HOMOLOGICAL ALGEBRA - LECTURE NOTES

LECTURES BY PAUL BALMER
NOTES BY GEUNHO GIM

Abstract

Аbstract. These notes are based on the course Math 212, Homological Algebra given by professor Paul Balmer on Spring 2014. Most of these notes were live- $\mathrm{T}_{\mathrm{E}} \mathrm{Xed}$ in class. The footnotes are added by me.

Contents

1. Abelian Categories 2
1.1. Additive categories 2
1.2. Kernels and cokernels 3
1.3. Abelian categories 4
1.4. Exact sequences 6
1.5. Functoriality in abelian categories 9
1.6. Left and right exact functors 13
1.7. Injectives and projectives 15
2. Derived Functors 20
2.1. Complexes 20
2.2. Projective and injective resolutions 24
2.3. Left and right derived functors 30
2.4. Ext and Tor 33
2.5. Group homology and cohomology 38
2.6. Sheaf cohomology 42
3. Spectral sequences (an introduction) 45
3.1. Introduction 45
3.2. Exact couples 47
3.3. Some examples 49

1. Abelian Categories

1.1. Additive categories.

Roughly, this means we can add morphisms $f+g$ and add objects $A \oplus B$.
Definition 1.1.1. An additive category is a category which satisfies the followings:
(1) there exists a zero object (final and initial)
(2) there exist a finite product \& coproduct, and they are same $(A \coprod B \underset{\theta}{\sim} A \times B)$
(3) $\operatorname{Hom}(A, B)$ is an abelian group with induced operation, i.e., for $f, g: A \rightarrow B$

$$
f+g: A \xrightarrow{\binom{1}{1}} A \times A=A \coprod A \xrightarrow{\left(\begin{array}{ll}
f & 0 \\
0 & g
\end{array}\right)} B \times B=B \coprod B \xrightarrow{\left(\begin{array}{ll}
1 & 1
\end{array}\right)} B
$$

Remark 1.1.2. The following maps are from universality.

Definition 1.1.3. A category is preadditive if $\operatorname{Hom}(A, B)$ is abelian with bilinear composition, there is a zero object, and there is a biproduct $A \oplus B=A \times B=A \coprod B$ with four morphisms

satisfying $p_{A} \circ i_{A}=i d_{A}, i_{A} p_{A}+i_{B} p_{B}=i d_{A \oplus B}$, etc.
Definition 1.1.4. Let $F: \mathcal{A} \rightarrow \mathcal{B}$ be a functor between (pre)additive categories. F is called additive if $F(f+g)=F(f)+F(g)$. This forces $F(A \oplus B)=F(A) \oplus F(B) .{ }^{1}$

Question 1.1.5. What are preadditive categories with only one object? ${ }^{2}$
Example 1.1.6. R - $M o d, R$ - Proj (an R-module is projective if and only if it is a direct summand of a free module) and R-Inj are additive. Here R-Proj and R-Inj are full subcategories of projective, injective R-modules.

Example 1.1.7. If a category \mathcal{A} is additive, then so is $\mathcal{A}^{o p}$. We have $A^{o} \oplus B^{o}=(A \oplus B)^{o}, i_{A^{o}}=$ $\left(p_{A}\right)^{0}$, etc.

[^0]Remark 1.1.8. Consider $f=\left(f_{i j}\right)_{n \times m}: A_{1} \oplus \cdots \oplus A_{m} \rightarrow B_{1} \oplus \cdots \oplus B_{n}$ where $f_{i j}=p_{i, B} \circ f \circ i_{j, A}$. Composition of these maps corresponds to the matrix multiplication.

1.2. Kernels and cokernels.

Definition 1.2.1. Let \mathcal{A} be an additive category and $f: A \rightarrow B$ be a morphism. We define the kernel of f by $(\operatorname{ker} f, i: \operatorname{ker} f \rightarrow A)$ if $f i=0$ and it is a pullback (a limit), i.e., if $f t=0$ below,

then there is a unique $\tilde{t}: T \rightarrow \operatorname{ker} f$ satisfying $\tilde{t}=t$. Similarly, we can define the cokernel of f ($p: B \rightarrow \operatorname{coker} f$) by a pushout:

Definition 1.2.2. $f: A \rightarrow B$ is a monomorphism if $f t=f t^{\prime}$ implies $t=t^{\prime}: T \rightarrow A$, which is equivalent to say $\operatorname{ker} f=0 . f: A \rightarrow B$ is an epimorphism if $s f=s^{\prime} f$ implies $s=s^{\prime}: B \rightarrow S$, which is equivalent to say coker $f=0$.
Remark 1.2.3. If there is $\operatorname{ker} f$, then $i: \operatorname{ker} f \hookrightarrow A$ is a monomorphism.

Remark 1.2.4. The pullback of

exists if and only if $A \oplus B \xrightarrow{\left(\begin{array}{ll}f & -g\end{array}\right)} C$ has kernel $P \xrightarrow{\binom{f^{\prime}}{g^{\prime}}} A \oplus B$.

exists if and only if $A \rightarrow B \oplus C$ has cokernel.

for pullback and \ulcorner. for pushout.)
(1) If this is cartesian (A is a pullback) and $\operatorname{ker} h$ exists, then $\operatorname{ker} g$ exists and $\operatorname{ker} g=\operatorname{ker} h$ in a compatible way with f, i.e., there is $i: \operatorname{ker} h \rightarrow A$, which is $\operatorname{ker} g$, and $f i=j: \operatorname{ker} h \rightarrow B$ is $\operatorname{ker} h$.
(2) dual statement holds for cocartesian (D is a pushout) case.

Proof. Since A is a pullback, there is a unique $i: \operatorname{ker} h \rightarrow A$ induced by $h j=0=k \circ 0$

We can check that $i: \operatorname{ker} h \rightarrow A$ is indeed the kernel of $g .{ }^{3}$

1.3. Abelian categories.

Definition 1.3.1. An abelian category is an additive category in which every morphism has a kernel and a cokernel, and ker(coker) $=\operatorname{coker}(\mathrm{ker})$:

The map is induced as follows. Since $f i=0, f$ factors through $A \rightarrow$ coker $i \rightarrow B$. Since the composition pf:A coker $i \rightarrow B \rightarrow$ coker f is zero and $A \rightarrow$ coker i is an epimorphism, the composition coker $i \rightarrow B \rightarrow$ coker f is zero. Thus coker $i \rightarrow B$ factors through coker $i \rightarrow \operatorname{ker} p \hookrightarrow$ B. We require that this induced map is an isomorphism.

Definition 1.3.2. Let \mathcal{A} be an abelian category and $f: A \rightarrow B$ in \mathcal{A}. We define the image of f by $\operatorname{im} f=\operatorname{coker}(\operatorname{ker} f)=\operatorname{ker}(\operatorname{coker} f)$
as seen in the factorization

Example 1.3.3. Consider \mathbb{Z}-proj, the full subcategory of finitely generated projective (=free) \mathbb{Z}-modules. \mathbb{Z}-proj is NOT an abelian category. Consider $f: \mathbb{Z} \xrightarrow{\times 2} \mathbb{Z}$ in \mathbb{Z}-proj. We have $\operatorname{ker} f=0=\operatorname{coker} f$, but the induced map $\mathbb{Z}=\operatorname{coker} i \xrightarrow{\times 2} \operatorname{ker} p=\mathbb{Z}$ is not an isomorphism.
${ }^{3}$ Given $t: T \rightarrow A$ such that $g t=0$, there is a unique map $\tilde{t}: T \rightarrow \operatorname{ker} h$ such that $f t=\tilde{j t}$ by the definition of ker h. We can check that $f(t-\widetilde{i t})=0$ and $g(t-\widetilde{i t})=0$, thus $t=\widetilde{i t}$.

Question 1.3.4 (Final Problem \#1). The category of Hausdorff topological abelian group (or C-vector spaces) is not abelian even though all morphisms have kernels and cokernels. Cokernel is given by coker $(f: V \rightarrow W)=W / \overline{\operatorname{im} f}$.

Remark 1.3.5. Kernels and cokernels are natural in the morphisms:

commutes.
Proposition 1.3.6 (Epi-mono factorization). In an abelian category \mathcal{A}, all morphisms $f: A \rightarrow B$ factors

Proposition 1.3.7. (1) A monomorphism is a kernel (of its cokernel).
(2) An epimorphism is a cokernel (of its kernel).
(3) If a morphism is a monomorphism and an epimorphism, then it is an isomorphism.

Proof. If $f: A \rightarrow B$ is a monomorphism, then $\operatorname{ker} f=0$, thus $A \xrightarrow{\sim} \operatorname{coker} f$. For (3), we have

Example 1.3.8. Let \mathcal{C} be a small category (set of objects) and \mathcal{A} be an abelian category. Define $\mathcal{A}^{\mathcal{C}}=\operatorname{Fun}(\mathcal{C}, \mathcal{A})$ be the category of functors and natural transformations. Then, $\mathcal{A}^{\mathcal{C}}$ is abelian with

$$
\operatorname{ker}(\mathcal{F}: F \rightarrow G): C \mapsto \operatorname{ker}(\mathcal{F}(C): F(C) \rightarrow G(C))
$$

Example 1.3.9. Let \mathcal{C} be an additive category and \mathcal{A} be an abelian category. Then, $\operatorname{Add}(\mathcal{C}, \mathcal{A})$, the category of additive functors is abelian.
Example 1.3.10. Let X be a topological space and \mathcal{A} be an abelian category. $\operatorname{PreSh}_{\mathcal{A}}(X)$ with values in \mathcal{A} is abelian with openwise kernel and cokernel. Indeed, $\operatorname{PreSh}_{\mathcal{A}}(X)=\mathcal{A}^{\operatorname{Open}(X)^{\text {op }}}$ where

$$
\operatorname{Mor}_{O p e n(X)}(U, V)= \begin{cases}\varnothing & \text { if } U \nsubseteq V \\ U \hookrightarrow V & \text { if } U \subseteq V\end{cases}
$$

Example 1.3.11. $S h_{\mathcal{A}}(X)$ is abelian. Kernels are the ones in $\operatorname{PreSh}_{\mathcal{A}}(X)$ and cokernels (or any colimits) are the sheafifications of the ones in $\operatorname{PreSh}_{\mathcal{A}}(X)$.
Remark 1.3.12. A morphism $f: \mathcal{F} \rightarrow \mathcal{G}$ between sheaves is surjective if for all open $U \subseteq X$ and for all $b \in \mathcal{G}(U)$, there is a covering $U=\cup V_{i}$ and $a_{i} \in \mathcal{F}\left(V_{i}\right)$ such that $f\left(V_{i}\right)\left(a_{i}\right)=\left.b\right|_{V_{i}}$ for all i. This is equivalent to say that $f_{x}: \mathcal{F}_{x} \rightarrow \mathcal{G}_{x}$ for all $x \in X$.

1.4. Exact sequences.

Definition 1.4.1. The sequence $A \xrightarrow{f} B \xrightarrow{g} C$ with $g f=0$ is exact at B if $\bar{f}: \operatorname{im} f \rightarrow \operatorname{ker} g$ is an isomorphism. ${ }^{5}$

$$
0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0
$$

is a short exact sequence if $f=\operatorname{ker} g$ and $g=\operatorname{coker} f$.
Exercise 1.4.2. $0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C$ is exact if and only if $f=\operatorname{ker} g .{ }^{6}$ Dually, $A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0$ is exact if and only if $g=$ coker f. Also, $0 \rightarrow \operatorname{ker} f \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow \operatorname{coker} f \rightarrow 0$ is exact.

Exercise 1.4.3. Suppose $A \xrightarrow{f} B \xrightarrow{g} C$ and $g f=0$. The followings are equivalent.
(1) The sequence is exact at B
(2) $\tilde{f}: A \rightarrow \operatorname{ker} g$ is epic
(3) $\bar{g}:$ coker $f \rightarrow C$ is monic
(4) $0 \rightarrow \operatorname{im} f \rightarrow B \rightarrow \operatorname{im} g \rightarrow 0$ is a short exact sequence. ${ }^{7}$

Exercise 1.4.4. In $S h_{\mathcal{A}}(X)$, the sequence $\mathcal{F} \xrightarrow{f} \mathcal{G} \xrightarrow{g} \mathcal{H}$ is exact if and only if $\mathcal{F}_{x} \xrightarrow{f_{x}} \mathcal{G}_{x} \xrightarrow{g_{x}} \mathcal{H}_{x}$ is exact for all $x \in X$.

Theorem 1.4.5 (Five Lemma). Suppose we have the following commutative diagram with exact rows:

If f, g, i, j are isomorphisms, then so is h.
Proof. Prove the special case first: if $A=A^{\prime}=E=E^{\prime}=0$ and two of g, h, i are isomorphisms, then so is the other. Then derive the general case from

We get the two isomorphisms on the left and on the right by applying the special case successively on the left and on the right.
Remark 1.4.6. The above proof would be easier if we use element to chase around, i.e., when the abelian category admits a fully faithful functor $\mathcal{A} \rightarrow R$ - Mod such that a sequence in \mathcal{A} is exact if and only if it is exact in R-Mod. This is true for a small (set of objects) abelian category by Freyd-Mitchell embedding theorem.
${ }^{5}$ Consider $B \xrightarrow{p}$ coker $f, \operatorname{ker} g \stackrel{j}{\hookrightarrow} B$ and $\operatorname{ker} p \xrightarrow{u} B$. We also have an induced $\operatorname{ker} p \xrightarrow{\alpha} \operatorname{ker} g$. Then $(\operatorname{im} f \cong$ $\operatorname{ker} g) \Leftrightarrow p j=0 \Leftrightarrow(\operatorname{coker} f \cong \operatorname{im} g)$ by the following. If $\operatorname{ker} g \cong \operatorname{im} f=\operatorname{ker} p$, then clearly $p j=0$. If $p j=0$, then there exists $\operatorname{ker} g \xrightarrow{\beta} \operatorname{ker} p$ satisfying $u \beta=j$. By using $j \alpha=u$, we get $j \alpha \beta=u \beta=j$. Since j is monic, $\alpha \beta=1$. Similarly we have $\beta \alpha=1$, thus $\operatorname{ker} p \cong \operatorname{ker} g$.
${ }^{6}$ ker $g=\operatorname{im} f=f$ since $0 \rightarrow A \xrightarrow{f} B$ is exact.
${ }^{7}$ For example, $0 \rightarrow \operatorname{im} f \rightarrow B \rightarrow \operatorname{im} g$ is exact if and only if $\operatorname{im} f=\operatorname{ker}(B \rightarrow \operatorname{im} g)=\operatorname{ker} g$.

Proposition 1.4.7. Let \mathcal{A} be an abelian category and $0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0$ be a short exact sequence. The followings are equivalent:
(1) f is a split monomorphism (i.e., there is $B \xrightarrow{r} A$ such that $r f=1$.)
(2) g is a split epimorphism.
(3) The sequence is split exact (i.e., there are $B \xrightarrow{r} A, C \xrightarrow{s} B$ such that $r f=1, g s=1$ and $f r+s g=1$.)
(4) There exists $h: B \rightarrow A \oplus C$ which makes the following commute:

Proof. ((3) \Rightarrow (1), (2)) and ((4) \Rightarrow (3)) : Clear.
For (1) $\Rightarrow(4)$, use $h=\binom{r}{g}$ and use the five lemma.

