
Ck → Ek is a chain map as well, since for all k ∈ Z

(g ◦ f)k−1∂k = gk−1 ◦ fk−1 ◦ ∂k = gk−1 ◦ δk ◦ fk = %k ◦ gk ◦ fk = %k(g ◦ f)k .

Hence the chain complexes over the ring R together with the chain maps form a category
indeed. The rest of the claim is obvious.

50.1.10 Proposition A chain map f : C• → D• between chain complexes over a ring R
induces for each k ∈ Z a map in homology Hk(f) : Hk(C•) → Hk(D•). More precisely,
each Hk is a functor from chain complexes to R-modules, and homology becomes a covariant
functor from the category of chain complexes to the category of chain complexes with zero
differential.

Proof. Let f : C• → D• be a chain map. Let ∂ and δ be the differentials for C• and D•
respectively. Then we have a commutative diagram:

Ck+1 Ck Ck−1

Dk+1 Dk Dk−1 .

fk+1

∂k+1

fk

∂k

fk−1

δk+1 δk

Now, in order to check that the chain map f induces a map Hk(f) on homology, we need
to check that f(Im(∂)) ⊂ Im(δ) and f(Ker(∂)) ⊂ Ker(δ). We first check the condition on
images: we want to look at fk(Im(∂k+1)). By commutativity of f and the boundary maps,
this is equal to δk+1(Im(fk+1). Hence we have fk(Im(∂k+1)) ⊂ Im(δk+1). For the condition
on kernels, let c ∈ Ker(∂k). Then by commutativity, δk(fk(c)) = fk−1∂k(c) = 0. Thus we
have that f induces for each k ∈ Z an R-module map Hk(f) : Hk(C•) → Hk(D•). Hence
it induces a morphism on homology as a chain complex with zero differential.
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Long exact sequences

add: OMG! We have all this and not the most basic theorem of them all.

50.1.11 Definition If M is a complex then for any integer k, we define a new complex
M [k] by shifting indices, i.e. (M [k])i := M i+k.

50.1.12 Definition If f : M → N is a map of complexes, we define a complex Cone(f) :=
{N i ⊕M i+1} with differential

d(ni,mi+1) := (diN (ni) + (−1)i · f(mi+1, di+1
M (mi+1))

Remark: This is a special case of the total complex construction to be seen later.

50.1.13 Proposition A map f : M → N is a quasi-isomorphism if and only if Cone(f)
is acyclic.

50.1.14 Proposition Note that by definition we have a short exact sequence of complexes

0→ N → Cone(f)→M [1]→ 0

so by Proposition 2.1, we have a long exact sequence

· · · → H i−1(Cone(f))→ H i(M)→ H i(N)→ H i(Cone(f))→ . . .

so by exactness, we see that H i(M) ' H i(N) if and only if H i−1(Cone(f)) = 0 and
H i(Cone(f)) = 0. Since this is the case for all i, the claim follows. �

Cochain complexes

Cochain complexes are much like chain complexes except the arrows point in the opposite
direction. Like before, R denotes a fixed ring.

50.1.15 Definition A cochain complex is a sequence of R-modules (Ck)k∈Z with cobound-
ary operators, also called differentials, dk : Ck → Ck+1, k ∈ Z, such that dk+1dk = 0. A
cochain copmplex is usually denoted by (C•, d) or shortly by C•.

One calls a cochain complex C• bounded below (respectively bounded above) if there exists
an n ∈ Z such that Ck = 0 for all k ≤ n (respectively Ck = 0 for all k ≥ n). If one has
Ck = 0 for all k < 0 (respectively Ck = 0 for all k > 0), the cochain complex C• is called
positive (respectively negative). A cochain complex C• which is both bounded below and
bounded above is said to be bounded.

Let (C•, d) and (D•, δ) denote cochain complexes. By a morphism of cochain complexes
or a cochain map from (C•, d) to (D•, δ) we understand a family of R-module maps gk :
Ck → Dk, k ∈ Z, such that gk+1dk = δkgk for all k ∈ Z. In other words this means we
have a commutative diagram:
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Ck−1 Ck Ck+1

Dk−1 Dk Dk−1 .

gk−1

dk−1

gk

dk

gk+1

δk−1 δk

We will denote such a morphism of cochain complexes usually by g : (C•, d)→ (D•, δ).

50.1.16 Proposition and Definition Cochain complexes over a ring R together with
their cochain maps as morphisms become a category which we denote by Ch•(R-Mod) or just
Ch• when the ground ring R is clear. The cochain complexes bounded below (respectively
bounded above, bounded, positive, or negative) form a full subcategory of Ch•(R-Mod).
The corresponding subcategories are denoted by Ch•+(R-Mod), Ch•−(R-Mod), Ch•b(R-Mod),
Ch•≥0(R-Mod), and Ch•≤0(R-Mod), respectively.

Proof. The proof is completely dual to the proof of Proposition 50.1.16.

The theory of cochain complexes is entirely dual to that of chain complexes, and we often
shall not spell it out in detail.

For instance, we can form a category of cochain complexes and chain maps (families of
morphisms commuting with the differential). Moreover, given a cochain complex C•, we
define the cohomology objects to be hi(C∗) = ker(∂i)/Im(∂i−1); one obtains cohomol-
ogy functors.

It should be noted that the long exact sequence in cohomology runs in the opposite direc-
tion. If 0→ C ′∗ → C∗ → C ′′∗ → 0 is a short exact sequence of cochain complexes, we get a
long exact sequence

· · · → H i(C ′)→ H i(C)→ H i(C ′′)→ H i+1(C ′)→ H i+1(C)→ . . . .

Similarly, we can also turn cochain complexes and cohomology modules into a graded
module.

Let us now give a standard example of a cochain complex.

50.1.17 Example (The de Rham complex) Readers unfamiliar with differential forms
may omit this example. Let M be a smooth manifold. For each p, let Cp(M) be the R-
vector space of smooth p-forms on M . We can make the {Cp(M)} into a complex by
defining the maps

Cp(M)→ Cp+1(M)

via ω → dω, for d the exterior derivative. (Note that d2 = 0.) This complex is called the
de Rham complex of M , and its cohomology is called the de Rham cohomology. It
is known that the de Rham cohomology is isomorphic to singular cohomology with real
coefficients, cf. ? and Hatcher (2002).
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50.2. Chain Homotopies

50.2.1 In general, two maps of complexes C• ⇒ D• need not be equal to induce the
same morphisms in homology. It is thus of interest to determine conditions when they
do. One important condition is given by chain homotopy: chain homotopic maps are
indistinguishable in homology. In algebraic topology, this fact is used to show that singular
homology is a homotopy invariant. We will find it useful in showing that the construction
(to be given later) of a projective resolution is essentially unique.

As before, we will understand all of the following constructions to be performed within the
category R-Mod of left modules over a fixed ring R, unless stated differently.

50.2.2 Definition Let C•, D• be chain complexes with differentials ∂C and ∂D, respec-
tively. A chain homotopy between two chain maps f, g : C• → D• is a sequence of
homomorphism hk : Ck → Dk+1, k ∈ Z satisfying

fk − gk = ∂Dk+1hk + hk−1∂
C
k for all k ∈ Z .

Again, often notation is abused and the condition is written f − g = ∂h+ h∂.

Dually, if C• and D• are two cochain complexes with respective differentials dC and dD,
then a chain homotopy between two morphisms of cochain complexes f, g : Cbullet →
Dbullet is a sequence of homomorphisms hk : Ck → Dk−1, k ∈ Z satisfying

fk − gk = dk−1
D hk + hk+1dkC for all k ∈ Z .

or shortly f − g = dh+ hd.

50.2.3 Proposition If two morphisms of chain complexes f, g : C• → D• are chain ho-
motopic, they are taken to the same induced map after applying the homology functor.
Likewise, two chain homotopic morphisms of cochain complexes f, g : C• → D• induce the
same map in cohomology.

Proof. Write {di} for the various differentials (in both complexes). Let m ∈ Zi(C), the
group of i-cycles. Suppose there is a chain homotopy h between f, g (that is, a set of
morphisms Ci → Di−1). Then

f i(m)− gi(m) = hi+1 ◦ di(m) + di−1 ◦ hi(m) = di−1 ◦H i(m) ∈ Im(di−1)

which is zero in the cohomology H i(D).

50.2.4 Corollary If two chain complexes are chain homotopically equivalent (there are
maps f : C∗ → D∗ and g : D∗ → C∗ such that both fg and gf are chain homotopic to the
identity), they have isomorphic homology.