$A \xrightarrow{\binom{-f}{g}} B \oplus C \xrightarrow{(h k)} D \rightarrow 0$. We can take $D=\operatorname{coker}\left(A \xrightarrow{\binom{-f}{g}} B \oplus C\right)$.
Definition 1.4.9. $\stackrel{\downarrow}{\downarrow} \longrightarrow \stackrel{\downarrow}{\bullet}$ is (co)cartesian if it is a pullback (pushout). It is bicartesian if both.

(1) It is bicartesian.
(2) $0 \rightarrow A \xrightarrow{\binom{-f}{g}} B \oplus C \xrightarrow{(h k)} D \rightarrow 0$ is exact.
(3) the induced maps $\widetilde{g}: \operatorname{ker} f \rightarrow \operatorname{ker} k$ and $\bar{h}:$ coker $f \rightarrow$ coker k are isomorphisms.
(4) \tilde{f} and \bar{k} are isomorphisms.

Proof. (1) \Leftrightarrow (2) By the remark above.
$(1) \Rightarrow(3),(4)$ We've already seen that \tilde{f} is an isomorphism in the additive case.
(4) \Rightarrow (1) By using $\mathcal{A}^{o p}$, it is enough to show that it is cartesian. We need to show that for all $T \in \mathcal{A}$, there is a bijection

$$
\begin{aligned}
\operatorname{Hom}_{\mathcal{A}}(T, A) & \longleftrightarrow \\
& \mapsto
\end{aligned}
$$

Suppose $f t=0$ and $g t=0$. Let $i: \operatorname{ker} g \hookrightarrow A$ and $j: \operatorname{ker} h \hookrightarrow B$. Then there exists $\tilde{t}: T \rightarrow \operatorname{ker} g$ such that $t=\widetilde{i t}$. Since $\tilde{j \tilde{f} \tilde{t}}=f \tilde{i t}=f t=0$, we have $\widetilde{t}=0$, i.e., $t=0$.
On the other hand, consider $p: C \rightarrow \operatorname{coker} g$ and $q: D \rightarrow$ coker h. Since \bar{k} is an isomorphism, we have $p u=\bar{k}^{-1} q k u=\bar{k}^{-1} q h s=0$. Take the epi-mono factorization of g, then u factors through
ker $p=E$ via $\tilde{t}: T \rightarrow E$. Take a pullback P of x and \widetilde{t}.

We have $h f b=k g b=k y x b=k y \tilde{t} a=k u a=h s a$, thus $h(f b-s a)=0=k(g b-u a)$. Now $0 \rightarrow P \rightarrow A \oplus T \rightarrow E \rightarrow 0$ is exact. ${ }^{8}$

(1) Suppose this is cartesian. Then, f is monic if and only if k is monic. Suppose further that h is epic. Then, this is bicartesian and g is epic.
(2) Suppose this is cocartesian. Then, g is epic if and only if h is epic. Suppose further that f is monic. Then, this is bicartesian and k is monic.

Proof. For (1), we have $\operatorname{ker} f \xrightarrow{\sim} \operatorname{ker} k$. If h is epic, then

$$
0 \rightarrow A \rightarrow B \oplus C \rightarrow D \rightarrow 0
$$

is exact.
Theorem 1.4.12 (Snake Lemma). Suppose we have the following commutative diagram with exact rows.

[^1]Then, we have the long exact sequence given by the red line below:

This morphism δ is natural in the original data.
Question 1.4.13 (Final Problem \#2). Prove Freyd-Mitchell embedding theorem or the snake lemma without using elements.

1.5. Functoriality in abelian categories.

Definition 1.5.1. An (additive) functor $F: \mathcal{A} \rightarrow \mathcal{B}$ between abelian categories \mathcal{A}, \mathcal{B} is exact if it preserves exact sequences.

Exercise 1.5.2. F preserves exact sequences
$\Leftrightarrow F$ preserves short exact sequences
$\Leftrightarrow F$ preserves kernels and cokernels.
Remark 1.5.3. If F preserves kernel (or cokernel), then it is automatically additive: $F(A \oplus B)=$ $F(A) \oplus F(B)$.

Example 1.5.4. If $S \subseteq R$ is a multiplicative central subset $(S \subseteq Z(R), S S \subseteq S, 1 \in S$), then the functor $S^{-1}(-): R-M o d \rightarrow\left(S^{-1} R\right)$-Mod is exact.

Example 1.5.5. The sheafification functor $a: \operatorname{PreSh}(X) \rightarrow \operatorname{Sh}(X)$ is exact. However, the forgetful functor $u: \operatorname{Sh}(X) \rightarrow \operatorname{PreSh}(X)$ is not exact. Find an example! ${ }^{9}$

Definition 1.5.6. Let \mathcal{B} be an abelian category. A subcategory $\mathcal{A} \subseteq \mathcal{B}$ is an abelian subcategory if \mathcal{A} is abelian and $\mathcal{A} \hookrightarrow \mathcal{B}$ is exact. (\Leftrightarrow sequences in \mathcal{A} is exact if and only if they are exact in \mathcal{B}.)

Example 1.5.7. Let R be a ring and R-mod be the category of finitely generated R-modules. This is an abelian subcategory of $R-M o d$ if and only if R is (left) noetherian.

Exercise 1.5.8. Let $F: \mathcal{A} \rightarrow \mathcal{B}$ be an exact functor. Then,
(1) F is faithful $(F(f)=0 \Rightarrow f=0)$ if and only if F is conservative $(F(A)=0 \Rightarrow A=0)$

[^2](2) F is fully faithful, then F detects exactness. ${ }^{11}$

Definition 1.5.9. Let $\mathcal{A} \subseteq \mathcal{B}$ be a subcategory.
\mathcal{A} is closed under subobjects if $B \hookrightarrow A \in \mathcal{A}$ in \mathcal{B} implies $B \in \mathcal{A}$.
\mathcal{A} is closed under quotients if $\mathcal{A} \ni A \rightarrow B$ in \mathcal{B} implies $B \in \mathcal{A}$.
\mathcal{A} is closed under extensions if $0 \rightarrow A \rightarrow B \rightarrow A^{\prime} \rightarrow 0$ is a short exact sequence in \mathcal{B} and $A, A^{\prime} \in \mathcal{A}$, then $B \in \mathcal{A}$.
\mathcal{A} is a Serre subcategory of \mathcal{B} if it is a full, abelian subcategory closed under subobjects, quotients, and extensions.

Example 1.5.10. Let $S \subseteq R$ be a central multiplicative subset. Let S-Tors be the full subcategory of R-Mod such that $M \in S$-Tors if and only if $S^{-1} M=0$. $\left(S\right.$-Tors $\left.=\operatorname{ker}\left(S^{-1}(-)\right)\right)$ This is a Serre subcategory of R-Mod.

Example 1.5.11. Let $F: \mathcal{B} \rightarrow \mathcal{C}$ be an exact functor between abelian categories. Then, $\operatorname{ker}(F)$ is a Serre subcategory of \mathcal{B}.

In fact, the converse also holds.
Theorem 1.5.12 (Gabriel, 1962). Let $\mathcal{A} \subseteq \mathcal{B}$ be a Serre subcategory of an abelian category \mathcal{B}. Then, there exists an exact functor $Q: \mathcal{B} \rightarrow \mathcal{B} / \mathcal{A}$ to an abelian category $\mathcal{B} / \mathcal{A}$ which is initial (thus universal) among those $Q(\mathcal{A})=0$, i.e., for all exact functor $F: \mathcal{B} \rightarrow \mathcal{D}$ such that $F(\mathcal{A})=0$, there exists a unique functor $\bar{F}: \mathcal{B} / \mathcal{A} \rightarrow \mathcal{D}$ satisfying $\bar{F} \circ Q \simeq F$.

Remark 1.5.13. $Q: \mathcal{B} \rightarrow \mathcal{B} / \mathcal{A}$ is a (categorical) localization. Let

$$
\mathcal{S}=\left\{f: B \rightarrow B^{\prime} \text { in } \mathcal{B} \mid \operatorname{ker} f, \text { coker } f \in \mathcal{A}\right\}
$$

Then for exact $F: \mathcal{B} \rightarrow \mathcal{D}$, we have $F(\mathcal{A})=0 \Leftrightarrow F(\mathcal{S}) \subseteq$ isomorphisms. Note that $(0 \rightarrow A)$ is in \mathcal{S} for all $A \in \mathcal{A}$.

Remark 1.5.14. Strictly speaking, $\mathcal{B} / \mathcal{A}$ need to remain a category such that all $B \in \mathcal{B}$ have only sets of isomorphism classes of subobjects.

Proof of Theorem 1.5.12. (Gabriel construction of $\mathcal{B} / \mathcal{A}$)
Define $\operatorname{Obj}(\mathcal{B} / \mathcal{A})=\operatorname{Obj}(\mathcal{B})$.
For $B, B^{\prime} \in \mathcal{B}$, we define $\operatorname{Mor}_{\mathcal{B} / \mathcal{A}}\left(B, B^{\prime}\right)$ by the equivalence classes of

[^3]such that $\operatorname{coker} \alpha, \operatorname{ker} \beta \in \mathcal{A}$. The equivalence relation is given by having common amplification:

The composition is defined as follows:

where you
(1) compose $X^{\prime} \rightarrow B^{\prime} \rightarrow Y$
(2) get epi-mono factorization of (1)
(3) get a pullback $X^{\prime \prime}$ and a pushout $Y^{\prime \prime}$
(4) and compose $X^{\prime \prime} \rightarrow \bullet \rightarrow Y^{\prime \prime}$.

Remark 1.5.15. We say that an exact functor $F: \mathcal{B} \rightarrow \mathcal{C}$ is a quotient or a localization if you set $\mathcal{A}=\operatorname{ker}(F)$ or $\mathcal{S}=\{f \mid F(f)=0\}$, then there is a unique $\operatorname{map} \bar{F}: \mathcal{B} / \mathcal{A} \rightarrow \mathcal{C}$ such that $\bar{F} \circ Q \simeq F$ is an equivalence.
Example 1.5.16. Let R be a ring and $\mathcal{B}=R$-Mod. Let $S \subseteq R$ be a central multiplicative subset. Then $S^{-1}: R-M o d \rightarrow\left(S^{-1} R\right)$-Mod is a quotient (i.e., localization) with respect to $t=\operatorname{ker}\left(S^{-1}(-)\right)=$ S-Tor the S-torsion R-modules. Indeed, we can identify $\left(S^{-1} R\right)$-Mod with the full subcategory of R-Mod on those $M \in R$-Mod such that $s: M \rightarrow M, m \mapsto s m$ is an isomorphism for all $s \in S$. It is then easy to check the universal property for $S^{-1}(-)$.
Example 1.5.17. Let X be a space and consider $a: \operatorname{PreSh}(X) \rightarrow \operatorname{Sh}(X)$, the associative sheaf

$$
\operatorname{PreSh}(X)
$$

functor. This exact functor is a localization. Remember there is an adjunction:

$$
\begin{gathered}
a \downarrow \int_{u} \\
\operatorname{Sh}(X)
\end{gathered}
$$

Remark 1.5.18. Recall that a pair of functors $\underset{F}{\mathcal{C}} \underset{\mathcal{D}}{\mathcal{C}} \uparrow_{G}$ are called adjoints if there exists a natural bijection

$$
\alpha: \operatorname{Mor}_{\mathcal{D}}(F(x), y) \xrightarrow{\sim} \operatorname{Mor}_{\mathcal{C}}(x, G(y))
$$

for $x \in \mathcal{C}, y \in \mathcal{D}$. It means to give "natural" transformations

$$
\eta=\alpha\left(i d_{F}\right): I d_{\mathcal{C}} \rightarrow G F, \quad \epsilon=\alpha^{-1}\left(i d_{G}\right): F G \rightarrow I d_{\mathcal{D}}
$$

(η : unit, ϵ : counit) ${ }^{12}$ such that $F \underset{\text { id }}{\stackrel{F(\eta)}{\longrightarrow} F G F \xrightarrow{\epsilon_{F}}} F$ and $G \underset{i d}{\stackrel{\eta_{G}}{\longrightarrow}} G F G \xrightarrow{G(\epsilon)} G \cdot{ }^{13}$
Conversely, to recover α,

$$
\begin{array}{ccccc}
\operatorname{Mor}_{\mathcal{D}}(F(x), y) & \xrightarrow{G} & \operatorname{Mor}_{\mathcal{C}}(G F(x), G(y)) & \xrightarrow{-\circ \eta} & \operatorname{Mor}_{\mathcal{C}}(x, G(y)) \\
(f: F(x) \rightarrow y) & \mapsto & G(f) & \mapsto & G(f) \circ \eta=: \alpha(f)
\end{array}
$$

Similarly, $\alpha^{-1}(g):=\epsilon \circ F(g)^{14}$.
Remark 1.5.19. In particular, if \mathcal{C}, \mathcal{D} are (pre)additive, and F, G are additive, then α is automatically an isomorphism of abelian groups (i.e., \mathbb{Z}-linear).

Proposition 1.5.20. Let $\underset{\mathcal{C}}{\mathcal{B}} \uparrow_{R}$ be an adjunction of additive functors between abelian categories. Suppose \mathcal{C}
Q is exact and R is fully faithful. Then, Q is a Gabriel quotient (i.e., localization).
Proof. For $c, c^{\prime} \in \mathcal{C}$, one checks that the composite isomorphism

$$
\operatorname{Hom}_{\mathcal{C}}\left(c, c^{\prime}\right) \xrightarrow[\text { fully faithful }]{R} \operatorname{Hom}_{\mathcal{B}}\left(R(c), R\left(c^{\prime}\right)\right) \underset{\text { adj }}{\sim} \operatorname{Hom}_{\mathcal{C}}\left(Q R(c), c^{\prime}\right)
$$

is given by precomposition with $\epsilon_{c}: Q R(c) \rightarrow c$. Hence by Yoneda, ϵ_{c} is an isomorphism for all $c \in \mathcal{C}^{15}$.
By the unit-counit relation $\left(\epsilon_{Q} \circ Q(\eta)=i d\right)$, it follows that $Q\left(\eta_{b}\right)$ is an isomorphism for all $b \in \mathcal{B}$. In other words, since Q is exact, $\eta_{b}: b \rightarrow R Q(b)$ has kernel and cokernel in $\mathcal{A}:=\operatorname{ker}(Q)$. Let

Then, $F\left(\eta_{b}\right)$ is an isomorphism for all $b \in \mathcal{B}$. Thus we have $F(\eta): F\left(i d_{\mathcal{B}}\right) \xlongequal{\cong} F R Q$. Let $\bar{F}: \mathcal{C} \rightarrow \mathcal{D}$ to be $\bar{F}=F R$, then we have $\bar{F} Q \simeq F$. Uniqueness is clear from $\epsilon: Q R \cong i d_{\mathcal{C}}$ $(\bar{F} \circ Q \cong \widetilde{F} \circ Q \xlongequal{-\circ R} \bar{F} \cong \widetilde{F})$.
$\overline{{ }^{12} \text { naturality of } \eta \text { and } \epsilon \text { is from that of } \alpha \text {. }} \begin{aligned} & { }^{13} \text { For example, we have the following commutative diagram: } \\ & \qquad \begin{array}{r}\operatorname{Hom}_{\mathcal{D}}(F G F(x), F(x)) \stackrel{\alpha}{\sim} \operatorname{Hom}_{\mathcal{C}}(G F(x), G F(x)) \\ \quad-\circ F\left(\eta_{x}\right) \downarrow \\ \operatorname{Hom}_{\mathcal{D}}(F(x), F(x)) \xrightarrow{\sim} \xrightarrow{\sim} \operatorname{Hom}_{\mathcal{C}}(x, G F(x))\end{array}\end{aligned} . \begin{aligned} & \text { 加x}\end{aligned}$
From this, we get $\left(\epsilon_{F} \circ F(\eta)\right)(x)=\alpha^{-1}\left(i d_{G F(x)}\right) \circ F\left(\eta_{x}\right)=i d_{F(x)}$.
${ }^{14}$ For $F(x) \xrightarrow{f} y$, we have $\alpha^{-1} \alpha(f)=\epsilon_{y} \circ F G(f) \circ F\left(\eta_{x}\right)=f \circ \epsilon_{F(x)} \circ F\left(\eta_{x}\right)=f \circ\left(\epsilon_{F} \circ F(\eta)\right)(x)=f$ by naturality of ϵ. ${ }^{15} \mathrm{By}$ Yoneda's lemma, we have $\operatorname{Hom}_{C O F}\left(\operatorname{Hom}_{\mathcal{C}}(c,-), \operatorname{Hom}_{\mathcal{C}}(Q R(c),-)\right) \simeq \operatorname{Hom}_{\mathcal{C}}(Q R(c), c) \ni \epsilon_{c}$.

Example 1.5.21. Let $U \subseteq X$ open, and let $j: U \hookrightarrow X$ the inclusion. Consider $\underset{j^{*}=\operatorname{res} u}{\operatorname{Sh} \downarrow_{\downarrow}(X)} . \operatorname{res}_{U}$ is
exact. It has a right adjoint $j_{*}: S h(U) \rightarrow \operatorname{Sh}(X)$ defined by $j_{*} \mathcal{G}(V)=\mathcal{G}(U \cap V)$. (No sheafification needed) Note that $j^{*} j_{*} \xrightarrow{\sim} i d$. Hence j_{*} is faithful. It is also fully faithful. Hence res ${ }_{U}$ is a localization.

Exercise 1.5.22. Write the adjunction in detail! ${ }^{16}$

1.6. Left and right exact functors.

Remark 1.6.1. Many functors between abelian categories are only partially exact.
(1) $M \otimes_{R}-: R$-Mod $\rightarrow A b$ does not preserve monomorphisms, unless M is flat.
(2) $\operatorname{Hom}_{R}(M,-): R$-Mod $\rightarrow A b$ does not preserve epimorphisms, unless M is projective.
(3) $\operatorname{Hom}_{R}(-, M):(R-M o d)^{o p} \rightarrow A b$ does not send all monomorphisms to epimorphisms, unless M is injective.
(4) $\Gamma(X,-): S h(X) \xrightarrow[\mathcal{F} \mapsto \mathcal{F}(X)]{ } A b$ does not preserve epimorphisms.

Exercise 1.6.2 (Tor-teaser). Prove that if $0 \rightarrow M_{1} \rightarrow M_{2} \rightarrow M_{3} \rightarrow 0$ is exact, then $0 \rightarrow M_{1} \otimes N \rightarrow$ $M_{2} \otimes N \rightarrow M_{3} \otimes N \rightarrow 0$ is exact if M_{3} is flat. ${ }^{17}$

Definition 1.6.3. A (additive) functor $F: \mathcal{A} \rightarrow \mathcal{B}$ between abelian categories is left exact if it preserves kernels $(F(\operatorname{ker} f) \cong \operatorname{ker} F(f))$. It is right exact if it preserves cokernels.
A contravariant functor $F: \mathcal{A} \rightarrow \mathcal{B}$ is said to have those properties when considered as (covariant) $\mathcal{A}^{o p} \rightarrow \mathcal{B}$.

Example 1.6.4. $F: \mathcal{A}^{o p} \rightarrow \mathcal{B}$ is left exact if $A_{1} \rightarrow A_{2} \rightarrow A_{3} \rightarrow 0$ exact $\Rightarrow 0 \rightarrow F\left(A_{3}\right) \rightarrow F\left(A_{2}\right) \rightarrow$ $F\left(A_{1}\right)$ exact.

Proposition 1.6.5. (1) $F: \mathcal{A} \rightarrow \mathcal{B}$ is left exact if and only if for every short exact sequence $0 \rightarrow$ $A_{1} \rightarrow A_{2} \rightarrow A_{3} \rightarrow 0$, the sequence $0 \rightarrow F\left(A_{1}\right) \rightarrow F\left(A_{2}\right) \rightarrow F\left(A_{3}\right)$ is exact.
(2) $F: \mathcal{A} \rightarrow \mathcal{B}$ is right exact if and only if for every short exact sequence $0 \rightarrow A_{1} \rightarrow A_{2} \rightarrow A_{3} \rightarrow 0$, the sequence $F\left(A_{1}\right) \rightarrow F\left(A_{2}\right) \rightarrow F\left(A_{3}\right) \rightarrow 0$ is exact.
(3) $F: \mathcal{A}^{\text {op }} \rightarrow \mathcal{B}$ is left exact if for every short exact sequence $0 \rightarrow A_{1} \rightarrow A_{2} \rightarrow A_{3} \rightarrow 0$, the sequence $0 \rightarrow F\left(A_{3}\right) \rightarrow F\left(A_{2}\right) \rightarrow F\left(A_{1}\right)$ is exact.
(4) $F: \mathcal{A}^{\text {op }} \rightarrow \mathcal{B}$ is right exact if for every short exact sequence $0 \rightarrow A_{1} \rightarrow A_{2} \rightarrow A_{3} \rightarrow 0$, the sequence $F\left(A_{3}\right) \rightarrow F\left(A_{2}\right) \rightarrow F\left(A_{1}\right) \rightarrow 0$ is exact.

Proof. Exercise!
Remark 1.6.6. The goal of so-called "Derived Functors" is to provide a measure of failure of exactness.

[^4]Proposition 1.6.7. Let $\underset{F}{\mid} \underset{\mathcal{D}}{{\underset{D}{l}}} \uparrow_{G}$ be an adjunction of functors between abelian categories. Then the left adjoint
F is right exact, and the right adjoint G is left exact (and they are additive).
Proof. In any adjunction of categories, the left adjoint preserves those colimit which exist in \mathcal{C}, and the right adjoint preserves those limits which exist in \mathcal{D}. Indeed,

$$
\begin{aligned}
\operatorname{Mor}_{\mathcal{D}}\left(F \left(\underset{\longrightarrow}{\left.\left.\lim x_{i}\right), y\right)}\right.\right. & \cong \operatorname{Mor}_{\mathcal{C}}\left(\underset{\longrightarrow}{\lim } x_{i}, G(y)\right) \cong \lim _{\leftrightarrows} \operatorname{Mor}_{\mathcal{C}}\left(x_{i}, G(y)\right) \\
& \cong \underset{\leftrightarrows}{\lim } \operatorname{Mor}_{\mathcal{D}}\left(F\left(x_{i}\right), y\right) \cong \operatorname{Mor}_{\mathcal{D}}\left(\underset{\longrightarrow}{\lim } F\left(x_{i}\right), y\right)
\end{aligned}
$$

Hence F preserves coproduct (hence \oplus, hence F is additive), 0 (as an empty colimit), and pushouts,

$$
\xrightarrow{f} .
$$

e.g., that of $\downarrow \quad$ i.e., cokernels. So F is right exact.

0

Example 1.6.8.

$$
\operatorname{PreSh}(X)
$$

(1) $\quad a \downarrow \uparrow_{u}: a$ is left exact ${ }^{18}$, hence a is exact.
$\operatorname{Sh}(X)$
(2) $j^{*} \downarrow \uparrow_{j_{*}}$ where $U \stackrel{j}{\hookrightarrow} X$, open : j^{*} is left exact, hence j^{*} is exact. ${ }^{19}$ Sh(U)

$$
R-M o d
$$

(3) $M \otimes_{R}-\downarrow \prod_{\operatorname{Hom}_{S}(M,-)}$ for ${ }_{S} M_{R}: M \otimes_{R}-$ is right exact, $\operatorname{Hom}_{S}(M,-)$ is left exact. ${ }^{20}$ S-Mod
(4) (??) $\operatorname{Hom}_{R}(-, N) \downarrow \uparrow_{\operatorname{Hom}}^{S}(-, N)$ for ${ }_{S} N_{R}$: (check this!) $\operatorname{Hom}_{R}(-, N)$ is right exact, BUT as a S-Mod
functor Mod-R $\rightarrow(S-M o d)^{o p}$ it is left exact $(\text { Mod-R })^{o p} \rightarrow S-M o d .{ }^{21}$
$\overline{{ }^{18} a \text { preserves kernel because a presheaf kernel is a sheaf. }}$
 $\operatorname{Sh}(X)$
presheaf $f^{-1} \mathcal{G}(U)=\lim _{f(\vec{U} \subseteq V} \mathcal{G}(V)$.
${ }^{20}$ This is from $\operatorname{Hom}_{S}\left({ }_{s} M_{R} \otimes_{R}{ }_{R} N, S N^{\prime}\right) \cong \operatorname{Hom}_{R}\left({ }_{R} N, \operatorname{Hom}_{S}\left({ }_{S} M_{R, S} N^{\prime}\right)\right)$. Note that we have ${ }_{S} A_{R} \otimes_{R} B \in S-M o d$, $C_{R} \otimes_{R}{ }_{R} D_{S} \in \operatorname{Mod}-S, \operatorname{Hom}_{R}\left({ }_{R} C_{S, R} D\right) \in S-M o d, \operatorname{Hom}_{R}\left({ }_{R} A,{ }_{R} B_{S}\right) \in \operatorname{Mod}-S$.

1.7. Injectives and projectives.

Let \mathcal{A} be an abelian category throughout this section.
Definition 1.7.1. An object I in \mathcal{A} is injective if $\operatorname{Hom}(-, I): \mathcal{A}^{o p} \rightarrow A b$ is exact. An object P in \mathcal{A} is projective if $\operatorname{Hom}(P,-): \mathcal{A} \rightarrow A b$ is exact. Since both functors are always left exact, we have the "usual" definition:
I injective
\Leftrightarrow for all $M \stackrel{\alpha}{\hookrightarrow} N$ and for all $f: M \rightarrow I$, there is $\tilde{f}: N \rightarrow I$ such that $\tilde{f} \circ \alpha=f$

Dually,
P projective
\Leftrightarrow for all $M \xrightarrow{\beta} N$ and for all $g: P \rightarrow N$, there is $\widetilde{g}: P \rightarrow M$ such that $\beta \circ \widetilde{g}=g$

Example 1.7.2. In R-Mod, an object is projective if and only if it is a direct summand of a free module. Indeed,
(1) free modules $F=R^{(B)}$ for a set $B\left(f=\sum_{b \in B} f_{b} \mathbf{e}_{b} \in F\right)$ are projective:

$$
\operatorname{Hom}_{R-M o d}\left(R^{(B)}, M\right)=\operatorname{Mor}_{\text {Sets }}(B, M), \begin{gathered}
\text { Sets } \\
\begin{array}{c}
F=R^{(-)} \mid \uparrow u \\
R-\operatorname{Mod}
\end{array}
\end{gathered}
$$

(2) every R-module M is a quotient of a free module:

$$
F(U(M))=R^{(M)} \underset{\mathbf{e}_{m} \mapsto m}{ } M
$$

(3) the following useful general fact.

Proposition 1.7.3. (1) If $F \xrightarrow{\beta} P$ is an epimorphism and P is projective, then β is a split epimorphism.
(2) If I $\stackrel{\alpha}{\hookrightarrow} N$ is a monomorphism and I is injective, then α is a split monomorphism.
(3) If $M_{1} \stackrel{\alpha}{\longrightarrow} M_{2} \xrightarrow{\beta} M_{3}$ is a short exact sequence and M_{1} is injective or M_{3} is projective, then the sequence is split exact. (hence the image of the sequence remains exact under any additive functor.)

Proof. (1) Look at the following:

(2) Do the case(1)'s op.
(3) $(1)+(2)$.

Proposition 1.7.4. A (left) R-module I is injective if and only if it has the right lifting (i.e., the extension) property with respect to the monomorphisms of the form $J \hookrightarrow R$ for J (left) ideal in R.

Proof. This is necessary.

Suppose I has this property. Let $M \hookrightarrow N$ be an arbitrary monomorphism of R -
modules and $f: M \rightarrow I$ a homomorphism.
By Zorn's lemma, there exists $M \subseteq M^{\prime} \subseteq N$ and $f^{\prime}: M^{\prime} \rightarrow I$ such that $\left.f^{\prime}\right|_{M}=f$ and which is maximal among extensions (obvious sense). We have to show that $M^{\prime}=N$. So we're back to initial question but we can assume that M is maximal.
Suppose $M \neq N$, and let $m \in N \backslash M$. It suffices to show that

there is an extension of f to $M+R m$ to get a contradiction. Let $J=A n n_{R}(m)$ and consider the following:

Since this is a pushout, the existence of \widetilde{f} follows if I has the extension property with respect to $R m \cap M \hookrightarrow R m$. Note that for some ideal $J \subseteq J^{\prime} \subseteq R$, we have $J^{\prime} / J \cong R m \cap M$, thus

Note that this is a pushout again. So the extension property boils again to the extension property with respect to $J^{\prime} \hookrightarrow R$.

Corollary 1.7.5. An abelian group I is injective (in $\mathcal{A}=\mathbb{Z}-\mathrm{Mod}$) if and only if it is divisible, i.e., for all $x \in I$ and all $n \neq 0$, there exists $y \in I$ such that $n y=x$.

Proof. Do the extension property with respect to $n \mathbb{Z} \hookrightarrow \mathbb{Z}$.
Definition 1.7.6. \mathcal{A} has enough projectives if for every object $A \in \mathcal{A}$, there exists projective P and an epimorphism $P \rightarrow A$.
\mathcal{A} has enough injectives if for every $A \in \mathcal{A}$, there exists injective I and a monomorphism $A \hookrightarrow I$.
Exercise 1.7.7. An arbitrary product of injectives is injective, and an arbitrary coproduct of projectives is projective. ${ }^{22}$

Proposition 1.7.8. Let M be an abelian group. Then, $M \xrightarrow[m \mapsto(f(m))_{f}]{ } \prod_{f \in \operatorname{Hom}_{\mathbb{Z}}(M, \mathrm{Q} / \mathbb{Z})} \mathbb{Q} / \mathbb{Z}$ is a monomorphism into an injective. Hence, $\mathbb{Z}-\mathrm{Mod}=A b$ has enough injectives.
${ }^{22} \mathrm{~A}$ product of exact functors is exact.