Proof. Clear.
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50.2.5 Example Not every quasi-isomorphism is a homotopy equivalence. Consider the
complex

· · · → 0→ Z/·2→ Z→ 0→ 0→ . . .

so H0 = Z/2Z and all cohomologies are 0. We have a quasi-isomorphism from the above
complex to the complex

· · · → 0→ 0→ Z/2Z→ 0→ 0→ . . .

but no inverse can be defined (no map from Z/2Z→ Z).

50.2.6 Proposition Additive functors preserve chain homotopies

Proof. Since an additive functor F is a homomorphism on Hom(−,−), the chain homotopy
condition will be preserved; in particular, if t is a chain homotopy, then F (t) is a chain
homotopy.

In more sophisticated homological theory, one often makes the definition of the “homotopy
category of chain complexes.”

50.2.7 Definition The homotopy category of chain complexes is the category hKom(R)
where objects are chain complexes of R-modules and morphisms are chain maps modulo
chain homotopy.

50.3. Differential modules

Often we will bundle all the modules Ck of a chain complex C• together to form a graded
module

⊕
k Ck. In this case, the boundary operator is an endomorphism that takes ele-

ments from degree k to degree k− 1. Similarly, we often bundle together all the homology
modules to give a graded homology module

⊕
kHk(C•).

50.3.1 Definition A differential module over a ring R is a (left) R-module M together
with a morphism d : M →M such that d2 = 0.

Thus, given a chain complex C•, the module
⊕

k∈ZCk is a differential module with the
direct sum of all the differentials ∂k. A chain complex is just a special kind of differential
module, one where the objects are graded and the differential drops the grading by one.

As we have sen, there is a category of chain complexes where the morphisms are chain
maps. One can make a similar definition for differential modules.

50.3.2 Definition If (M,d) and (N, d′) are differential modules, then a morphism of dif-
ferential modules (M,d) → (N, d′) is a morphism of modules M → N such that the
diagram

M

��

d //M

��
N

d′ // N

commutes.
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There is therefore a category of differential modules, and the map C∗ →
⊕
Ci gives a

functor from the category of chain complexes to that of differential modules.

50.3.3 Remark Define the homology H(M) of a differential module (M,d) via ker d/ im d.
Show that M 7→ H(M) is a functor from differential modules to modules.

50.4. Derived functors

Projective resolutions

Fix a ring R. Let us recall (13.2.7) that an R-module P is called projective if the functor
N → homR(P,N) (which is always left-exact) is exact.

Projective objects are useful in defining chain exact sequences known as “projective reso-
lutions.” In the theory of derived functors, the projective resolution of a module M is in
some sense a replacement for M : thus, we want it to satisfy some uniqueness and existence
properties. The uniqueness is not quite true, but it is true modulo chain equivalence.

50.4.1 Definition Let M be an arbitrary module, a projective resolution of M is an exact
sequence

(50.4.1.1) · · · → Pi → Pi−1 → Pi−2 · · · → P1 → P0 →M

where the Pi are projective modules.

50.4.2 Proposition Any module admits a projective resolution.

The proof will even show that we can take a free resolution.

Proof. We construct the resolution inductively. First, we take a projective module P0 with
P0 � N surjective by the previous part. Given a portion of the resolution

Pn → Pn−1 → · · · → P0 � N → 0

for n ≥ 0, which is exact at each step, we consider K = ker(Pn → Pn−1). The sequence

0→ K → Pn → Pn−1 → · · · → P0 � N → 0

is exact. So if Pn+1 is chosen such that it is projective and there is an epimorphism
Pn+1 � K, (which we can construct by 11.6.6), then

Pn+1 → Pn → . . .

is exact at every new step by construction. We can repeat this inductively and get a full
projective resolution.

Here is a useful observation:
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50.4.3 Proposition If R is noetherian, and M is finitely generated, then we can choose
a projective resolution where each Pi is finitely generated.

We can even take a resolution consisting of finitely generated free modules.

Proof. To say that M is finitely generated is to say that it is a quotient of a free module
on finitely many generators, so we can take P0 free and finitely generated. The kernel of
P0 → M is finitely generated by noetherianness, and we can proceed as before, at each
step choosing a finitely generated object.

50.4.4 Example The abelian group Z/2 has the free resolution 0 → · · · 0 → Z → Z →
Z/2. Similarly, since any finitely generated abelian group can be decomposed into the
direct sum of torsion subgroups and free subgroups, all finitely generated abelian groups
admit a free resolution of length two.

Actually, over a principal ideal domain R (e.g. R = Z), every module admits a free
resolution of length two. The reason is that if F � M is a surjection with F free, then
the kernel F ′ ⊂ F is free by a general fact (add: citation needed) that a submodule of
a free module is free (if one works over a PID). So we get a free resolution of the type

0→ F ′ → F →M → 0.

In general, projective resolutions are not at all unique. Nonetheless, they are unique up
to chain homotopy. Thus a projective resolution is a rather good “replacement” for the
initial module.

50.4.5 Proposition Let M,N be modules and let P∗ → M,P ′∗ → N be projective resolu-
tions. Let f : M → N be a morphism. Then there is a morphism

P∗ → P ′∗

such that the following diagram commutes:

. . . // P1
//

��

P0
//

��

M

f

��
. . . // P ′1

// P ′0
// N

This morphism is unique up to chain homotopy.

Proof. Let P∗ → M and P ′∗ → N be projective resolutions. We will define a morphism of
complexes P∗ → P ′∗ such that the diagram commutes. Let the boundary maps in P∗, P

′
∗ be

denoted d (by abuse of notation). We have an exact diagram

. . . // Pn
d // Pn−1

d // . . .
d // P0

//M

f

��

// 0

. . . // P ′n
d // P ′n−1

// . . .
d // P ′0

// N // 0
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Since P ′0 � N is an epimorphism, the map P0 →M → N lifts to a map P0 → P ′0 making
the diagram

P0

��

//M

f

��
P ′0

// N

commute. Suppose we have defined maps Pi → P ′i for i ≤ n such that the following
diagram commutes:

Pn
d //

��

Pn−1
d //

��

. . .
d // P0

��

//M

f

��

// 0

P ′n
d // P ′n−1

// . . .
d // P ′0

// N // 0

Then we will define Pn+1 → P ′n+1, after which induction will prove the existence of a map.
To do this, note that the map

Pn+1 → Pn → P ′n → P ′n−1

is zero, because this is the same as Pn+1 → Pn → Pn−1 → P ′n−1 (by induction, the diagrams
before n commute), and this is zero because two P -differentials were composed one after
another. In particular, in the diagram

Pn+1
// Pn

��
P ′n+1

// P ′n

,

the image in P ′n of Pn+1 lies in the kernel of P ′n → P ′n−1, i.e. in the image I of P ′n+1. The
exact diagram

Pn+1

��
P ′n+1

// I // 0

shows that we can lift Pn+1 → I to Pn+1 → P ′n+1 (by projectivity). This implies that we
can continue the diagram further and get a morphism P∗ → P ′∗ of complexes.

Suppose f, g : P∗ → P ′∗ are two morphisms of the projective resolutions making

P0
//

��

M

��
P ′0

// N

commute. We will show that f, g are chain homotopic.

For this, we start by defining D0 : P0 → P ′1 such that dD0 = f − g : P0 → P ′0. This we
can do because f − g sends P0 into ker(P ′0 → N), i.e. into the image of P ′1 → P ′0, and P0 is
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projective. Suppose we have defined chain-homotopies Di : Pi → Pi+1 for i ≤ n such that
dDi +Di−1d = f − g for i ≤ n. We will define Dn+1. There is a diagram

Pn+1

��

// Pn

Dn}} ��

// Pn−1

Dn−1}} ��
P ′n+2

// P ′n+1
// P ′n // P ′n−1

where the squares commute regardless of whether you take the vertical maps to be f or g
(provided that the choice is consistent).

We would like to define Dn+1 : Pn → P ′n+1. The key condition we need satisfied is that

dDn+1 = f − g −Dnd.

However, we know that, by the inductive hypothesis on the D’s

d(f − g −Dnd) = fd− gd− dDnd = fd− gd− (f − g)d+Dndd = 0.

In particular, f − g −Dnd lies in the image of P ′n+1 → P ′n. The projectivity of Pn ensures
that we can define Dn+1 satisfying the necessary condition.

50.4.6 Corollary Let P∗ → M,P ′∗ → M be projective resolutions of M . Then there are
maps P∗ → P ′∗, P

′
∗ → P∗ under M such that the compositions are chain homotopic to the

identity.

Proof. Immediate.

Injective resolutions

One can dualize all this to injective resolutions. add: do this

Definition

Often in homological algebra, we see that “short exact sequences induce long exact se-
quences.” Using the theory of derived functors, we can make this formal.