Proof. Since \mathbb{Q} / \mathbb{Z} is divisible, thus $\prod \mathbb{Q} / \mathbb{Z}$ is injective. Now it is enough to show that α is a monomorphism. We can show that for all $0 \neq m \in M$, there exists $f: M \rightarrow \mathbb{Q} / \mathbb{Z}$ such that $f(m) \neq 0$. Let $A n n_{\mathbb{Z}}(m)=l \mathbb{Z}$. If $l=0$, then

If $l \neq 0$, then

Theorem 1.7.9. Let $F: \mathcal{A} \rightarrow \mathcal{B}$ be an exact functor of abelian categories such that F is faithful $(\Leftrightarrow$ conservative : $F(A)=0 \Rightarrow A=0$).
(1) Suppose that \mathcal{B} has enough injectives and that F has a right adjoint $G:{ }_{F}{\underset{\mathcal{B}}{\mathcal{B}}}_{\mathcal{A}}^{\prod_{G}}$, then \mathcal{A} has enough injectives. In cash : for every object $A \in \mathcal{A}$, choose a monomorphism $\alpha: F(A) \hookrightarrow I$ in \mathcal{B} with $I \in \operatorname{Inj}(\mathcal{B})$, then

is a monomorphism into an injective object.
(2) If \mathcal{B} has enough projectives and F has a left adjoint $E:{ }_{E} \mid{ }_{\downarrow} \uparrow_{F}$, then \mathcal{A} has enough projectives. For \mathcal{A}
every $A \in \mathcal{A}$, choose an epimorphism $\beta: P \rightarrow F(A)$ with $P \in \operatorname{Proj}(\mathcal{B})$, then $E(P) \xrightarrow{\epsilon_{A} \circ E(\beta)} A$ is an epimorphism from a projective object.

Proof. (1) $\underset{F}{\mathcal{A}} \uparrow_{G}: G$ is left exact, thus it preserves monomorphisms. Under F, because $\epsilon_{F} \circ F(\eta)=$ \mathcal{B}
$i d, \eta$ preserves a (split) monomorphism. Since F is exact, $F(\operatorname{ker} \eta)=\operatorname{ker}(F(\eta))=0$. Since F is conservative, $\operatorname{ker}\left(\eta_{A}\right)=0$ implies η_{A} is a monomorphism. Now we are left to prove the following, which is independently interesting.

Proposition 1.7.10. Consider an adjunction $\underset{F}{\mathcal{F} \downarrow \uparrow_{G}}$ between abelian categories.
(1) If F is exact, then G preserves injective objects.
(2) If G is exact, then F preserves projective objects.

Proof. For $I \in \operatorname{Inj}(\mathcal{B})$, the functor $\operatorname{Hom}_{\mathcal{A}}(-, G(I)) \underset{\text { adj }}{\sim} \operatorname{Hom}_{\mathcal{B}}(F(-), I)=\operatorname{Hom}_{\mathcal{B}}(-, I) \circ F$, which is a composition of exact functors, is exact.

Corollary 1.7.11. Let R be a ring, then R-Mod has enough injectives (and projectives, too).
Proof. Consider $F: R-M o d \rightarrow A b$ the forgetful functor (which is exact and conservative). Since $A b$ has enough injectives, we just need a right adjoint to F. We have

$$
\begin{gathered}
R-M o d \\
F \simeq R \otimes_{R^{-}}-\downarrow \uparrow_{\operatorname{Hom}_{\mathbb{Z}}\left(\mathbb{Z}_{R},-\right)} \\
A b
\end{gathered}
$$

by using ${ }_{\mathbb{Z}} R_{R} \otimes_{R}{ }_{R} M \cong_{\mathbb{Z}} M$ as an abelian group.
Exercise 1.7.12. Unfold this corollary and the construction in $A b$ to explicitly describe $M \hookrightarrow I(M)$ for $M \in R$-Mod. ${ }^{23}$

Remark 1.7.13. When dealing with $S h_{\mathcal{A}}(X)$ for a topological space X and an abelian category \mathcal{A} (other than $\mathcal{A}=A b$), one should require that \mathcal{A} has all limits and (filtered) colimits, and that filtered colimits commute with products. This works for $\mathcal{A}=R-M o d$.

Corollary 1.7.14. Let X be a topological space and \mathcal{A} be a (nice) abelian category as above, e.g., $\mathcal{A}=A b$ or $\mathcal{A}=R$-Mod. Then, $\operatorname{Sh}_{\mathcal{A}}(X)$ has enough injectives.

Proof. For every $x \in X$, consider $j_{x}:\{x\} \hookrightarrow X$ and $j_{x}^{*}: \operatorname{Sh}_{\mathcal{A}}(X) \underset{\mathcal{F} \mapsto \mathcal{F}_{x}}{\longrightarrow} A b$. Then consider $F: S h_{\mathcal{A}}(X) \xrightarrow[\mathcal{F}_{\mapsto} \mapsto\left(j_{x}^{*} \mathcal{F}\right)_{x \in X}=\left(\mathcal{F}_{x}\right)_{x \in X}]{ } \prod_{x \in X} \mathcal{A}$ where $\prod_{x \in X} \mathcal{A}$ is just componentwise. Then, $\prod_{x \in X} \mathcal{A}$ has enough injectives (componentwise). This functor F is exact and conservative. We just need a right adjoint. Let $\left(j_{x}\right)_{*}: \mathcal{A} \rightarrow S h_{\mathcal{A}}(X)$ be defined by

$$
\left(\left(j_{x}\right)_{*} A\right)(U)= \begin{cases}A & \text { if } x \in U \\ 0 & \text { otherwise }\end{cases}
$$

for open $U \subseteq X$.

$$
\begin{gathered}
\operatorname{Sh}_{\mathcal{A}}(X) \\
\left(j_{x}\right)^{*} \downarrow \uparrow^{\prime}\left(j_{x}\right)_{*} \\
\mathcal{A}
\end{gathered}
$$

The counit $\epsilon_{A}:(A \cong)\left(j_{x}\right)^{*}\left(j_{x}\right)_{*} A \rightarrow A$ is the identity. The unit $\mathcal{F} \rightarrow\left(j_{x}\right)_{*}\left(j_{x}\right)^{*} \mathcal{F}$ is defined on every open $U \subseteq X$ by the obvious map

$$
\mathcal{F}(U)= \begin{cases}\mathcal{F}_{x} & \text { if } x \in U \\ 0 & \text { if } x \notin U\end{cases}
$$

$\overline{{ }^{23} \text { We have } M \hookrightarrow} \hookrightarrow \operatorname{Hom}_{\mathbb{Z}}\left(\mathbb{Z}_{\mathbb{Z}} R_{R, \mathbb{Z}} M\right) \hookrightarrow \operatorname{Hom}_{\mathbb{Z}}\left({ }_{\mathbb{Z}} R_{R}, \prod_{f \in \operatorname{Hom}_{\mathbb{Z}}(M, \mathbf{Q} / \mathbb{Z})} \mathrm{Q} / \mathbb{Z}\right)=\prod_{f} \operatorname{Hom}_{\mathbb{Z}}\left({ }_{\mathbb{Z}} R_{R}, \mathbf{Q} / \mathbb{Z}\right)$.

Then, putting together,

$$
\begin{gathered}
S h_{\mathcal{A}}(X) \\
\left(\left(j_{x}\right)^{*}\right)_{x \in X} \downarrow \bigcap_{x}\left(j_{x}\right)_{*} \\
\prod_{x \in X} \mathcal{A}
\end{gathered}
$$

Read more - Grothendieck: abelian categories, Tohoku J.

2. Derived Functors

2.1. Complexes.

A basic idea of derived functors is that most homological complications would disappear if we were dealing only with projectives (or only with injectives).
Key example : A short exact sequence $0 \rightarrow A_{1} \rightarrow A_{2} \rightarrow A_{3} \rightarrow 0$ with A_{1} injective goes to an exact sequence under any additive functor F (e.g., left exact, but not right exact). ${ }^{24}$
Idea : To replace an object $A \in \mathcal{A}$ by injectives,

with all I_{i} injective. Really,

and this map is a quasi-isomorphism of complexes, i.e., an isomorphism in homology. Applying F to the second line yields:

$$
\cdots \longrightarrow 0 \longrightarrow 0 \longrightarrow F\left(I_{0}\right) \longrightarrow F\left(I_{1}\right) \longrightarrow \cdots
$$

which is the "complete" homological measure of A and its relation to F at least for F left exact. In particular, $H^{0}\left(F\left(I_{\mathbf{\bullet}}\right)\right) \cong F(A)$ but the $H^{i}\left(F\left(I_{\bullet}\right)\right)$ are also important. They are $R^{i} F(A)$, the right derived functors.
Definition 2.1.1. Let \mathcal{A} be an additive category. A complex in \mathcal{A} is a collection

$$
\cdots \rightarrow A_{i+1} \xrightarrow{d_{i+1}} A_{i} \xrightarrow{d_{i}} A_{i-1} \rightarrow \cdots
$$

of objects $A_{i} \in \mathcal{A}$ and morphisms $d_{i}: A_{i} \rightarrow A_{i-1}$ such that $d_{i-1} \circ d_{i}=0\left(d^{2}=0\right)$ for all $i \in \mathbb{Z}$. (homological notation)
Alternatively, in cohomological notation,

$$
\cdots \rightarrow A^{i-1} \xrightarrow{d^{i-1}} A^{i} \xrightarrow{d^{i}} A^{i+1} \rightarrow \cdots
$$

A morphism of complexes $f:\left(A_{\bullet}, d\right) \rightarrow\left(A_{\bullet}^{\prime}, d^{\prime}\right)$ is a collection $f_{i}: A_{i} \rightarrow A_{i}^{\prime}$ for all i such that $d_{i}^{\prime} \circ f_{i}=f_{i-1} \circ d_{i}$. Let $\operatorname{Ch}(\mathcal{A})$ be the category of complexes in \mathcal{A} with morphisms of complexes.

Proposition 2.1.2. (1) If \mathcal{A} is additive, then $\operatorname{Ch}(\mathcal{A})$ is additive.
(2) If \mathcal{A} is abelian, then $\operatorname{Ch}(\mathcal{A})$ remains abelian.

Proof. Exercise!
Remark 2.1.3. There is a fully faithful $\mathcal{A} \rightarrow \operatorname{Ch}(\mathcal{A})$ defined by

$$
A \longmapsto(\cdots \rightarrow 0 \rightarrow A \rightarrow 0 \rightarrow \cdots)
$$

with A in degree 0 , and this is exact if \mathcal{A} is abelian.

[^5]Definition 2.1.4. For \mathcal{A} additive, we say that two morphisms $f, g: A_{\bullet} \rightarrow A_{\bullet}^{\prime}$ in $\operatorname{Ch}(\mathcal{A})$ are homotopic if there exists a homotopy $f \stackrel{\varepsilon}{\sim} g$, that is, a collection of morphisms $\epsilon_{i}: A_{i} \rightarrow A_{i+1}^{\prime}$ (NOT a morphism of complexes) such that $f=g+d^{\prime} \epsilon+\epsilon d$ or explicitly, $f_{i}=g_{i}+d_{i+1}^{\prime} \epsilon_{i}+\epsilon_{i-1} d_{i}$ for all $i \in \mathbb{Z}$. This notation is additive : $f \sim g \Leftrightarrow(f-g) \sim 0$. Picture for $f \sim 0$:

where we have $f=d^{\prime} \epsilon+\epsilon d$.
Remark 2.1.5. \sim preserves + and $\circ: f \sim f^{\prime}, g \sim g^{\prime} \Rightarrow f \circ g \sim f^{\prime} \circ g^{\prime}$, etc. ${ }^{25}$ Hence we get a well-defined homotopy category $K(\mathcal{A})$ of an additive category \mathcal{A}, with same abjects as $\operatorname{Ch}(\mathcal{A})$ but morphisms up to homotopy:

$$
\operatorname{Hom}_{K(\mathcal{A})}\left(A_{\bullet}, A_{\bullet}^{\prime}\right)=\operatorname{Hom}_{C h(\mathcal{A})}\left(A_{\bullet}, A_{\bullet}^{\prime}\right) / \sim=\operatorname{Hom}_{\operatorname{Ch}(\mathcal{A})}\left(A_{\bullet}, A_{\bullet}^{\prime}\right) /(\text { subgroup of } f \sim 0)
$$

Remark 2.1.7. If \mathcal{A} is abelian, $K(\mathcal{A})$ is not, a priori!
Exercise 2.1.8 (Final Problem \#3). Show that $K(\mathcal{A})$ is not abelian, in general. (Take $\mathcal{A}=A b$ or $R-$ Mod.) Find conditions under which $K(\mathcal{A})$ is abelian.

Remark 2.1.9. We will see later that $K(\mathcal{A})$ is actually triangulated (there are exact triangles

Definition 2.1.10. A morphism $f: A_{\bullet} \rightarrow B_{\bullet}$ in $\operatorname{Ch}(\mathcal{A})$ for additive \mathcal{A} is called a homotopy equivalence if $[f] \in \operatorname{Hom}_{K(\mathcal{A})}\left(A_{\bullet}, B_{\bullet}\right)$ is an isomorphism: i.e., there exists $g: B_{\bullet} \rightarrow A_{\bullet}$ such that $f \circ g \sim i d_{B_{\bullet}}$ and $g \circ f \sim i d_{A_{\bullet}}$ in $\operatorname{Ch}(\mathcal{A})$.
Remark 2.1.11. Any additive functor $F: \mathcal{A} \rightarrow \mathcal{B}$ between additive categories will induce $F=$ $\operatorname{Ch}(F): \operatorname{Ch}(\mathcal{A}) \rightarrow \operatorname{Ch}(\mathcal{B})$ and $F=K(F): K(\mathcal{A}) \rightarrow K(\mathcal{B})$. In particular, $F: \operatorname{Ch}(\mathcal{A}) \rightarrow \operatorname{Ch}(\mathcal{B})$ preserves homotopy equivalence.