Let us work in the category of modules over a ring R. Fix two such categories. Recall
that a right-exact functor F (from the category of modules over a ring to the category of
modules over another ring) is an additive functor such that for every short exact sequence
0→ A→ B → C → 0, we get a exact sequence F (A)→ F (B)→ F (C)→ 0.

We want a natural way to continue this exact sequence to the left; one way of doing this
is to define the left derived functors.

50.4.7 Definition Let F be a right-exact functor and P∗ →M are projective resolution.
We can form a chain complex F (P∗) whose object in degree i is F (Pi) with boundary maps
F (∂). The homology of this chain complex denoted LiF are the left derived functors.
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For this definition to be useful, it is important to verify that deriving a functor yields
functors independent on choice of resolution. This is clear by ??.

50.4.8 Theorem The following properties characterize derived functors:

1. L0F (−) = F (−)

2. Suppose 0→ A→ B → C → 0 is an exact sequence and F a right-exact functor; the
left derived functors fit into the following exact sequence:

(50.4.8.1)
· · ·LiF (A)→ LiF (B)→ LiF (C)→ Li−1F (A) · · · → L1(C)→ L0F (A)→ L0F (B)→ L0F (C)→ 0

Proof. The second property is the hardest to prove, but it is by far the most useful; it is
essentially an application of the snake lemma.

One can define right derived functors analogously; if one has a left exact functor (an additive
functor that takes an exact sequence 0 → A → B → C → 0 to 0 → F (A) → F (B) →
F (C)), we can pick an injective resolution instead (the injective criterion is simply the
projective criterion with arrows reversed). If M → I∗ is a injective resolution then the
cohomology of the chain complex F (I∗) gives the right derived functors. However, variance
must also be taken into consideration so the choice of whether or not to use a projective
or injective resolution is of importance (in all of the above, functors were assumed to be
covariant). In the following, we see an example of when right derived functors can be
computed using projective resolutions.

Ext functors

50.4.9 Definition The right derived functors of Hom(−, N) are called the Ext-modules
denoted ExtiR(−, N).

We now look at the specific construction:

Let M,M ′ be R-modules. Choose a projective resolution

· · · → P2 → P1 → P0 →M → 0

and consider what happens when you hom this resolution into N . Namely, we can con-
sider homR(M,N), which is the kernel of hom(P0,M)→ hom(P1,M) by exactness of the
sequence

0→ homR(M,N)→ homR(P0, N)→ homR(P1, N).

You might try to continue this with the sequence

0→ homR(M,N)→ homR(P0, N)→ homR(P1, N)→ homR(P2, N)→ . . . .

In general, it won’t be exact, because homR is only left-exact. But it is a chain complex.
You can thus consider the homologies.
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50.4.10 Definition The homology of the complex {homR(Pi, N)} is denoted ExtiR(M,N).
By definition, this is ker(hom(Pi, N)→ hom(Pi+1, N))/ im(hom(Pi−1, N)→ hom(Pi, N)).
This is an R-module, and is called the ith ext group.

Let us list some properties (some of these properties are just case-specific examples of
general properties of derived functors)

50.4.11 Proposition Ext0
R(M,N) = homR(M,N).

Proof. This is obvious from the left-exactness of hom(−, N). (We discussed this.)

50.4.12 Proposition Exti(M,N) is a functor of N .

Proof. Obvious from the definition.

Here is a harder statement.

50.4.13 Proposition Exti(M,N) is well-defined, independent of the projective resolution
P∗ →M , and is in fact a contravariant additive functor of M .1

Proof. Omitted. We won’t really need this, though; it requires more theory about chain
complexes.

50.4.14 Proposition If M is annihilated by some ideal I ⊂ R, then so is Exti(M,N) for
each i.

Proof. This is a consequence of the functoriality in M . If x ∈ I,then x : M → M is the
zero map, so it induces the zero map on Exti(M,N).

50.4.15 Proposition Exti(M,N) = 0 if M projective and i > 0.

Proof. In that case, one can use the projective resolution

0→M →M → 0.

Computing Ext via this gives the result.

50.4.16 Proposition If there is an exact sequence

0→ N ′ → N → N ′′ → 0,

there is a long exact sequence of Ext groups

0→ hom(M,N ′)→ hom(M,N)→ hom(M,N ′′)→ Ext1(M,N ′)→ Ext1(M,N)→ . . .

1I.e. a map M →M ′ induces Exti(M ′, N)→ Exti(M,N).
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Proof. This proof will assume a little homological algebra. Choose a projective resolution
P∗ → M . (The notation P∗ means the chain complex · · · → P2 → P1 → P0.) In general,
homming out of M is not exact, but homming out of a projective module is exact. For
each i, we get an exact sequence

0→ homR(Pi, N
′)→ homR(Pi, N)→ homR(Pi, N

′′)→ 0,

which leads to an exact sequence of chain complexes

0→ homR(P∗, N
′)→ homR(P∗, N)→ homR(P∗, N

′′)→ 0.

Taking the long exact sequence in homology gives the result.

Much less obvious is:

50.4.17 Proposition There is a long exact sequence in the M variable. That is, a short
exact sequence

0→M ′ →M →M ′′ → 0

leads a long exact sequence

0→ homR(M ′′, N)→ homR(M,N)→ homR(M ′, N)→ Ext1(M ′′, N)→ Ext1(M,N)→ . . . .

Proof. Omitted.

We now can characterize projectivity:

50.4.18 Corollary TFAE:

1. M is projective.

2. Exti(M,N) = 0 for all R-modules N and i > 0.

3. Ext1(M,N) = 0 for all N .

Proof. We have seen that 1 implies 2 because projective modules have simple projective
resolutions. 2 obviously implies 3. Let’s show that 3 implies 1.Choose a projective module
P and a surjection P �M with kernel K. There is a short exact sequence 0→ K → P →
M → 0. The sequence

0→ hom(M,K)→ hom(P,K)→ hom(K,K)→ Ext1(M,K) = 0

shows that there is a map P → K which restricts to the identity K → K. The sequence
0 → K → P → M → 0 thus splits, so M is a direct summand in a projective module, so
is projective.

Finally, we note that there is another way of constructing Ext. We constructed them by
choosing a projective resolution of M . But you can also do this by resolving N by injective
modules.
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50.4.19 Definition An R-module Q is injective if homR(−, Q) is an exact (or, equiva-
lently, right-exact) functor. That is, if M0 ⊂ M is an inclusion of R-modules, then any
map M0 → Q can be extended to M → Q.

If we are given M,N , and an injective resolution N → Q∗, we can look at the chain complex
{hom(M,Qi)}, i.e. the chain complex

0→ hom(M,Q0)→ hom(M,Q1)→ . . .

and we can consider the cohomologies.

50.4.20 Definition We call these cohomologies

ExtiR(M,N)′ = ker(hom(M,Qi)→ hom(M,Qi+1))/ im(hom(M,Qi−1)→ hom(M,Qi)).

This is dual to the previous definitions, and it is easy to check that the properties that we
couldn’t verify for the previous Exts are true for the Ext′’s.

Nonetheless:

50.4.21 Theorem There are canonical isomorphisms:

Exti(M,N)′ ' Exti(M,N).

In particular, to compute Ext groups, you are free either to take a projective resolution of
M , or an injective resolution of N .

Idea of proof. In general, it might be a good idea to construct a third more complex con-
struction that resembles both. Given M,N construct a projective resolution P∗ →M and
an injective resolution N → Q∗. Having made these choices, we get a double complex

homR(Pi, Q
j)

of a whole lot of R-modules. The claim is that in such a situation, where you have a double
complex Cij , you can form an ordinary chain complex C ′ by adding along the diagonals.
Namely, the nth term is C ′n =

⊕
i+j=nCij . This total complex will receive a map from the

chain complex used to compute the Ext groups and a chain complex used to compute the
Ext′ groups. There are maps on cohomology,

Exti(M,N)→ H i(C ′∗), Exti(M,N)′ → H i(C ′∗).

The claim is that isomorphisms on cohomology will be induced in each case. That will
prove the result, but we shall not prove the claim.

Last time we were talking about Ext groups over commutative rings. For R a commutative
ring and M,N R-modules, we defined an R-module Exti(M,N) for each i, and proved
various properties. We forgot to mention one.