Let's add the assumption that \mathcal{A} is abelian.
Definition 2.1.12. Let \mathcal{A} be abelian and $\left(A_{\bullet}, d\right) \in C h(\mathcal{A})$ be a complex. For every $i \in \mathbb{Z}$, the i-th homology object $H_{i}\left(A_{\bullet}\right)$ is the $\operatorname{coker}\left(\operatorname{im} d_{i+1} \hookrightarrow \operatorname{ker} d_{i}\right)$ where the morphism $\operatorname{im} d_{i+1} \rightarrow \operatorname{ker} d_{i}$ is the unique one such that

[^6]which exists because $d^{2}=0$.
Proposition 2.1.13. For every $i \in \mathbb{Z}, H_{i}$ defines a functor $H_{i}: \operatorname{Ch}(\mathcal{A}) \rightarrow \mathcal{A}$. This functor is additive. Moreover, if $f \sim 0$, then $H_{i}(f)=0$ for all $i \in \mathbb{Z}$. Hence we get a well-defined additive functor $H_{i}: K(\mathcal{A}) \rightarrow \mathcal{A}$.

Proof. Exercise! ${ }^{26}$
Definition 2.1.14. We say that a morphism $f: A_{\bullet} \rightarrow B_{\bullet}(\operatorname{in~} \operatorname{Ch}(\mathcal{A})$ or $K(\mathcal{A}))$ is a quasiisomorphism if $H_{i}(f)$ is an isomorphism for all $i \in \mathbb{Z}$.

Corollary 2.1.15. A homotopy equivalence is a quasi-isomorphism.
Exercise 2.1.16. Let $A, B, C \in \mathcal{A}$ and $\alpha: A \rightarrow B, \beta: B \rightarrow C$. Consider

(1) When is this a morphism? ${ }^{27}$
(2) When is this a homotopy equivalence? ${ }^{28}$
(3) When is this a quasi-isomorphism? ${ }^{29}$
(4) Give (plenty of) examples of quasi-isomorphisms which are NOT homotopy equivalences.
${ }^{26}$ We have

$$
\begin{array}{r}
\left(\operatorname{ker} d_{i}^{A} \rightarrow H_{i}\left(A_{\bullet}\right) \xrightarrow{H_{i}(f)} H_{i}\left(B_{\bullet}\right)\right)=\left(\operatorname{ker} d_{i}^{A} \rightarrow \operatorname{ker} d_{i}^{B} \rightarrow H_{i}(B)\right) \\
\quad=\left(\operatorname{ker} d_{i}^{A} \rightarrow A_{i} \xrightarrow{\epsilon} B_{i+1} \rightarrow \operatorname{im} d_{i+1}^{B} \rightarrow \operatorname{ker} d_{i}^{B} \rightarrow H_{i}(B)\right)=0
\end{array}
$$

thus $H_{i}(f)=0$.
${ }^{27}$ if and only if $\beta \alpha=0$.
${ }^{28}$ if and only if $0 \rightarrow A \xrightarrow{\alpha} B \xrightarrow{\beta} C \rightarrow 0$ is split exact.
${ }^{29}$ if and only if $0 \rightarrow A \xrightarrow{\alpha} B \xrightarrow{\beta} C \rightarrow 0$ is a short exact sequence.

Remark 2.1.17. We have the following.

One verifies that $H_{i}\left(A_{\bullet}\right)$ is simply the image of the unique map induced by $\operatorname{ker} d_{i} \hookrightarrow A_{i} \rightarrow$ coker d_{i+1}.
Lemma 2.1.18. Let A. be a complex in an abelian category \mathcal{A}.
(1) We have

$$
\begin{aligned}
H_{i}\left(A_{\bullet}\right) & =\operatorname{coker}\left(\operatorname{im} d_{i+1} \rightarrow \operatorname{ker} d_{i}\right) \\
& =\operatorname{ker}\left(\operatorname{coker} d_{i+1} \rightarrow \operatorname{im} d_{i}\right) \\
& =\operatorname{im}\left(\operatorname{ker} d_{i} \rightarrow \operatorname{coker} d_{i+1}\right)
\end{aligned}
$$

(2) There is a natural exact sequence:

$$
0 \rightarrow H_{i}\left(A_{\bullet}\right) \rightarrow \operatorname{coker} d_{i+1} \xrightarrow{\tilde{\bar{d}_{i}}} \operatorname{ker} d_{i-1} \rightarrow H_{i-1}\left(A_{\bullet}\right) \rightarrow 0
$$

where $\tilde{\overline{d_{i}}}$ is the unique map induced by d_{i}.

Proof. See above for (1). For (2), note that

Theorem 2.1.19. Let \mathcal{A} be an abelian category and let

$$
0 \rightarrow A \bullet \xrightarrow{f} B_{\bullet} \xrightarrow{g} C_{\bullet} \rightarrow 0
$$

be a short exact sequence in $C h(\mathcal{A})$, i.e., $0 \rightarrow A_{i} \xrightarrow{f_{i}} B_{i} \xrightarrow{g_{i}} C_{i} \rightarrow 0$ is a short exact sequence in \mathcal{A} for all i. Then, there exists a natural long exact sequence:

$$
\cdots \rightarrow H_{i}(A) \xrightarrow{H_{i}(f)} H_{i}(B) \xrightarrow{H_{i}(g)} H_{i}(C) \xrightarrow{\partial_{i}} H_{i-1}(A) \xrightarrow{H_{i-1}(f)} H_{i-1}(B) \rightarrow \cdots
$$

(Think : $\left.\partial_{i}=\partial_{i}\left(A_{\bullet}, B_{\bullet}, C_{\bullet}, f, g\right).\right)$

Proof. Consider

By the (non-snake part of the) snake lemma, we get two exact sequences:

$$
0 \rightarrow \operatorname{ker} d_{i}^{A} \xrightarrow{f} \operatorname{ker} d_{i}^{B} \xrightarrow{g} \operatorname{ker} d_{i}^{C}
$$

$$
\operatorname{coker} d_{i}^{A} \xrightarrow{f} \operatorname{coker} d_{i}^{B} \xrightarrow{g} \operatorname{coker} d_{i}^{C} \rightarrow 0
$$

Hence we get a commutative diagram:

Use the previous lemma (2) with the snake lemma!

2.2. Projective and injective resolutions.

Definition 2.2.1. Let \mathcal{A} be an abelian category and $A \in \mathcal{A}$ be an object. An injective resolution of A is an exact sequence

$$
0 \rightarrow A \rightarrow I^{0} \rightarrow I^{1} \rightarrow \cdots
$$

with all I^{i} injective in \mathcal{A}. In other words, it is a quasi-isomorphism:

A projective resolution of A is an exact sequence

$$
\cdots \rightarrow P_{1} \rightarrow P_{0} \rightarrow A \rightarrow 0
$$

with all P_{i} projective in \mathcal{A}, i.e., a quasi-isomorphism $P_{\bullet} \rightarrow c_{0}(A)$ with $P_{\bullet} \in C_{\geq 0}(\operatorname{Proj}(\mathcal{A}))=$ $C h^{\leq 0}(\operatorname{Proj}(\mathcal{A}))$.

Note 2.2.2. For any additive \mathcal{A},

and more generally,

$$
\begin{gathered}
C h_{[a, b]}(\mathcal{A})=\left\{X_{\bullet} \mid X_{i}=0 \text { except for } i \in[a, b]\right\} \\
C h^{[a, b]}(\mathcal{A})=\left\{X^{\bullet} \mid X^{i}=0 \text { except for } i \in[a, b]\right\}=C h_{[-b,-a]}(\mathcal{A})
\end{gathered}
$$

Proposition 2.2.3. Let \mathcal{A} be abelian.
(1) If \mathcal{A} has enough injectives, then any object has an injective resolution.
(2) If \mathcal{A} has enougn projectives, then any object has a projective resolution.

Proof. (1) Let $A \in \mathcal{A}$. There exists a monomorphism $\xi_{0}: A \hookrightarrow I^{0} \in \operatorname{Inj}(\mathcal{A})$. Consider coker ξ_{0}. There exists a monomorphism $\xi_{1}: \operatorname{coker} \xi_{0} \hookrightarrow I^{1} \in \operatorname{Inj}(\mathcal{A})$. By induction, we construct exact sequences

$$
\operatorname{coker}\left(\tilde{\xi}_{i}\right) \xrightarrow{\tilde{\xi}_{i+1}} I^{i+1} \rightarrow \operatorname{coker} \tilde{\xi}_{i+1}
$$

for all $i \geq 0$. Putting those short exact sequences together, we get

in which the differentials $d^{i}: I^{i} \rightarrow I^{i+1}$ are defined as the compisotion $I^{i} \rightarrow \operatorname{coker} \xi_{i} \hookrightarrow I^{i+1}$. (2) Dual.

Proposition 2.2.4. Let \mathcal{A} be abelian.
(1) Let $A, B \in \mathcal{A}$ and let $P_{\bullet} \xrightarrow{\xi_{0}} A$ be a projective resolution of A and $Q . \xrightarrow{\eta_{0}} B$ be a projective resolution of B. Let $f: A \rightarrow B$ be a morphism in \mathcal{A}. Then, there exists a morphism of complexes $f_{\bullet}: P_{\bullet} \rightarrow Q \bullet$ such that $f \circ \xi_{0}=\eta_{0} \circ f_{0}$.

Moreover, this f_{\bullet} is unique up to homotopy, i.e., if $\widetilde{f}_{\bullet}: P_{\bullet} \rightarrow Q_{\bullet}$ is another morphism of complexes such that $f \circ \tilde{\xi}_{0}=\eta_{0} \circ \widetilde{f}_{0}$, then there exists $f \sim \widetilde{f}$.
(2) The dual : any morphism extends to injective resolutions in a unique way up to homotopy.

Proof. We have the following construction:

(a) P_{0} is projective and $Q_{0} \xrightarrow{\eta_{0}} B$
(b) $Q \cdot \rightarrow B$ is exact
(c) $\eta_{0} f_{0} d=f \xi_{0} d=0$
(d) P_{1} is projective and $Q_{1} \rightarrow \operatorname{ker} \eta_{0}$

Suppose we have built $f_{i}: P_{i} \rightarrow Q_{i}$ for $i \leq n$ such that $d^{\prime} f_{i}=f_{i-1} d$ for all i. Similarly, we get

For uniqueness, because the problem is additive, it suffices to show $f_{\bullet} \sim 0$ if $f=0$. We have

(a) $\eta_{0} f_{0}=0$ and $Q_{\bullet} \rightarrow B$ is exact.
(b) $Q_{1} \rightarrow \operatorname{im} d^{\prime}=\operatorname{ker} \eta_{0}$ and P_{0} is projective. So there exists $\epsilon_{0}: P_{0} \rightarrow Q_{1}$ such that $d^{\prime} \epsilon_{0}=f_{0}$.

Let's assume that we have constructed $\epsilon_{i}: P_{i} \rightarrow Q_{i+1}$ for all $i \leq n$ such that $f_{i}=d^{\prime} \epsilon_{i}+\epsilon_{i-1} d$.

Consider $f_{n+1}-\epsilon_{n} d$ and apply d.

$$
d\left(f_{n+1}-\epsilon_{n} d\right)=d f_{n+1}-d \epsilon_{n} d=f_{n} d-d \epsilon_{n} d=\left(f_{n}-d \epsilon_{n}\right) d=\epsilon_{n-1} d d=0
$$

Then, there exists $\alpha: P_{n+1} \rightarrow \operatorname{ker} d^{\prime}$ such that $f_{n+1}-\epsilon d=i \alpha$ where $i: \operatorname{ker} d^{\prime} \hookrightarrow Q_{n+1}$. Since P_{n+1} is projective, there exists $\epsilon_{n+1}: P_{n+1} \rightarrow Q_{n+1}$. Then, $d^{\prime} \epsilon_{n+1}=f_{n+1}-\epsilon_{n} d$ as needed.

Corollary 2.2.5. Resolutions are unique up to unique (up to homotopy) homotopy equivalence. ${ }^{30}$
Proof. Just apply the previous proposition to $A=B$ and $f=i d$.
Remark 2.2.6. The above means up to isomorphism of resolutions, i.e., not just $P_{\bullet} \xrightarrow{f} P_{\bullet}^{\prime}$, but
 . In other words, resolutions = complexes of Inj/Proj with the map from/to A.

Recall that $K(-)$ is the homotopy category of any additive category where objects are complexes and morphisms are morphisms of complexes modulo homotopy equivalences. For instance, $K_{\geq 0}(\operatorname{Proj}(\mathcal{A})) \subseteq K(\mathcal{A}), K^{\geq 0}(\operatorname{Inj}(\mathcal{A}))=K_{\leq 0}(\operatorname{Inj}(\mathcal{A}))$. We have

$$
\begin{aligned}
c_{0}: \mathcal{A} & \longrightarrow(\cdots \rightarrow 0 \rightarrow \underbrace{K(\mathcal{A})}_{\text {0th }} \rightarrow 0 \rightarrow \cdots) \\
A & \longmapsto\left(\cdots \rightarrow{ }^{A}\right.
\end{aligned}
$$

Consider $\mathcal{A} \xrightarrow{c_{0}} K_{\geq 0}(\operatorname{Proj}(\mathcal{A})) \subseteq K(\mathcal{A})$.
Theorem 2.2.7. Suppose \mathcal{A} has enough projectives.
(1) There exists a functor $\mathbb{P}: \mathcal{A} \rightarrow K_{\geq 0}(\operatorname{Proj}(\mathcal{A})) \subseteq K(\mathcal{A})$ together with a natural transformation $\xi: \mathbb{P} \rightarrow c_{0}$

such that $\xi_{A}: \mathbb{P}(A) \rightarrow c_{0}(A)$ is a quasi-isomorphism for all $A \in \mathcal{A}$.
(2) This pair (\mathbb{P}, ξ) is unique up to unique isomorphism, i.e., if $\left(\mathbb{P}^{\prime}, \xi^{\prime}\right)$ is another such pair with $\mathbb{P}^{\prime}: \mathcal{A} \rightarrow K_{\geq 0}(\operatorname{Proj}(\mathcal{A}))$ with objectwise quasi-isomorphism and $\xi^{\prime}: \mathbb{P}^{\prime} \rightarrow c_{0}$, then there exists a unique isomorphism of such pairs, say $f: \mathbb{P} \rightarrow \mathbb{P}^{\prime}$ (isomorphism of functors) such that $\xi^{\prime} \circ f=\xi$.
Dually, if \mathcal{A} has enough injectives, then there exists $\mathbb{I}: \mathcal{A} \rightarrow K^{\geq 0}(\operatorname{Inj}(\mathcal{A}))$ with objectwise quasiisomorphism $\eta: c_{0} \rightarrow \mathbb{I}$ (as functors $\mathcal{A} \rightarrow K(\mathcal{A})$) which is unique up to unique isomorphism of such pairs.
Proof. Choose for every $A \in \mathcal{A}$ a projective resolution $P(A):=P_{\bullet} \xrightarrow{\xi_{0}} A$ (equivalently, choose a

Set $\mathbb{P}(f)=[\hat{f}] \in \operatorname{Hom}_{K(\mathcal{A})}(\mathbb{P}(A), \mathbb{P}(B))$. This yields the well-defined pair

$$
\left(\mathbb{P}: \mathcal{A} \rightarrow K_{\geq 0}(\operatorname{Proj}(\mathcal{A})), \xi: \mathbb{P} \rightarrow c_{0}\right)
$$

as in (1). We have $\mathbb{P}(f \circ g)=\mathbb{P}(f) \circ \mathbb{P}(g)$ by the following argument. Choose lifts \widehat{f}, \widehat{g} so that $\mathbb{P}(f)=[\widehat{f}], \mathbb{P}(g)=[\widehat{g}]$. Then observe that $\widehat{f} \circ \widehat{g}$ is a lift of $f \circ g$. By the previous proposition (uniqueness of lift), $\widehat{f \circ g} \sim \widehat{f} \circ \widehat{g}$. Hence, $\mathbb{P}(f) \circ \mathbb{P}(g)=[\widehat{f}] \circ[\widehat{g}]=[\widehat{f \circ g}]=\mathbb{P}(f \circ g)$. For (2),

[^7]same story : at each $A \in \mathcal{A}$, consider $\xi_{A}: \mathbb{P} \rightarrow c_{0}(A)$ and $\xi_{A}^{\prime}: \mathbb{P}^{\prime} \rightarrow c_{0}(A)$. By existence and uniqueness of lift, we have

Check the rest as an exercise.
Definition 2.2.8. If \mathcal{A} has enough projectives, the (unique) functor $\mathbb{P}: \mathcal{A} \rightarrow K_{\geq 0}(\operatorname{Proj}(\mathcal{A}))$ in the unique pair $\left(\mathbb{P}, \xi: \mathbb{P} \rightarrow c_{0}\right)$ is the projective resolution functor. Dually, if \mathcal{A} has enough injectives, there is the injective resolution functor I : $\mathcal{A} \rightarrow K^{\geq 0}(\operatorname{Inj}(\mathcal{A}))$ uniquely characterized by the existence of a natrual quasi-isomorphism $c_{0}(A) \rightarrow \mathbb{I}(A)$ for $A \in \mathcal{A}$.