50.4.22 Proposition If R noetherian, and M,N are finitely generated, Exti(M,N) is
also finitely generated.

Proof. We can take a projective resolution P∗ of M by finitely generated free modules,
R being noetherian. Consequently the complex hom(P∗, N) consists of finitely generated
modules. Thus the cohomology is finitely generated, and this cohomology consists of the
Ext groups.
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51.1. Additive categories

51.1.1 Definition By a pre-additive category one understands a category A enriched over
the category of abelian groups. This means that for each pair of objects A,B in A the
morphism set Mor(A,B) carries an abelian group structure

+(A,B) : Mor(A,B)×Mor(A,B)→ Mor(A,B), (f, g) 7→ f + g

such that composition of morphisms in A is bilinear in the following sense:

(BL) If A,B,C are objects of A, f, f ′ ∈ Mor(A,B) and g, g′ ∈ Mor(B,C), then

g ◦ (f + f ′) = (g ◦ f) + (g ◦ f ′) and (g + g′) ◦ f = (g ◦ f) + (g′ ◦ f) .

51.1.2 Usually one denotes the set of morphism between objects A and B of a pre-additive
category A by Hom(A,B) instead of Mor(A,B). We will follow this conention from now on.
The zero element of Hom(A,B) will be denoted by 0(A,B) or briefly by 0, if no confusion
can arise. In general, and as done already in the definition, we will abbreviate the group
operation +(A,B) on Hom(A,B) by + for clearity of exposition.

A pre-additive structure on a category imposes quite a useful relation between finite prod-
ucts and coproducts of its objects, namely that they have to coincide when they exist.

51.1.3 Proposition Let A be a pre-additive category, and A1, . . . , An a finite family of
objects in A.

(1) If
∏n
l=1Al is a product with canonical projections pk :

∏n
l=1Al → Ak, k = 1, . . . , n,

then it is also a coproduct where the canonical injections are given by the uniquely
determined morphisms ik : Ak 7→

∏n
l=1Al such that

pl ◦ ik =

{
idAk , if k = l,

0, else.

In addition, the equality

(51.1.3.1)
n∑
l=1

il ◦ pl = id∏n
l=1 Al

holds true.
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(2) If
∐n
l=1Al is a coproduct with canonical injections ik :

∐n
l=1Al → Ak, k = 1, . . . , n,

then it is also a product with canonical projections given by the uniquely determined
morphisms pk :

∐n
l=1Al 7→ Ak such that

pk ◦ il =

{
idAk , if k = l,

0, else.

In addition, the equality

(51.1.3.2)
n∑
l=1

il ◦ pl = id∐n
l=1 Al

holds true.

Proof. Let us first show (1). So assume that
∏n
l=1Al is a product with canonical projections

pk, and define the ik as in (1). Then we have, for k = 1, . . . , n,

pk ◦
( n∑
l=1

il ◦ pl
)

=

n∑
l=1

pk ◦ il ◦ pl = pk .

By the universal property of the product, Equation (51.1.3.1) follows. Now let fk : Ak → X,
k = 1, . . . , n, be a family of morphisms in A. Define f :

∏n
l=1Al → X by f =

∑n
l=1 fl ◦ pl

and compute

f ◦ ik =
( n∑
l=1

fl ◦ pl
)
◦ ik =

n∑
l=1

fl ◦ pl ◦ ik = fk .

If f̃ :
∏n
l=1Al → X is another morphism satisfying f̃ ◦ ik = fk for all i, then

f − f̃ =
(
f − f̃

)
◦
( n∑
l=1

il ◦ pl
)

=

n∑
l=1

(
f − f̃

)
◦ il ◦ pl =

=

n∑
l=1

(
f − f̃

)
◦ il ◦ pl =

n∑
l=1

(
fl − fl

)
◦ pl = 0 .

But this entails that
∏n
l=1Al together with the morphisms ik fulfills the universal property

of a coproduct of the family (Al)
n
l=1.

One shows (2) by an analogous but dual argument.

Since by the proposition the product and the coproduct of finitely many objects Ak, k =
1, . . . , n in a pre-additive category A coincide (up to canonical isomorphism), one denotes
them by the same symbol, namely by

n⊕
k=1

Ak,

and calls the resulting object the direct sum of the Ak. The proposition tells also that an
initial or terminal object in A has to be a zero object which we then denote by 0A or 0 if
no confusion can arise.
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51.1.4 Definition A pre-additive category A is called additive, if it has the following
properties:

(A0) A has a zero object.

(A1) Every finite family of objects has a product.

(A1)◦ Every finite family of objects has a coproduct.

51.1.5 Example The category Ab of abelian groups carries in a natural way the structure
of an additive category. Likewise, if R is a (unital) ring, the category R-Mod of R-left
modules is additive.

51.2. Abelian categories

51.2.1 Definition By an abelian category one understands an additive category A which
fulfills the following axioms by Grothendieck:

(AB1) Every morphism has a kernel and a cokernel.

(AB2) For every morphism f the induced canonical morphism coim f → im f is an iso-
morphism.

51.2.2 Proposition Assume that A is an abelian category, and let

(51.2.2.1)

X A

B Y

f

g r

s

be a commutative diagram in A.

(1) The diagram is cartesian if and only if the sequence

(51.2.2.2) 0 −−−−−→ X
i1f+i2g−−−−−→ A⊕B rp1−sp2−−−−−→ Y

is exact.

(2) The diagram is cocartesian, if and only if

(51.2.2.3) X
i1f−i2g−−−−−→ A⊕B rp1+sp2−−−−−→ Y −−−−−→ 0

is exact.

(3) If the diagram is cartesian, and s an epimorphism, then the diagram is even bicartesian,
and f is an epimorphism, too. Moreover, one obtains in this case a commutative
diagram with exact rows

(51.2.2.4)

0 ker s X A 0

0 ker s B Y 0 .

f

g r

s

In particular this means that the kernel of s factors through g then.
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(4) If the diagram is cocartesian, and f a monomorphism, then the diagram is even bicarte-
sian, and s is a monomorphism, too. Moreover, one obtains in this case a commutative
diagram with exact rows

(51.2.2.5)

0 X A coker f 0

0 B Y coker f 0.

f

g r

s

In particular this means that the cokernel of f factors through r then.

Proof. To prove (1), consider the sequence

(51.2.2.6) 0 −−−−−→ K
k−−−−−→ A⊕B rp1−sp2−−−−−→ Y,

where k is the kernel of rp1 − sp2. Given a commutative diagram

P A

B Y,

l

m r

s

the morphism P
i1l+i2m−−−−−→ A ⊕ B must then factor through k in a unique way. Since the

diagram

K A

B Y

p1k

p2k r

s

commutes as well, this implies that (51.2.2.1) is cartesian if and only if the sequence
(51.2.2.2) is exact.

Next let us show (3). So assume that the diagram (51.2.2.1) is cartesian and that s is epic.
Then rp1−sp2 must be epic as well, since (rp1−sp2)i2 = −s. So both sequences (51.2.2.2)
and (51.2.2.3) are exact, and the diagram is bicartesian. Now assume that hf = 0 for some
morphism h. Then f = p1k, where k = i1f + i2g is monic by (1). Since hp1k = 0, the
morphism hp1 factors through the cokernel of k which is rp1+sp2. Hence hp1 = h′(rp1+sp2)
for some h′. One then obtains

0 = hp1i2 = h′(rp1 + sp2)i1 = h′r .

By assumption, r is epic, hence h′ = 0. But then hp1 = 0, which entails h = hp1ii = 0.
Therefore f must be epic as well.

Now consider l : ker s → B, the kernel of s. Since sl = 0 = r0, and since the diagram
(51.2.2.1) is assumed to be cartesian, there exists a unique l′ : ker s→ X such that gl′ = l
and fl′ = 0. As a kernel, l is monic, hence so is l′. It remains to show that l′ is the kernel
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of f . To this end assume fj = 0 for some morphism j. Because sgj = rfj = 0, gj factors
through the kernel of s, hence gj = lj′ = gl′j′, and 0 = sgj = sgl′j′. On the other hand,
rfj = 0 = sgl′j′ = rfl′j′. By the universal property of the pullback one obtains j = l′j′.
Since j′ is monic, j′ is uniquely determined by j, so l′ is the kernel of f .

Statments (2) and (4) follow by dualization.

51.3. Abeliannes of a category is a property

Introduction

One of the fundamental observations about an abelian category is that the correspond-
ing additive structure, meaning the abelian group structures on its hom-sets, actually is
uniquely determined by the underlying category and its fundamental properties. In this
section, we will make this statement precise and show how to recover the additive structure,
if the category satisfies certain properties.

The A-axioms

51.3.1 Given a category A we consider the following axioms:

(A0) A has a zero object.

(A1) Every finite family of objects has a product.

(A1)◦ Every finite family of objects has a coproduct.

(A2) Every morphism has a kernel.

(A2)◦ Every morphism has a cokernel.

(A3) Every monomorphism is the kernel of a morphism.

(A3)◦ Every epimorphism is the cokernel of a morphism.

It is the goal of this section to prove the following fundamental result.

51.3.2 Theorem Every abelian category A satisfies Axioms (A0) to (A3)◦. Vice versa,
if A is a category satisfying Axioms (A0) to (A3)◦, then there exists a unique pre-additive
structure on A, and the resulting additive category is abelian.
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52. Homotopical algebra

Introduction

In this chapter, we shall introduce the formalism of model categories. Model categories
provide an abstract setting for homotopy theory: in particular, we shall see that topological
spaces form a model category. In a model category, it is possible to talk about notions
such as “homotopy,” and thus to pass to the homotopy category.

But many algebraic categories form model categories as well. The category of chain com-
plexes over a ring forms one. It turns out that this observation essentially encodes classical
homological algebra. We shall see, in particular, how the notion of derived functor can be
interpreted in a model category, via this model structure on chain complexes.

Our ultimate goal in developing this theory, however, is to study the non-abelian case. We
are interested in developing the theory of the cotangent complex, which is loosely speaking
the derived functor of the Kähler differentials ΩS/R on the category of R-algebras. This is
not a functor on an additive category; however, we shall see that the non-abelian version
of derived functors (in the category of simplicial R-algebras) allows one to construct the
cotangent complex in an elegant way.

52.1. Model categories

Definition

We need to begin with the notion of a retract of a map.

52.1.1 Definition Let C be a category. Then we can form a new category MapC of maps
of C. The objects of this category are the morphisms A→ B of C, and a morphism between
A→ B and C → D is given by a commutative square

A

��

// C

��
B // D

.
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A map in C is a retract of another map in C if it is a retract as an object of MapC. This
means that there is a diagram:

A //

Id

''

f
��

B

g

��

// A

f
��

X //

Id

@@Y // X

For instance, one can prove:

52.1.2 Proposition In any category, isomorphisms are closed under retracts.

We leave the proof as an exercise.

52.1.3 Definition A model category is a category C equipped with three classes of
maps called cofibrations, fibrations, and weak equivalences. They have to satisfy five axioms
M1−M5.

Denote cofibrations as ↪→, fibrations as �, and weak equivalences as → ∼.

(M1) C is closed under all limits and colimits.1

(M2) Each of the three classes of cofibrations, fibrations, and weak equivalences is closed
under retracts.2

(M3) If two of three in a composition are weak equivalences, so is the third.

f //

h

��
g

��

(M4) (Lifts) Suppose we have a diagram

A //� _

i
��

X

p
����

B //

>>

Y

Here i : A → B is a cofibration and p : X → Y is a fibration. Then a lift exists if i
or p is a weak equivalence.

1Many of our arguments will involve infinite colimits. The original formulation in ? required only finite
such, but most people assume infinite.

2Quillen initially called model categories satisfying this axiom closed model categories. All the model
categories we consider will be closed, and we have, following ?, omitted this axiom.
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(M5) (Factorization) Every map can be factored in two ways:

.
∼

    ..
�

>>

p�

∼
  

f // .

.

>> >>

In words, it can be factored as a composite of a cofibration followed by a fibration
which is a weak equivalence, or as a cofibration which is a weak equivalence followed
by a fibration.

A map which is a weak equivalence and a fibration will be called an acyclic fibration.
Denote this by � ∼. A map which is both a weak equivalence and a cofibration will be
called an acyclic cofibration, denoted ↪→ ∼. (The word “acyclic” means for a chain
complex that the homology is trivial; we shall see that this etymology is accurate when we
construct a model structure on the category of chain complexes.)

52.1.4 Remark If C is a model category, then Cop is a model category, with the notions
of fibrations and cofibrations reversed. So if we prove something about fibrations, we
automatically know something about cofibrations.

We begin by listing a few elementary examples of model categories:

52.1.5 Example 1. Given a complete and cocomplete category C, then we can give a
model structure to C by taking the weak equivalences to be the isomorphisms and
the cofibrations and fibrations to be all maps.

2. If R is a Frobenius ring, or the classes of projective and injective R-modules coincide,
then the category of modules over R is a model category. The cofibrations are the
injections, the fibrations are the surjections, and the weak equivalences are the stable
equivalences (a term which we do not define). See ?.

3. The category of topological spaces admits a model structure where the fibrations are
the Serre fibrations and the weak equivalences are the weak homotopy equivalences.
The cofibrations are, as we shall see, determined from this, though they can be
described explicitly.

52.1.6 Remark Show that there exists a model structure on the category of sets where
the injections are the cofibrations, the surjections are fibrations, and all maps are weak
equivalences.

The retract argument

The axioms for a model category are somewhat complicated. We are now going to see that
they are actually redundant. That is, any two of the classes of cofibrations, fibrations, and
weak equivalences determine the third. We shall thus introduce a useful trick that we shall
have occasion to use many times further when developing the foundations.
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52.1.7 Definition Let C be any category. Suppose that P is a class of maps of C. A map
f : A → B has the left lifting property with respect to P iff: for all p : C → D in P
and all diagrams

A //

f
��

C

p

��
B

∃
>>

// D

a lift represented by the dotted arrow exists, making the diagram commute. We abbreviate
this property to LLP. There is also a notion of a right lifting property, abbreviated
RLP, where f is on the right.

52.1.8 Proposition Let P be a class of maps of C. Then the set of maps f : A→ B that
have the LLP (resp. RLP) with respect to P is closed under retracts and composition.

Proof. This will be a diagram chase. Suppose f : A → B and g : B → C have the LLP
with respect to maps in P . Suppose given a diagram

A

g◦f
��

// X

��
C // Y

with X → Y in P . We have to show that there exists a lift C → X. We can split this into
a commutative diagram:

A

f
��

// X

��

B

>>

  
g

��
C // Y

The lifting property provides a map φ : B → X as in the dotted line in the diagram. This
gives a diagram

B

g

��

φ // X

��
C //

>>

Y

and in here we can find a lift because g has the LLP with respect to p. It is easy to check
that this lift is what we wanted.

The axioms of a model category imply that cofibrations have the LLP with respect to trivial
fibrations, and acyclic cofibrations have the LLP with respect to fibrations. There are dual
statements for fibrations. It turns out that these properties characterize cofibrations and
fibrations (and acyclic ones).

52.1.9 Theorem Suppose C is a model category. Then:
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(1) A map f is a cofibration iff it has the left lifting property with respect to the class of
acyclic fibrations.

(2) A map is a fibration iff it has the right lifting property w.r.t. the class of acyclic
cofibrations.

Proof. Suppose you have a map f , that has LLP w.r.t. all acyclic fibrations and you want
it to be a cofibration. (The other direction is an axiom.) Somehow we’re going to have to
get it to be a retract of a cofibration. Somehow you have to use factorization. Factor f :

A

f
��

� p

  
X X ′∼
oooo

We had assumed that f has LLP. There is a lift:

A �
� i //

f
��

X ′

∼
����

X
Id //

>>

X

This implies that f is a retract of i.

A //

f
��

A� _

i
��

// A

f
��

X
∃ // X ′ // X

52.1.10 Theorem (1) A map p is an acyclic fibration iff it has RLP w.r.t. cofibrations

(2) A map is an acyclic cofibration iff it has LLP w.r.t. all fibrations.

Suppose we know the cofibrations. Then we don’t know the weak equivalences, or the
fibrations, but we know the maps that are both. If we know the fibrations, we know
the maps that are both weak equivalences and cofibrations. This is basically the same
argument. One direction is easy: if a map is an acyclic fibration, it has the lifting property
by the definitions. Conversely, suppose f has RLP w.r.t. cofibrations. Factor this as a
cofibration followed by an acyclic fibration.

X
Id //� _

��

X

f
��

Y ′
p

∼
// //

>>

Y

f is a retract of p; it is a weak equivalence because p is a weak equivalence. It is a fibration
by the previous theorem.
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52.1.11 Corollary A map is a weak equivalence iff it can be written as the product of an
acyclic fibration and an acyclic cofibration.

We can always write
.

p

    .
f //. �

∼
>>

.

By two out of three f is a weak equivalence iff p is. The class of weak equivalences is
determined by the fibrations and cofibrations.

52.1.12 Example (Topological spaces) The construction here is called the Serre model
structure (although it was defined by Quillen). We have to define some maps.

(1) The fibrations will be Serre fibrations.

(2) The weak equivalences will be weak homotopy equivalences

(3) The cofibrations are determined by the above classes of maps.