Remark 2.2.9. For a functor $F: \mathcal{A} \rightarrow \mathcal{B}$, we can consider various compositions of the following functors:

Note that the triangle on the left is NOT commutative.
Theorem 2.2.10 (Horseshoe Lemma). Let $0 \rightarrow A^{\prime} \xrightarrow{\alpha^{\prime}} A \xrightarrow{\alpha^{\prime \prime}} A^{\prime \prime} \rightarrow 0$ be a short exact sequence in an abelian category \mathcal{A}. Let $P_{\bullet}^{\prime} \xrightarrow{\xi_{0}^{\prime}} A^{\prime}$ and $P_{\bullet}^{\prime \prime} \xrightarrow{\xi_{0}^{\prime \prime}} A^{\prime \prime}$ be projective resolutions. Then, there exists a projective resolution $P \xrightarrow{P_{\bullet}} A$ and lifts

such that the sequence of complexes $0 \rightarrow P_{\bullet}^{\prime} \rightarrow P_{\bullet} \rightarrow P_{\bullet}^{\prime \prime} \rightarrow 0$ is exact in $\operatorname{Ch}(\mathcal{A})$, i.e., degree-wise exact. Hence, in particular, $P_{i} \cong P_{i}^{\prime} \oplus P_{i}^{\prime \prime}$ for all i.

Proof. Let $P_{0}=P_{0}^{\prime} \oplus P_{0}^{\prime \prime}$. Since $P_{0}^{\prime \prime}$ is projective and $\alpha^{\prime \prime}$ is an epimorphism, we have $\xi_{0}: P_{0}^{\prime} \oplus P_{0}^{\prime \prime} \rightarrow A$ which makes the following diagram commute.

Note that, by snake, ξ_{0} is epic. Then we have

Apply the same to the following:

Hence the result by induction.
Lemma 2.2.11 (Schanuel). Suppose $A \in \mathcal{A}$ for an abelian category \mathcal{A} and

$$
\begin{gathered}
0 \rightarrow B \rightarrow P_{n} \rightarrow \cdots \rightarrow P_{0} \rightarrow A \rightarrow 0 \\
0 \rightarrow C \rightarrow Q_{n} \rightarrow \cdots \rightarrow Q_{0} \rightarrow A \rightarrow 0
\end{gathered}
$$

be exact sequences with all P_{i}, Q_{j} projective. (Note that we have same n.) Then, there are projective objects P, Q such that $B \oplus P \simeq C \oplus Q$. More precisely,

$$
B \oplus Q_{n} \oplus P_{n-1} \oplus \cdots \oplus\left(P_{0} \text { or } Q_{0}\right) \simeq C \oplus P_{n} \oplus Q_{n-1} \oplus \cdots \oplus\left(Q_{0} \text { or } P_{0}\right)
$$

Proof. When $n=0$, we have the following:

(a) pull-back
(b) general property of pull-back along epimorphisms (see Lemma 1.2.5 and Corollary 1.4.11)

Since P and Q are projective, the middle sequence split:

$$
C \oplus P \simeq D \simeq B \oplus Q
$$

For $n \geq 1$, the sequence

$$
0 \rightarrow B \rightarrow P_{n} \rightarrow \cdots \rightarrow P_{2} \rightarrow P_{1} \oplus Q_{0} \rightarrow A^{\prime} \oplus Q_{0} \rightarrow 0
$$

exact for $A^{\prime} \hookrightarrow P_{0} \rightarrow A$. Similarly,

$$
0 \rightarrow C \rightarrow Q_{n} \rightarrow \cdots \rightarrow Q_{2} \rightarrow Q_{1} \oplus P_{0} \rightarrow A^{\prime \prime} \oplus P_{0} \rightarrow 0
$$

is exact for $A^{\prime \prime} \hookrightarrow Q_{0} \rightarrow A$. We have $A^{\prime} \oplus Q_{0} \simeq A^{\prime \prime} \oplus P_{0}$ by $n=0$ case. By induction, we have the result.

2.3. Left and right derived functors.

Definition 2.3.1. Let $F: \mathcal{A} \rightarrow \mathcal{B}$ be an additive functor between abelian categories.
(1) Suppose that \mathcal{A} has enough projectives. Then the i-th left derived functor of F for $i \geq 0$ is the following composition:

In cash, $L_{i} F(-)=H_{i}(F(\mathbb{P}(-)))$.
(2) Suppose that \mathcal{A} has enough injectives. Then the i-th right derived functor of F is the composition:

 needed.

Proposition 2.3.2. Let $A \in \mathcal{A}$ and let $F: \mathcal{A} \rightarrow \mathcal{B}$ be an additive functor. Let $P_{\bullet} \xrightarrow{\tilde{\xi}_{0}} A$ be some projective resolution. Then there exists a canonical isomorphism $L_{i} F(A) \xrightarrow{\sim} H_{i}\left(F\left(P_{\bullet}\right)\right)$. Moreover, for every morphism $f: A \rightarrow B$ in \mathcal{A} and any choice of $Q . \xrightarrow{\eta_{0}} B$ of a projective resolution and any choice of a lift $f_{\bullet}: P_{\bullet} \rightarrow Q$. of f, the following square commutes in \mathcal{B} :

Dually, the same holds for injective resolutions and right derived functors.

Proof. The projective resolution $\mathbb{P}(A)$ is unique up to unique isomorphism, as an object in $K_{\geq 0}(\operatorname{Proj}(\mathcal{A}))$ together with the map $\mathbb{P}(A) \rightarrow A$. The same for the maps (the obvious square

in $K_{\geq 0}$.) Then, apply the functor $K_{\geq 0}(\operatorname{Proj}(\mathcal{A})) \xrightarrow{F} K(\mathcal{B}) \xrightarrow{H_{i}} \mathcal{B}$.
Exercise 2.3.3. Show that for $F: \mathcal{A} \rightarrow \mathcal{B}$ additive between abelian categories, the induced $K(\mathcal{A}) \rightarrow K(\mathcal{B})$ preserves quasi-isomorphisms if and only if F is exact. ${ }^{31}$

Theorem 2.3.4. Let $F: \mathcal{A} \rightarrow \mathcal{B}$ be additive. Suppose \mathcal{A} has enough projectives (resp. injectives) and let $0 \rightarrow A^{\prime} \xrightarrow{\alpha^{\prime}} A \xrightarrow{\alpha^{\prime \prime}} A^{\prime \prime} \rightarrow 0$ be a short exact sequence in \mathcal{A}. Then, there exists a natural canonical long exact sequence:

$$
\cdots \rightarrow L_{1} F\left(A^{\prime \prime}\right) \xrightarrow{\partial} L_{0}\left(A^{\prime}\right) \xrightarrow{L_{0} F\left(\alpha^{\prime}\right)=\alpha_{*}^{\prime}} L_{0} F(A) \xrightarrow{L_{0} F\left(\alpha^{\prime \prime}\right)=\alpha_{*}^{\prime \prime}} L_{0} F\left(A^{\prime \prime}\right) \rightarrow 0
$$

(resp. $\cdots \rightarrow R^{i} F\left(A^{\prime}\right) \rightarrow R^{i} F(A) \rightarrow R^{i} F\left(A^{\prime \prime}\right) \xrightarrow{\partial} R^{i+1} F\left(A^{\prime}\right) \rightarrow \cdots$.) If moreover F is right exact (resp. left exact), then $L_{0} \simeq F\left(\right.$ resp. $R^{0} \simeq F$.)

Proof. By the Horseshoe lemma, we can find projective resolutions:

degree-wise (split) exact. Since F is additive, $0 \rightarrow F\left(P_{\bullet}^{\prime}\right) \rightarrow F\left(P_{\bullet}\right) \rightarrow F\left(P_{\bullet}^{\prime \prime}\right) \rightarrow 0$ is degree-wise (split) exact. This lives in $\operatorname{Ch}(\mathcal{B})$. Then apply the homology long exact sequence (in \mathcal{B}). If F is right exact and

$$
\cdots \rightarrow P_{1} \rightarrow P_{0} \rightarrow A \rightarrow 0
$$

is a projective resolution, then this gives

$$
L_{0}(A)=H_{0}\left(\cdots \rightarrow F\left(P_{1}\right) \rightarrow F\left(P_{0}\right) \rightarrow 0 \rightarrow \cdots\right)=F(A)
$$

in \mathcal{B}.
Definition 2.3.5. Let $F: \mathcal{A} \rightarrow \mathcal{B}$ be a (right exact) additive functor between abelian categories. An object $E \in \mathcal{A}$ is called (left) F-acyclic if $L_{i} F(E)=0$ for all $i>0$.

Example 2.3.6. Projective objects of \mathcal{A} are left acyclic. ($0 \rightarrow P \xrightarrow{1} P \rightarrow 0$ is a projective resolution.)
Lemma 2.3.7. Let $F: \mathcal{A} \rightarrow \mathcal{B}$ be right exact.
(1) If $A^{\prime} \hookrightarrow A \rightarrow E$ is a short exact sequence in \mathcal{A} and E is F-acyclic, then $F\left(A^{\prime}\right) \hookrightarrow F(A) \rightarrow F(E)$ is a short exact sequence in \mathcal{B}.
(2) If $A \hookrightarrow E \rightarrow E^{\prime}$ is a short exact sequence in \mathcal{A} and E, E^{\prime} are F-acyclic, then A is F-acyclic.
(3) If $E_{\bullet} \in C h_{+}(\mathcal{A})$ is a homologically bounded below complex of F-acyclic which is exact, then $F\left(E_{\bullet}\right) \in C h_{+}(\mathcal{B})$ is exact.
(4) If $f_{\bullet}: E_{\bullet} \rightarrow E_{\bullet}^{\prime}$ is a quasi-isomorphism of (homologically) bounded below complexes of F-acyclics, then $F\left(f_{\bullet}\right)$ is a quasi-isomorphism.

[^8]Proof. (1) We have $0=L_{1} F(E) \rightarrow F\left(A^{\prime}\right) \rightarrow F(A) \rightarrow F(E) \rightarrow 0$.
(2) For all $i \geq 1,0=L_{i+1} F\left(E^{\prime}\right) \rightarrow L_{i} F(A) \rightarrow L_{i} F(E)=0$ is exact.
(3) Consider the following

By induction on (2), all $A_{i}=\operatorname{im} d_{i+1}$ are F-acyclic because (by exactness of E_{\bullet}) $A_{m+1} \hookrightarrow E_{m+1} \rightarrow$ A_{m} is a short exact sequence in \mathcal{A}. Thus by (1), $F\left(A_{m+1}\right) \hookrightarrow F\left(E_{m+1}\right) \rightarrow F\left(A_{m}\right)$ is exact. Thus

is exact, hence (3).
(4) Let $f_{\bullet}: E_{\bullet} \rightarrow E_{\bullet}^{\prime}$ be a quasi-isomorphism. We first reduce to the case where $f_{i}: E_{i} \rightarrow E_{i}^{\prime}$ is an epimorphism in each degree. It is enough to add to E_{\bullet} a complex of F-acyclic \widehat{E}_{\bullet} which is homotopic to 0 . Take $\widehat{E}_{\mathbf{\bullet}}$ to be the \oplus of complexes of the form $\left(\cdots 0 \rightarrow E_{i}^{\prime} \xrightarrow{1} E_{i}^{\prime} \rightarrow 0 \cdots\right)$, i.e.,

$$
\widehat{E}_{\bullet}=\bigoplus_{i \in \mathbb{Z}}\left(\cdots \rightarrow 0 \rightarrow E_{i}^{\prime} \rightarrow E_{i}^{\prime} \rightarrow 0 \rightarrow \cdots\right)
$$

then we have

Thus this defines $\widehat{E_{\bullet}} \xrightarrow{\widehat{f}} E_{\bullet}^{\prime}$ degree-wise epimorphism $\widehat{f} \sim 0 .{ }^{32}$ Then contemplate $E \oplus \widehat{E} \xrightarrow{(f \hat{f})} E^{\prime}$. Since $F\left(\widehat{f}_{\bullet}\right) \sim 0$, we are reduced to the special case where $f_{\bullet}: E_{\bullet} \rightarrow E_{\bullet}^{\prime}$ is a bounded below F-acyclic quasi-isomorphism and each f_{i} is an epimorphism. We want to show that $F\left(f_{\bullet}\right)$ is a quasi-isomorphism. Consider $A_{\bullet}=\operatorname{ker} f_{\bullet}$ in $C h(\mathcal{A})$. We have an exact sequence $A_{\bullet} \hookrightarrow E_{\bullet} \xrightarrow{f_{\bullet}} E_{\bullet}^{\prime}$. By (2) and the short exact sequence $A_{i} \hookrightarrow E_{i} \xrightarrow{f_{i}} E_{i}^{\prime}$, we see that A_{i} is F-acyclic. By the long exact sequence in H.

$$
\rightarrow H_{i}(E) \xrightarrow{\sim} H_{i}\left(E^{\prime}\right) \rightarrow H_{i-1}(A) \rightarrow H_{i-1}(E) \xrightarrow{\sim} H_{i-1}\left(E^{\prime}\right)
$$

$\left(\mathcal{A}\right.$ abelian), $H_{i-1}\left(A_{\bullet}\right)=0$. So A_{\bullet} is a bounded below exact complex of F-acyclic, thus by (3), $F\left(A_{\bullet}\right)$ is exact. Since $A_{i} \hookrightarrow E_{i} \rightarrow E_{i}^{\prime}$ and by (1), $F\left(A_{\bullet}\right) \rightarrow F\left(E_{\bullet}\right) \rightarrow F\left(E_{\bullet}^{\prime}\right)$ is degree-wise exact. By
${ }^{32} \widehat{f}$ is defined as follows.

Here the maps $\epsilon_{i}: E_{i-1}^{\prime} \oplus E_{i}^{\prime} \xrightarrow{(01)} E_{i}^{\prime}$ gives $\widehat{f}=\left(\begin{array}{ll}\text { id } & d_{\bullet}\end{array}\right) \sim 0$.
long exact sequence in H_{\bullet} in \mathcal{B}

$$
\rightarrow 0=H_{i}\left(F\left(A_{i}\right)\right) \rightarrow H_{i}\left(F\left(E_{i}\right)\right) \rightarrow H_{i}\left(F\left(E_{i}^{\prime}\right)\right) \rightarrow 0
$$

(\mathcal{B} abelian), $H_{\bullet}\left(F\left(f_{\bullet}\right)\right)$ is an isomphism, i.e., $F\left(f_{\bullet}\right)$ is a quasi-isomorphism.
Exercise 2.3.8 (Final Problem \#4). If $B \hookrightarrow E \rightarrow A$ is exact in \mathcal{A} and E is F-acyclic, then there exists a natural isomorphism $L_{i+1} F(A) \simeq L_{i} F(B)$ for $i \geq 1$. More generally, if

$$
0 \rightarrow B \rightarrow E_{m} \rightarrow \cdots \rightarrow E_{1} \rightarrow A \rightarrow 0
$$

is exact and all E_{i} are F-acyclic, then $L_{i+m} F(A) \simeq L_{i} F(B)$ for all $i \geq 1$.
Theorem 2.3.9 (Derived functors using acyclic objects). Let \mathcal{A} and \mathcal{B} be abelian and $F: \mathcal{A} \rightarrow \mathcal{B}$ be right exact. Suppose that \mathcal{A} has enough projectives. Let $A \in \mathcal{A}$. For any resolution of A by F-acyclics

$$
\cdots \rightarrow E_{n} \rightarrow \cdots \rightarrow E_{1} \rightarrow E_{0} \rightarrow A \rightarrow 0
$$

there exists a natural and canonical isomorphism $L_{i} F(A) \simeq H_{i} F\left(E_{\bullet}\right)$ for all $i \geq 0$. Dually for right derived functors.
Proof. Let $P_{\bullet} \xrightarrow{\xi_{0}} A$ be a projective resolution. We know that there exists a (unique up to homotopy) morphism $f_{\bullet}: P_{\bullet} \rightarrow E_{\bullet}$ such that

So $H_{i}\left(f_{\bullet}\right): H_{i}\left(P_{\bullet}\right) \rightarrow H_{i}\left(E_{\bullet}\right)$ is an isomorphism for all $i \in \mathbb{Z}_{\geq 0}$. So f_{\bullet} is a quasi-isomorphism of bounded below complexes of F-acyclic (because projectives are). By the lemma, $F\left(f_{\bullet}\right)$ remains a quasi-isomorphism. Hence $H_{i}\left(F\left(f_{\bullet}\right)\right): L_{i} F(A)=H_{i} F\left(P_{\bullet}\right) \xrightarrow{\sim} H_{i} F\left(E_{\bullet}\right)$.

Remark 2.3.10. If \mathcal{A} doesn't have enough projectives, but has enough objects in a nice subcategory $\mathcal{E} \subseteq \mathcal{A}$, then we can define $L_{i} F$ by the formula of the theorem. "Nice" means
(1) If $A \hookrightarrow E \rightarrow E^{\prime \prime}$ with $E, E^{\prime} \in \mathcal{E}$, then $A \in \mathcal{E}$.
(2) If $A^{\prime} \hookrightarrow A \rightarrow E$ with $E \in \mathcal{E}$ (is it enough all in \mathcal{E} ?) then $F A^{\prime} \hookrightarrow F A \rightarrow F E$ is exact.

2.4. Ext and Tor.

We want to derive Hom and \otimes. Let us discuss the situation of a functor $F: \mathcal{A} \times \mathcal{B} \rightarrow \mathcal{C}$ where $\mathcal{A}, \mathcal{B}, \mathcal{C}$ are abelian and F is additive in each variable : $F(-, B): \mathcal{A} \rightarrow \mathcal{C}$ and $F(A,-): \mathcal{B} \rightarrow \mathcal{C}$ are additive for all $A \in \mathcal{A}$ and $B \in \mathcal{B}$.
Double complexes : Let \mathcal{C} be additive. We can consider objects in $\operatorname{ChCh}(\mathcal{C})$ as double complexes

i.e., the data of objects $C_{i j} \in \mathcal{C}$ for $(i, j) \in \mathbb{Z} \times \mathbb{Z}$ and morphisms $d_{i j}^{v}: C_{i j} \rightarrow C_{i, j-1}$ and $d_{i j}^{h}: C_{i j} \rightarrow$ $C_{i-1, j}$ such that $d^{v} d^{v}=0, d^{h} d^{h}=0$ and $d^{h} d^{v}=d^{v} d^{h}$.
Suppose that $C_{\bullet .}$ is bounded below in both directions : there exist m, n such that $C_{i j}=0$ if $i<m$ or $j<n$. Then we define $\operatorname{Tot}\left(C_{\bullet \bullet}\right)$ to be the complex by

$$
\begin{gathered}
\operatorname{Tot}\left(C_{\bullet \bullet}\right)_{k}=\bigoplus_{i+j=k} C_{i j} \xrightarrow{d} \bigoplus_{i^{\prime}+j^{\prime}=k-1} C_{i^{\prime} j^{\prime}}=\operatorname{Tot}\left(C_{\bullet \bullet}\right)_{k-1} \\
\int_{i j} \xrightarrow{\binom{d_{i j^{h}}}{(-1)^{i} d_{i j}^{v}}} C_{i-1, j} \oplus C_{i, j-1}
\end{gathered}
$$

Check this is a complex! ${ }^{33}$
Remark 2.4.1. If you need to handle unbounded double complexes, there is a choice between $\operatorname{To} t^{\amalg}$ and $\operatorname{Tot}{ }^{\Pi}$ to replace the above $\bigoplus_{\text {finite }}$.
Example 2.4.2. For $F: \mathcal{A} \times \mathcal{B} \rightarrow \mathcal{C}$, we get

which is defined by $F^{t o t}\left(A_{\bullet}, B_{\bullet}\right)=\operatorname{Tot}^{\oplus} F\left(A_{\bullet}, B_{\bullet}\right)$.
Exercise 2.4.3. $F^{\text {tot }}(-,-): C h_{+}(\mathcal{A}) \times C h_{+}(\mathcal{B}) \rightarrow C h_{+}(\mathcal{C})$ preserves homotopy equivalence and degree-wise split short exact sequences in each variable : if $A_{\bullet}^{\prime} \hookrightarrow A_{\bullet} \rightarrow A_{\bullet}^{\prime \prime}$ is a degree-wise split exact sequence in $C h_{+}(\mathcal{A})$ and $B_{\bullet} \in C h_{+}(\mathcal{B})$ is arbitrary, then

$$
F^{t o t}\left(A_{\bullet}^{\prime}, B_{\bullet}\right) \rightarrow F^{t o t}\left(A_{\bullet}, B_{\bullet}\right) \rightarrow F^{t o t}\left(A_{\bullet}^{\prime \prime}, B_{\bullet}\right)
$$

is a degree-wise split exact sequence in $C h_{+}(\mathcal{C})$. This is purely additive. ${ }^{34}$
Theorem 2.4.4. Let $\mathcal{A}, \mathcal{B}, \mathcal{C}$ be abelian and $F: \mathcal{A} \times \mathcal{B} \rightarrow \mathcal{C}$ be additive in each variable. Suppose that \mathcal{A} and \mathcal{B} have enough projectives and that F is right exact (meaning that $F(-, B): \mathcal{A} \rightarrow \mathcal{C}$ is right exact for all $B \in \mathcal{B}$ and $F(A,-): \mathcal{B} \rightarrow \mathcal{C}$ is right exact for all $A \in \mathcal{A}$.) Suppose
(1) $F(P,-): \mathcal{B} \rightarrow \mathcal{C}$ is exact if $P \in \mathcal{A}$ is projective.
(2) $F(-, Q): \mathcal{A} \rightarrow \mathcal{C}$ is exact if $Q \in \mathcal{B}$ is projective.

Then, there exist natural and canonical isomorphisms $\left(L_{i} F(A,-)\right)(B) \cong\left(L_{i} F(-, B)\right)(A)$ for every $A \in \mathcal{A}$ and $B \in \mathcal{B}$. In cash, it means that if $P_{\bullet} \rightarrow A$ and $Q_{\bullet} \rightarrow B$ are projective resolutions, then $H_{i}\left(F\left(A, Q_{\bullet}\right)\right) \cong H_{i}\left(F\left(P_{\bullet}, B\right)\right)$.

We need the following.
Lemma 2.4.5. Let $F: \mathcal{A} \times \mathcal{B} \rightarrow \mathcal{C}$ be as in the theorem. Let $f_{\bullet}: A_{\bullet} \rightarrow A_{\bullet}^{\prime}$ be a quasi-isomorphism of bounded below complex in \mathcal{A}. Let Q_{\bullet}. be a bounded below complex of projectives in \mathcal{B}. Then, $F^{\text {tot }}\left(f_{\bullet}, i d_{Q}\right)$: $F^{\text {tot }}\left(A_{\bullet}, Q_{\bullet}\right) \rightarrow F^{\text {tot }}\left(A_{\bullet}^{\prime}, Q_{\bullet}\right)$ is a quasi-isomorphism.

[^9]Proof. Consider the following.

Since, in each degree n, only finitely many Q_{j} intervene, we can assume that Q is actually bounded on both sides: $Q_{j}=0$ unless $p \leq j \leq q$. Proceed by induction on $q-p$.
For $q-p=0$, we have $Q_{\bullet}=\left(\cdots \rightarrow 0 \rightarrow Q_{p} \rightarrow 0 \rightarrow \cdots\right)$. Then, $F^{\text {tot }}\left(-, Q_{\bullet}\right)=F\left(-, Q_{p}\right)$ somewhat shifted in degree. So, it suffices to show that $F(-, Q)$ preserves quasi-isomorphism for $Q \in \operatorname{Proj}(\mathcal{B})$. This follows from (2).
Suppose the result for $q-p=r$ and contemplate Q. with $Q_{j}=0$ except $p \leq j \leq q$ with $q-p=r+1$. We have a degree-wise split short exact sequence

By the additive comments before the theorem, $F^{\text {tot }}\left(A_{\bullet},-\right)$ and $F^{\text {tot }}\left(A_{\bullet}^{\prime},-\right)$ will preserve (degreewise split) exactness of such sequences. So the rows below are short exact sequences.

These are complexes in \mathcal{C}. Apply the $H_{\mathbf{0}}$ long exact sequence in $\mathcal{C}{ }^{35}$, then the two vertical maps $H_{\bullet}\left(F^{t o t}\left(f_{\bullet}, i d_{Q_{\bullet}^{\prime}}\right)\right)$ and $H_{\bullet}\left(F^{\text {tot }}\left(f_{\bullet}, i d_{Q^{\prime \prime}}\right)\right)$ (induced by (a)) are quasi-isomorphisms by induction on the length of Q-complexes. By 5-lemma in \mathcal{C}, the map $H_{\bullet}\left(F^{t o t}\left(f_{\bullet}, i d_{Q}.\right)\right)$ is an isomorphism. So $F^{\text {tot }}\left(f_{\bullet}, i d_{\mathrm{Q}}\right.$. $)$ is a quasi-isomorphism.

Proof of Theorem 2.4.4. Consider $P_{\bullet} \xrightarrow{\xi} c_{0}(A)$ and $Q . \xrightarrow{\eta} c_{0}(B)$ quasi-isomorphisms with $P_{\bullet} \in$ $C h_{+}(\operatorname{Proj}(\mathcal{A})), Q_{\bullet} \in C h_{+}(\operatorname{Proj}(\mathcal{B}))$. Consider $F^{\text {tot }}(-,-)$ on these :

$$
\begin{gathered}
F^{\text {tot }}\left(P_{\bullet}, Q_{\bullet}\right) \xrightarrow{F^{\text {tot }}\left(i d_{P_{\bullet}}, \eta\right)} \longrightarrow F^{\text {tot }}\left(P_{\bullet}, c_{0}(B)\right)=F(-, B)\left(P_{\bullet}\right) \\
\downarrow F^{\text {tot }\left(\xi, i d_{Q}\right)} \\
F^{\text {tot }}\left(c_{0}(A), Q_{\bullet}\right)=F(A,-)\left(Q_{\bullet}\right) \longrightarrow F^{\text {tot }}\left(c_{0}(A), c_{0}(B)\right)=F(A, B)
\end{gathered}
$$

[^10]the left and top maps are quasi-isomorphisms by the lemma. Taking H_{i} gives
$$
\left(L_{i} F(A,-)\right)(B)=H_{i}\left(F\left(A, Q_{\bullet}\right)\right) \stackrel{\sim}{\sim} H_{i}\left(F^{\text {tot }}\left(P_{\bullet}, Q_{\bullet}\right)\right) \xrightarrow{\sim} H_{i}\left(F\left(P_{\bullet}, B\right)\right)=\left(L_{i} F(-, B)\right)(A)
$$
thus the theorem holds.
Remark 2.4.6. A right exact $F: \mathcal{A} \rightarrow \mathcal{B}$ is exact if and only if $L_{i} F=0$ for all $i>0$ if and only if $L_{1} F=0 .{ }^{36}$

Corollary 2.4.7. Let \mathcal{A} be an abelian category with enough injectives and enough projectives. Then for every $M, N \in \mathcal{A}$, we have $\left(R^{i} \operatorname{Hom}(M,-)\right)(N) \cong\left(R^{i} \operatorname{Hom}(-, N)\right)(M)$. In other words, if $P_{\bullet} \xrightarrow{\xi} M$ is a projective resolution and $N \xrightarrow{\eta} I^{\bullet}$ is an injective resolution, then $H^{i}\left(\operatorname{Hom}\left(M, I^{\bullet}\right)\right) \cong H^{i}\left(\operatorname{Hom}\left(P_{\bullet}, N\right)\right)$.
Proof. By Theorem 2.4.4, for right derived functors, applied to $\operatorname{Hom}_{\mathcal{A}}: \mathcal{A}^{o p} \times \mathcal{A} \rightarrow A b$. Here $\operatorname{Hom}_{\mathcal{A}}(P,-)\left(\right.$ resp. $\left.\operatorname{Hom}_{\mathcal{A}}(-, I)\right)$ is exact for projective P (resp. injective $\left.I\right)$. ${ }^{37}$
Notation F For $M, N \in \mathcal{A}$ and $i \in \mathbb{Z}$,

$$
\operatorname{Ext}_{\mathcal{A}}^{i}(M, N):=\left(R^{i} \operatorname{Hom}(M,-)\right)(N) \cong\left(R^{i} \operatorname{Hom}(-, N)\right)(M)
$$