52.1.13 Theorem A space equipped with these classes of maps is a model category.

Proof. More work than you realize. M1 is not a problem. The retract axiom is also
obvious. (Any class that has the lifting property also has retracts.) The third property is
also obvious: something is a weak equivalence iff when you apply some functor (homotopy),
it becomes an isomorphism. (This is important.) So we need lifting and factorization. One
of the lifting axioms is also automatic, by the definition of a cofibration. Let’s start with
the factorizations. Introduce two classes of maps:

A = {Dn × {0} → Dn × [0, 1] | n ≥ 0}

B = A ∪ {Sn−1 → Dn | n ≥ 0, S−1 = ∅}

These are compact, in a category-theory sense. By definition of Serre fibrations, a map
is a fibration iff it has the right lifting property with respect to A. A map is an acyclic
fibration iff it has the RLP w.r.t. B. (This was on the homework.) I need another general
fact:

52.1.14 Proposition The class of maps having the left lifting property w.r.t. a class P
is closed under arbitrary coproducts, co-base change, and countable (or even transfinite)
composition. By countable composition

A0 ↪→ A1 → A2 → · · ·

we mean the map A→ colimnßAn.

Suppose I have a map f0 : X0 → Y0. We want to produce a diagram:

X0
//

f0 !!

X1

f1
��
Y
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We have tV → tD where the disjoint union is taken over commutative diagrams

V

��

// X

��
D // Y

where V → D is in A. Sometimes we call these lifting problems. For every lifting problem,
we formally create a solution. This gives a diagram:

tV //

��

tD

��

��

X

((

// X1
f1

!!
Y

where we have subsequently made the pushout to Y . By construction, every lifting problem
in X0 can be solved in X1.

V //

��

X0

��

� � k // X1

��
D //

>> 66

Y // Y

We know that every map in A is a cofibration. Also, tV → tD is a homotopy equivalence.
k is an acylic cofibration because it is a weak equivalence (recall that it is a homotopy
equivalence) and a cofibration.

Now we make a cone of X0 → X1 → · · ·X∞ into Y . The claim is that f is a fibration:

X �
� ∼ //

!!

X∞

f
��
Y

by which we mean
V //

`
��

Xn

��

// Xn+1

��

// X∞

��
D

>>

// Y // Y // Y

where ` ∈ A. V is compact Hausdorff. X∞ was a colimit along closed inclusions.

So I owe you one lifting property, and the other factorization.
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Licenses

GNU Free Documentation License
Version 1.3, 3 November 2008

Copyright c© 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc. http://fsf.

org/ Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful
document “free” in the sense of freedom: to assure everyone the effective freedom to copy
and redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for
their work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing
the same freedoms that the software does. But this License is not limited to software
manuals; it can be used for any textual work, regardless of subject matter or whether it
is published as a printed book. We recommend this License principally for works whose
purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice
placed by the copyright holder saying it can be distributed under the terms of this License.
Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The “Document”, below, refers to any such
manual or work. Any member of the public is a licensee, and is addressed as “you”. You
accept the license if you copy, modify or distribute the work in a way requiring permission
under copyright law.

A “Modified Version” of the Document means any work containing the Document or a
portion of it, either copied verbatim, or with modifications and/or translated into another
language.
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A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that could
fall directly within that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is not
allowed to be designated as Invariant. The Document may contain zero Invariant Sections.
If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts
or Back-Cover Texts, in the notice that says that the Document is released under this
License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at
most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in a
format whose specification is available to the general public, that is suitable for revising the
document straightforwardly with generic text editors or (for images composed of pixels)
generic paint programs or (for drawings) some widely available drawing editor, and that
is suitable for input to text formatters or for automatic translation to a variety of formats
suitable for input to text formatters. A copy made in an otherwise Transparent file format
whose markup, or absence of markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is not Transparent if used for
any substantial amount of text. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup,
Texinfo input format, LaTeX input format, SGML or XML using a publicly available
DTD, and standard-conforming simple HTML, PostScript or PDF designed for human
modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque
formats include proprietary formats that can be read and edited only by proprietary word
processors, SGML or XML for which the DTD and/or processing tools are not generally
available, and the machine-generated HTML, PostScript or PDF produced by some word
processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages
as are needed to hold, legibly, the material this License requires to appear in the title page.
For works in formats which do not have any title page as such, “Title Page” means the
text near the most prominent appearance of the work’s title, preceding the beginning of
the body of the text.

The “publisher” means any person or entity that distributes copies of the Document to
the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
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another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve the
Title” of such a section when you modify the Document means that it remains a section
“Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to be
included by reference in this License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has no effect on the
meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncom-
mercially, provided that this License, the copyright notices, and the license notice saying
this License applies to the Document are reproduced in all copies, and that you add no
other conditions whatsoever to those of this License. You may not use technical measures
to obstruct or control the reading or further copying of the copies you make or distribute.
However, you may accept compensation in exchange for copies. If you distribute a large
enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document’s license notice requires Cover
Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover.
Both covers must also clearly and legibly identify you as the publisher of these copies.
The front cover must present the full title with all words of the title equally prominent
and visible. You may add other material on the covers in addition. Copying with changes
limited to the covers, as long as they preserve the title of the Document and satisfy these
conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the
first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto
adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you
must either include a machine-readable Transparent copy along with each Opaque copy,
or state in or with each Opaque copy a computer-network location from which the general
network-using public has access to download using public-standard network protocols a
complete Transparent copy of the Document, free of added material. If you use the latter
option, you must take reasonably prudent steps, when you begin distribution of Opaque
copies in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opaque copy
(directly or through your agents or retailers) of that edition to the public.
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It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an
updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of it. In
addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any, be listed
in the History section of the Document). You may use the same title as a previous version
if the original publisher of that version gives permission. B. List on the Title Page, as
authors, one or more persons or entities responsible for authorship of the modifications in
the Modified Version, together with at least five of the principal authors of the Document
(all of its principal authors, if it has fewer than five), unless they release you from this
requirement. C. State on the Title page the name of the publisher of the Modified Version,
as the publisher. D. Preserve all the copyright notices of the Document. E. Add an
appropriate copyright notice for your modifications adjacent to the other copyright notices.
F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form shown
in the Addendum below. G. Preserve in that license notice the full lists of Invariant
Sections and required Cover Texts given in the Document’s license notice. H. Include an
unaltered copy of this License. I. Preserve the section Entitled “History”, Preserve its
Title, and add to it an item stating at least the title, year, new authors, and publisher of
the Modified Version as given on the Title Page. If there is no section Entitled “History” in
the Document, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as stated in
the previous sentence. J. Preserve the network location, if any, given in the Document for
public access to a Transparent copy of the Document, and likewise the network locations
given in the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published at least
four years before the Document itself, or if the original publisher of the version it refers
to gives permission. K. For any section Entitled “Acknowledgements” or “Dedications”,
Preserve the Title of the section, and preserve in the section all the substance and tone of
each of the contributor acknowledgements and/or dedications given therein. L. Preserve
all the Invariant Sections of the Document, unaltered in their text and in their titles.
Section numbers or the equivalent are not considered part of the section titles. M. Delete
any section Entitled “Endorsements”. Such a section may not be included in the Modified
Version. N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict
in title with any Invariant Section. O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at your
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option designate some or all of these sections as invariant. To do this, add their titles to
the list of Invariant Sections in the Modified Version’s license notice. These titles must be
distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorse-
ments of your Modified Version by various parties–for example, statements of peer review
or that the text has been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added
by (or through arrangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrangement made by the
same entity you are acting on behalf of, you may not add another; but you may replace
the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its license notice, and that you
preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the various
original documents, forming one section Entitled “History”; likewise combine any sections
Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You must delete
all sections Entitled “Endorsements”.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with
a single copy that is included in the collection, provided that you follow the rules of this
License for verbatim copying of each of the documents in all other respects.
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You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted document,
and follow this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called an
“aggregate” if the copyright resulting from the compilation is not used to limit the legal
rights of the compilation’s users beyond what the individual works permit. When the
Document is included in an aggregate, this License does not apply to the other works in
the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they must
appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations
requires special permission from their copyright holders, but you may include translations
of some or all Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License, and all the license notices in
the Document, and any Warranty Disclaimers, provided that you also include the original
English version of this License and the original versions of those notices and disclaimers.
In case of a disagreement between the translation and the original version of this License
or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”,
the requirement (section 4) to Preserve its Title (section 1) will typically require changing
the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly pro-
vided under this License. Any attempt otherwise to copy, modify, sublicense, or distribute
it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular copy-
right holder is reinstated (a) provisionally, unless and until the copyright holder explicitly
and finally terminates your license, and (b) permanently, if the copyright holder fails to
notify you of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the
copyright holder notifies you of the violation by some reasonable means, this is the first
time you have received notice of violation of this License (for any work) from that copyright
holder, and you cure the violation prior to 30 days after your receipt of the notice.
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Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have been
terminated and not permanently reinstated, receipt of a copy of some or all of the same
material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Doc-
umentation License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version” applies
to it, you have the option of following the terms and conditions either of that specified
version or of any later version that has been published (not as a draft) by the Free Software
Foundation. If the Document does not specify a version number of this License, you may
choose any version ever published (not as a draft) by the Free Software Foundation. If the
Document specifies that a proxy can decide which future versions of this License can be
used, that proxy’s public statement of acceptance of a version permanently authorizes you
to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide Web
server that publishes copyrightable works and also provides prominent facilities for anybody
to edit those works. A public wiki that anybody can edit is an example of such a server.
A “Massive Multiauthor Collaboration” (or “MMC”) contained in the site means any set
of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license published
by Creative Commons Corporation, a not-for-profit corporation with a principal place of
business in San Francisco, California, as well as future copyleft versions of that license
published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part of
another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works that
were first published under this License somewhere other than this MMC, and subsequently
incorporated in whole or in part into the MMC, (1) had no cover texts or invariant sections,
and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-
SA on the same site at any time before August 1, 2009, provided the MMC is eligible for
relicensing.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:
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Copyright (c) YEAR YOUR NAME.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

A copy of the license is included in the section entitled "GNU

Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . . Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the

Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three,
merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.
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Creative Commons Attribution 4.0 International

===================================================

Creative Commons Corporation (“Creative Commons”) is not a law firm and does not
provide legal services or legal advice. Distribution of Creative Commons public licenses
does not create a lawyer-client or other relationship. Creative Commons makes its licenses
and related information available on an “as-is” basis. Creative Commons gives no war-
ranties regarding its licenses, any material licensed under their terms and conditions, or
any related information. Creative Commons disclaims all liability for damages resulting
from their use to the fullest extent possible.

Using Creative Commons Public Licenses

Creative Commons public licenses provide a standard set of terms and conditions that
creators and other rights holders may use to share original works of authorship and other
material subject to copyright and certain other rights specified in the public license below.
The following considerations are for informational purposes only, are not exhaustive, and
do not form part of our licenses.

Considerations for licensors: Our public licenses are

intended for use by those authorized to give the public

permission to use material in ways otherwise restricted by

copyright and certain other rights. Our licenses are

irrevocable. Licensors should read and understand the terms

and conditions of the license they choose before applying it.

Licensors should also secure all rights necessary before

applying our licenses so that the public can reuse the

material as expected. Licensors should clearly mark any

material not subject to the license. This includes other CC-

licensed material, or material used under an exception or

limitation to copyright. More considerations for licensors:

wiki.creativecommons.org/Considerations_for_licensors

Considerations for the public: By using one of our public

licenses, a licensor grants the public permission to use the

licensed material under specified terms and conditions. If

the licensor’s permission is not necessary for any reason--for

example, because of any applicable exception or limitation to

copyright--then that use is not regulated by the license. Our

licenses grant only permissions under copyright and certain

other rights that a licensor has authority to grant. Use of

the licensed material may still be restricted for other

reasons, including because others have copyright or other

rights in the material. A licensor may make special requests,

such as asking that all changes be marked or described.

Although not required by our licenses, you are encouraged to
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respect those requests where reasonable. More_considerations

for the public:

wiki.creativecommons.org/Considerations_for_licensees

===================================================

Creative Commons Attribution 4.0 International Public License

By exercising the Licensed Rights (defined below), You accept and agree to be bound by
the terms and conditions of this Creative Commons Attribution 4.0 International Public
License (“Public License”). To the extent this Public License may be interpreted as a
contract, You are granted the Licensed Rights in consideration of Your acceptance of these
terms and conditions, and the Licensor grants You such rights in consideration of benefits
the Licensor receives from making the Licensed Material available under these terms and
conditions.

Section 1 – Definitions.

a. Adapted Material means material subject to Copyright and Similar Rights that is
derived from or based upon the Licensed Material and in which the Licensed Material
is translated, altered, arranged, transformed, or otherwise modified in a manner
requiring permission under the Copyright and Similar Rights held by the Licensor.
For purposes of this Public License, where the Licensed Material is a musical work,
performance, or sound recording, Adapted Material is always produced where the
Licensed Material is synched in timed relation with a moving image.

b. Adapter’s License means the license You apply to Your Copyright and Similar Rights
in Your contributions to Adapted Material in accordance with the terms and condi-
tions of this Public License.

c. Copyright and Similar Rights means copyright and/or similar rights closely related
to copyright including, without limitation, performance, broadcast, sound record-
ing, and Sui Generis Database Rights, without regard to how the rights are labeled
or categorized. For purposes of this Public License, the rights specified in Section
2(b)(1)-(2) are not Copyright and Similar Rights.

d. Effective Technological Measures means those measures that, in the absence of proper
authority, may not be circumvented under laws fulfilling obligations under Article
11 of the WIPO Copyright Treaty adopted on December 20, 1996, and/or similar
international agreements.

e. Exceptions and Limitations means fair use, fair dealing, and/or any other exception
or limitation to Copyright and Similar Rights that applies to Your use of the Licensed
Material.

f. Licensed Material means the artistic or literary work, database, or other material to
which the Licensor applied this Public License.
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g. Licensed Rights means the rights granted to You subject to the terms and conditions
of this Public License, which are limited to all Copyright and Similar Rights that
apply to Your use of the Licensed Material and that the Licensor has authority to
license.

h. Licensor means the individual(s) or entity(ies) granting rights under this Public Li-
cense.

i. Share means to provide material to the public by any means or process that requires
permission under the Licensed Rights, such as reproduction, public display, public
performance, distribution, dissemination, communication, or importation, and to
make material available to the public including in ways that members of the public
may access the material from a place and at a time individually chosen by them.

j. Sui Generis Database Rights means rights other than copyright resulting from Di-
rective 96/9/EC of the European Parliament and of the Council of 11 March 1996
on the legal protection of databases, as amended and/or succeeded, as well as other
essentially equivalent rights anywhere in the world.

k. You means the individual or entity exercising the Licensed Rights under this Public
License. Your has a corresponding meaning.

Section 2 – Scope.

a. License grant.

1. Subject to the terms and conditions of this Public License, the Licensor hereby
grants You a worldwide, royalty-free, non-sublicensable, non-exclusive, irrevo-
cable license to exercise the Licensed Rights in the Licensed Material to:

a. reproduce and Share the Licensed Material, in whole or

in part; and

b. produce, reproduce, and Share Adapted Material.

2. Exceptions and Limitations. For the avoidance of doubt, where Exceptions and
Limitations apply to Your use, this Public License does not apply, and You do
not need to comply with its terms and conditions.

3. Term. The term of this Public License is specified in Section 6(a).

4. Media and formats; technical modifications allowed. The Licensor authorizes
You to exercise the Licensed Rights in all media and formats whether now
known or hereafter created, and to make technical modifications necessary to
do so. The Licensor waives and/or agrees not to assert any right or author-
ity to forbid You from making technical modifications necessary to exercise the
Licensed Rights, including technical modifications necessary to circumvent Ef-
fective Technological Measures. For purposes of this Public License, simply
making modifications authorized by this Section 2(a)

(4) never produces Adapted Material.
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5. Downstream recipients.

a. Offer from the Licensor -- Licensed Material. Every

recipient of the Licensed Material automatically

receives an offer from the Licensor to exercise the

Licensed Rights under the terms and conditions of this

Public License.

b. No downstream restrictions. You may not offer or impose

any additional or different terms or conditions on, or

apply any Effective Technological Measures to, the

Licensed Material if doing so restricts exercise of the

Licensed Rights by any recipient of the Licensed

Material.

6. No endorsement. Nothing in this Public License constitutes or may be construed
as permission to assert or imply that You are, or that Your use of the Licensed
Material is, connected with, or sponsored, endorsed, or granted official status by,
the Licensor or others designated to receive attribution as provided in Section
3(a)(1)(A)(i).

b. Other rights.

1. Moral rights, such as the right of integrity, are not licensed under this Public
License, nor are publicity, privacy, and/or other similar personality rights; how-
ever, to the extent possible, the Licensor waives and/or agrees not to assert any
such rights held by the Licensor to the limited extent necessary to allow You to
exercise the Licensed Rights, but not otherwise.

2. Patent and trademark rights are not licensed under this Public License.

3. To the extent possible, the Licensor waives any right to collect royalties from
You for the exercise of the Licensed Rights, whether directly or through a collect-
ing society under any voluntary or waivable statutory or compulsory licensing
scheme. In all other cases the Licensor expressly reserves any right to collect
such royalties.

Section 3 – License Conditions.

Your exercise of the Licensed Rights is expressly made subject to the following conditions.

a. Attribution.

1. If You Share the Licensed Material (including in modified form), You must:

a. retain the following if it is supplied by the Licensor

with the Licensed Material:

i. identification of the creator(s) of the Licensed

Material and any others designated to receive
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attribution, in any reasonable manner requested by

the Licensor (including by pseudonym if

designated);

ii. a copyright notice;

iii. a notice that refers to this Public License;

iv. a notice that refers to the disclaimer of

warranties;

v. a URI or hyperlink to the Licensed Material to the

extent reasonably practicable;

b. indicate if You modified the Licensed Material and

retain an indication of any previous modifications; and

c. indicate the Licensed Material is licensed under this

Public License, and include the text of, or the URI or

hyperlink to, this Public License.

2. You may satisfy the conditions in Section 3(a)(1) in any reasonable manner
based on the medium, means, and context in which You Share the Licensed Ma-
terial. For example, it may be reasonable to satisfy the conditions by providing
a URI or hyperlink to a resource that includes the required information.

3. If requested by the Licensor, You must remove any of the information required
by Section 3(a)(1)(A) to the extent reasonably practicable.

4. If You Share Adapted Material You produce, the Adapter’s License You apply
must not prevent recipients of the Adapted Material from complying with this
Public License.

Section 4 – Sui Generis Database Rights.

Where the Licensed Rights include Sui Generis Database Rights that apply to Your use of
the Licensed Material:

a. for the avoidance of doubt, Section 2(a)(1) grants You the right to extract, reuse,
reproduce, and Share all or a substantial portion of the contents of the database;

b. if You include all or a substantial portion of the database contents in a database in
which You have Sui Generis Database Rights, then the database in which You have
Sui Generis Database Rights (but not its individual contents) is Adapted Material;
and

c. You must comply with the conditions in Section 3(a) if You Share all or a substantial
portion of the contents of the database.
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For the avoidance of doubt, this Section 4 supplements and does not replace Your obli-
gations under this Public License where the Licensed Rights include other Copyright and
Similar Rights.

Section 5 – Disclaimer of Warranties and Limitation of Liability.

a. UNLESS OTHERWISE SEPARATELY UNDERTAKEN BY THE LICENSOR, TO
THE EXTENT POSSIBLE, THE LICENSOR OFFERS THE LICENSED MATE-
RIAL AS-IS AND AS-AVAILABLE, AND MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND CONCERNING THE LICENSED MATERIAL,
WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHER. THIS INCLUDES,
WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTABILITY, FIT-
NESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT, ABSENCE OF
LATENT OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OR AB-
SENCE OF ERRORS, WHETHER OR NOT KNOWN OR DISCOVERABLE. WHERE
DISCLAIMERS OF WARRANTIES ARE NOT ALLOWED IN FULL OR IN PART,
THIS DISCLAIMER MAY NOT APPLY TO YOU.

b. TO THE EXTENT POSSIBLE, IN NO EVENT WILL THE LICENSOR BE LI-
ABLE TO YOU ON ANY LEGAL THEORY (INCLUDING, WITHOUT LIMITA-
TION, NEGLIGENCE) OR OTHERWISE FOR ANY DIRECT, SPECIAL, INDI-
RECT, INCIDENTAL, CONSEQUENTIAL, PUNITIVE, EXEMPLARY, OR OTHER
LOSSES, COSTS, EXPENSES, OR DAMAGES ARISING OUT OF THIS PUBLIC
LICENSE OR USE OF THE LICENSED MATERIAL, EVEN IF THE LICEN-
SOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH LOSSES, COSTS,
EXPENSES, OR DAMAGES. WHERE A LIMITATION OF LIABILITY IS NOT
ALLOWED IN FULL OR IN PART, THIS LIMITATION MAY NOT APPLY TO
YOU.

c. The disclaimer of warranties and limitation of liability provided above shall be in-
terpreted in a manner that, to the extent possible, most closely approximates an
absolute disclaimer and waiver of all liability.

Section 6 – Term and Termination.

a. This Public License applies for the term of the Copyright and Similar Rights licensed
here. However, if You fail to comply with this Public License, then Your rights under
this Public License terminate automatically.

b. Where Your right to use the Licensed Material has terminated under Section 6(a), it
reinstates:

1. automatically as of the date the violation is cured, provided it is cured within
30 days of Your discovery of the violation; or

2. upon express reinstatement by the Licensor.

For the avoidance of doubt, this Section 6(b) does not affect any right the Licensor
may have to seek remedies for Your violations of this Public License.

341



Licensing CC BY 4.0

c. For the avoidance of doubt, the Licensor may also offer the Licensed Material under
separate terms or conditions or stop distributing the Licensed Material at any time;
however, doing so will not terminate this Public License.

d. Sections 1, 5, 6, 7, and 8 survive termination of this Public License.

Section 7 – Other Terms and Conditions.

a. The Licensor shall not be bound by any additional or different terms or conditions
communicated by You unless expressly agreed.

b. Any arrangements, understandings, or agreements regarding the Licensed Material
not stated herein are separate from and independent of the terms and conditions of
this Public License.

Section 8 – Interpretation.

a. For the avoidance of doubt, this Public License does not, and shall not be interpreted
to, reduce, limit, restrict, or impose conditions on any use of the Licensed Material
that could lawfully be made without permission under this Public License.

b. To the extent possible, if any provision of this Public License is deemed unenforce-
able, it shall be automatically reformed to the minimum extent necessary to make it
enforceable. If the provision cannot be reformed, it shall be severed from this Public
License without affecting the enforceability of the remaining terms and conditions.

c. No term or condition of this Public License will be waived and no failure to comply
consented to unless expressly agreed to by the Licensor.

d. Nothing in this Public License constitutes or may be interpreted as a limitation
upon, or waiver of, any privileges and immunities that apply to the Licensor or You,
including from the legal processes of any jurisdiction or authority.

===================================================

Creative Commons is not a party to its public licenses. Notwithstanding, Creative Com-
mons may elect to apply one of its public licenses to material it publishes and in those
instances will be considered the “Licensor.” Except for the limited purpose of indicating
that material is shared under a Creative Commons public license or as otherwise permit-
ted by the Creative Commons policies published at creativecommons.org/policies, Creative
Commons does not authorize the use of the trademark “Creative Commons” or any other
trademark or logo of Creative Commons without its prior written consent including, with-
out limitation, in connection with any unauthorized modifications to any of its public
licenses or any other arrangements, understandings, or agreements concerning use of li-
censed material. For the avoidance of doubt, this paragraph does not form part of the
public licenses.

Creative Commons may be contacted at https://creativecommons.org.

342

https://creativecommons.org


Bibliography

Alexandroff, P. & Hopf, H. (1965). Topologie. Erster Band. Grundbegriffe der mengen-
theoretischen Topologie, Topologie der Komplexe, topologische Invarianzsätze und an-
schliessende Begriffsbildunge n, Verschlingungen im n-dimensionalen euklidischen Raum,
stetige Abbildungen vo n Polyedern. Chelsea Publishing Co., New York.

Bourbaki, N. (1989). Algebra I. Chapters 1–3. Elements of Mathematics (Berlin). Berlin:
Springer-Verlag. Translated from the French, Reprint of the 1974 English translation.

Bourbaki, N. (2004). Theory of sets. Elements of Mathematics (Berlin). Springer-Verlag,
Berlin. Reprint of the 1968 English translation [Hermann, Paris].

Brown, R. (2006). Topology and groupoids. BookSurge, LLC, Charleston, SC. Third edition
of ıt Elements of modern topology [McGraw-Hill, New York, 1968], With 1 CD-ROM
(Windows, Macintosh and UNIX).

Cartan, H. & Eilenberg, S. (1999). Homological Algebra. Princeton Landmarks in Math-
ematics. Princeton University Press, Princeton, NJ. With an appendix by David A.
Buchsbaum, Reprint of the 1956 original.

Dedekind, R. (1893). Was Sind Und Was Sollen Die Zahlen? (second ed.). Braunschweig:
Friedrich Vieweg und Sohn.

Dold, A. (1995). Lectures on Algebraic Topology. Springer-Verlag Berlin Heidelberg. reprint
of the 2nd edition (November 1980), originally published as volume 200 in the series:
Grundlehren der mathematischen Wissenschaften.

Grothendieck, A. (1957). Sur quelques points d’algèbre homologique. Tôhoku Math. J.
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