Long exact sequence For every short exact sequence $N^{\prime} \hookrightarrow N \rightarrow N^{\prime \prime}$ in \mathcal{A},

$$
\begin{aligned}
0 \rightarrow & \operatorname{Hom}_{\mathcal{A}}\left(M, N^{\prime}\right) \rightarrow \operatorname{Hom}_{\mathcal{A}}(M, N) \rightarrow \operatorname{Hom}_{\mathcal{A}}\left(M, N^{\prime \prime}\right) \rightarrow \operatorname{Ext}_{\mathcal{A}}^{1}\left(M, N^{\prime}\right) \rightarrow \cdots \\
& \rightarrow \operatorname{Ext}^{i}\left(M, N^{\prime}\right) \rightarrow \operatorname{Ext}^{i}(M, N) \rightarrow \operatorname{Ext}^{i}\left(M, N^{\prime \prime}\right) \rightarrow \operatorname{Ext}^{i+1}\left(M, N^{\prime}\right) \rightarrow \cdots
\end{aligned}
$$

is exact in $A b$. Similarly, for every $M^{\prime} \hookrightarrow M \rightarrow M^{\prime \prime}$,

$$
0 \rightarrow \operatorname{Hom}\left(M^{\prime \prime}, N\right) \rightarrow \operatorname{Hom}(M, N) \rightarrow \operatorname{Hom}\left(M^{\prime}, N\right) \rightarrow \operatorname{Ext}_{\mathcal{A}}^{1}\left(M^{\prime \prime}, N\right) \rightarrow \cdots
$$

is exact. (e.g. $\mathcal{A}=R-M o d$).
Corollary 2.4.8. Let R be a ring and consider $-\otimes_{R}-: \operatorname{Mod}-R \times R$-Mod $\rightarrow A b$. Then for every right R-module M and left R-module N, we have

$$
\left(L_{i}\left(M \otimes_{R}-\right)\right)(N) \cong\left(L_{i}\left(-\otimes_{R} N\right)\right)(M)
$$

Proof. This follows from the theorem because projective modules are flat: if $P \in \operatorname{Mod}-R$ is projective, then $P \otimes_{R}-: R-M o d \rightarrow A b$ is exact. This is true for $P=R$, hence true for P free ($-\otimes_{R}-$ commutes with \coprod), and also for a direct summand of a free module. ${ }^{38}$
Notation For $M \in \operatorname{Mod}-R, N \in R-M o d, i \in \mathbb{Z}$,

$$
\operatorname{Tor}_{i}^{R}(M, N):=\left(L_{i}\left(M \otimes_{R}-\right)\right)(N) \cong\left(L_{i}\left(-\otimes_{R} N\right)\right)(M)
$$

Long exact sequence If $M^{\prime} \hookrightarrow M \rightarrow M^{\prime \prime}$ is a short exact sequence in Mod-R and $N \in R-M o d$, then we have a long exact sequence of abelian groups :

$$
\begin{gathered}
\cdots \rightarrow \operatorname{Tor}_{i+1}\left(M^{\prime}, N\right) \rightarrow \operatorname{Tor}_{i}(M, N) \rightarrow \operatorname{Tor}_{i}\left(M^{\prime \prime}, N\right) \rightarrow \operatorname{Tor}_{i}\left(M^{\prime}, N\right) \rightarrow \\
\cdots \rightarrow \operatorname{Tor}_{1}^{R}\left(M^{\prime \prime}, N\right) \rightarrow M^{\prime} \otimes_{R} N \rightarrow M \otimes_{R} N \rightarrow M^{\prime \prime} \otimes_{R} N \rightarrow 0
\end{gathered}
$$

[^11]\[

$$
\begin{array}{cc}
N \otimes\left(\coprod_{i} M_{i}\right) \longrightarrow & L \otimes\left(\coprod_{i} M_{i}\right) \\
\| & \| \\
\coprod_{i}\left(N \otimes M_{i}\right) \longrightarrow & \coprod_{i}\left(L \otimes M_{i}\right)
\end{array}
$$
\]

Proposition 2.4.9. A (right) R-module E is flat (i.e., $E \otimes_{R}-: R$-Mod $\rightarrow A b$ is exact) if and only if $\operatorname{Tor}_{i}(E, M)=0$ for all $M \in R$-Mod and all $i>0$ if and only if E is $\left(-\otimes_{R} M\right)$-acyclic for all $M \in R$-Mod.
Proof. E is flat (i.e., $E \otimes_{R}-$ is exact) if and only if $\left(L_{i}\left(E \otimes_{R}-\right)\right)(M)=0$ for all M, i (i.e., Tor $=0$) if and only if $\left(L_{i}\left(-\otimes_{R} M\right)\right)(E)=0$ for all M, i (i.e., E is $\left(-\otimes_{R} M\right)$-acyclic).
Example 2.4.10. If $M^{\prime} \hookrightarrow M \rightarrow M^{\prime \prime}$ is exact, N is arbitrary and $M^{\prime \prime}$ is flat, then

$$
M^{\prime} \otimes_{R} N \hookrightarrow M \otimes_{R} N \rightarrow M^{\prime \prime} \otimes_{R} N
$$

is exact. Simply, $\operatorname{Tor}_{1}^{R}\left(M^{\prime \prime}, N\right)=0$.
Corollary 2.4.11. To compute $\operatorname{Tor}_{*}^{R}(M, N)$, it suffices to use flat resolutions. If $E_{\bullet} \rightarrow M$ is a resolution of M with all E_{i} flat, then $\operatorname{Tor}_{i}^{R}(M, N)=H_{i}\left(E_{\mathbf{\bullet}} \otimes_{R} N\right)$. And similarly on the right.
Proof. Theorem on the resolution by $\left(-\otimes_{R} N\right)$-acyclic, i.e., flat modules.
Exercise 2.4.12 (Final Problem \#5). Compute $\operatorname{Tor}_{i}^{\mathbb{Z}}(M, N)$ and $\operatorname{Ext}_{\mathbb{Z}}^{i}(M, N)$ for all $i \in \mathbb{Z}$ and all possible $M, N \in\{\mathbb{Z}, \mathbf{Q}, \mathbf{Q} / \mathbb{Z}, \mathbb{Z} / n \mathbb{Z}\}$.
Proposition 2.4.13. Let R be a commutative local ring ($R \backslash R^{\times}$forms an ideal). Suppose R is noetherian. Let $k=R / \mathfrak{m}$. Suppose that k has a finite projective resolution (i.e., there is an exact sequence

$$
0 \rightarrow P_{n} \rightarrow P_{n-1} \rightarrow \cdots \rightarrow P_{1} \rightarrow P_{0} \rightarrow k \rightarrow 0
$$

with all P_{i} projective.) Then, every finitely generated R-module M has a finite projective resolution (i.e., R is regular).

Proof. Let M be a finitely generated R-module and let

$$
0 \rightarrow N \rightarrow Q_{n-1} \rightarrow \cdots \rightarrow Q_{1} \rightarrow Q_{0} \rightarrow M \rightarrow 0
$$

be an exact sequence with all Q_{i} projective, finitely generated and N finitely generated (R is noetherian). It is enough to show that N is free. Observe that $\operatorname{Tor}_{i}(L, k)=H_{i}\left(L \otimes_{R} P_{\bullet}\right)=0$ for all L and $i>n$. We claim that $\operatorname{Tor}_{1}(N, k)=0$. More generally, from

we have $\operatorname{Tor}_{j}\left(N_{i}, k\right)=0$ for $j>n-i$. We use induction on i. The above observation is for $i=0$ $\left(N_{0}=M\right)$. Apply Tor long exact sequence to $N_{i+1} \hookrightarrow Q_{i} \rightarrow N_{i}$:

$$
0=\operatorname{Tor}_{j+1}\left(Q_{i}, k\right) \rightarrow \operatorname{Tor}_{j+1}\left(N_{i}, k\right) \xrightarrow{\sim} \operatorname{Tor}_{j}\left(N_{i+1}, k\right) \rightarrow \operatorname{Tor}_{j}\left(Q_{i}, k\right)=0
$$

for $j>0$. Hence the claim follows.
We also claim that if N is finitely generated and $\operatorname{Tor}_{1}(N, k)=0$, then N is free. Pick $\bar{\alpha}: k^{r} \cong N / \mathfrak{m} N$ for $r \geq 1$. Take a lift $R^{r} \xrightarrow{\alpha} N$, then by right exactness of $-\otimes_{R} k$, $\operatorname{coker} \alpha \otimes_{R} k=\operatorname{coker} \bar{\alpha}=0$. By Nakayama, coker $\alpha=0$. So α is an epimorphism. Consider $0 \rightarrow \operatorname{ker} \alpha \rightarrow R^{r} \xrightarrow{\alpha} N \rightarrow 0$ and

$$
0=\operatorname{Tor}_{1}(N, k) \rightarrow \operatorname{ker} \alpha \otimes_{R} k \rightarrow k^{r} \xrightarrow{\bar{\alpha}} N / \mathfrak{m} N \rightarrow 0
$$

Thus $\operatorname{ker} \alpha \otimes_{R} k=0$. By Nakayama again, $\operatorname{ker} \alpha=0$, thus α is an isomorphism and $R^{r} \cong N$.
Exercise 2.4.14 (Final Problem \#6). Find a derived functor which has not been discussed in class (Tor, Ext, group (co)homology, sheaf (co)homology) and explain how it is a derived functor.

Remark 2.4.15. For modules M, N over R, there is a way to describe $\operatorname{Ext}_{R}^{n}(M, N)$ as equivalence classes of exact sequences

$$
0 \rightarrow N \rightarrow P_{n-1} \rightarrow \cdots \rightarrow P_{0} \rightarrow M \rightarrow 0
$$

Also $\operatorname{Ext}_{R}^{n}(M, N)=\operatorname{Hom}_{D(R)}(M, N[n])$ where $D(R)$ is "the derived category of $R^{\prime \prime}=K(R)\left[q . i^{-1}\right]$.

2.5. Group homology and cohomology.

Let G be a group (often a finite one) and let k be a commutative ring (often $k=\mathbb{Z}$ or a field). Consider k-linear representations of G, that is, $k G$-modules. (Recall that $k G$ is the "group algebra", free k-module with basis G and multiplication defined by extending k-bilinearly the rule $g \cdot h=g h$.) There is a trivial $k G$-module functor

$$
\begin{array}{cccc}
\text { triv : } & k \text {-Mod } & \rightarrow k G-M o d \\
N & \mapsto & N=N^{\text {triv }}
\end{array}
$$

with $g \cdot x=x$ for all $g \in G$ and $x \in N$. It has adjoints on both sides :

given by $M^{G}=\{m \in M \mid g \cdot m=m$, for all $g \in G\}$ and $M_{G}=M /\langle g m-m \mid g \in G, m \in M\rangle$. We have $M^{G} \hookrightarrow M$ and $M \rightarrow M_{G}$. Equivalently, M^{G} is the biggest $k G$-submodule of M on which G acts trivially and M_{G} is the biggest quotient of M on which G acts trivially.

Remark 2.5.1. The above $\langle g m-m \mid g \in G, m \in M\rangle$ means the $k G$-submodule generated by $\{g m-$ $m \mid g \in G, m \in M\}$, but it is also the abelian group generated by those $k \cdot(g m-m)=\mathrm{kgm}-\mathrm{km}=$ $(k g m-m)-(k m-m)$.

Definition 2.5.2. The $i^{\text {th }}$ homology of G with coefficients in M, denoted $H_{i}(G, M)$ or $H_{i}^{k}(G, M)$ (very rare!), is the $i^{\text {th }}$ derived functor of $(-)_{G}$ evaluated at M. The $i^{\text {th }}$ cohomology of G with coefficients in M, denoted $H^{i}(G, M)$ is the $i^{\text {th }}$ right derived functor of $(-)^{G}$ evaluated at M. These are k-modules.

Proposition 2.5.3. There are natural isomorphisms:

$$
H_{i}(G, M) \cong \operatorname{Tor}_{i}^{k G}(k, M) \quad \text { and } \quad H^{i}(G, M) \cong \operatorname{Ext}_{k G}^{i}(k, M)
$$

where $k=k^{\text {triv }}$.

Proof. We have natural isomorphisms $k \otimes_{k G} M \cong M_{G}{ }^{39}$ and $\operatorname{Hom}_{k G}(k, M) \cong M^{G 40}$. Then derive! Alternatively,

where k is considered ${ }_{k} k_{k G}$ on the left and ${ }_{k G} k_{k}$ on the right.
Corollary 2.5.4. For any resolution $P_{\bullet} \rightarrow k$ of $k^{\text {triv }}$ by "projective" $k G$-modules P_{i}, we have

$$
H_{i}(G, M)=H_{i}\left(P_{\bullet} \otimes_{k G} M\right) \quad \text { and } \quad H^{i}(G, M)=H^{i}\left(\operatorname{Hom}_{k G}\left(P_{\bullet}, M\right)\right)=H_{-i}\left(\operatorname{Hom}_{k G}\left(P_{\bullet}, M\right)\right)
$$

Proof. General fact about Tor and Ext.
Remark 2.5.5. It is therefore enough to find one "good" projective resolution of k over $k G$.
Remark 2.5.6. The notation $H^{i}(G, M)$ does not usually involve k. The reasons are that k is usually clear from the setting, but more importantly, it does not see "restriction" (push-forward) along $k \rightarrow l$. Indeed, let $f: k \rightarrow l$ be a homomorphism of commutative rings. We have $\operatorname{res}_{f}: l-M o d \rightarrow k$-Mod and $\operatorname{res}_{f}: k G-M o d \rightarrow l G-M o d$ which is just restriction of the scalar action from l to k via f by $x \cdot m=f(x) \cdot m$ for $x \in k, m \in M$ (still $g \cdot m=g \cdot m$ for $g \in G$).

Proposition 2.5.7. With the above notation, we have natural isomorphisms

$$
H_{i}\left(G, \operatorname{res}_{f} M\right) \cong \operatorname{res}_{f} H_{i}(G, M) \quad \text { and } \quad H^{i}\left(G, \operatorname{res}_{f} M\right) \cong \operatorname{res}_{f} H^{i}(G, M)
$$

for all lG-module M.
Proof. Pick a $k G$-projective resolution $P_{\bullet} \rightarrow k$. We have

$$
\begin{aligned}
\operatorname{Hom}_{l}\left(l_{l}, M\right) & =\operatorname{res}_{f} M={ }_{k} l_{l} \otimes M \\
H_{i}\left(G, \operatorname{res}_{f} M\right) & =H_{i}\left(P_{\bullet} \otimes_{k G}\left(l G \otimes_{l G} M\right)\right) \\
& =H_{i}\left(\left(P_{\bullet} \otimes_{k G} l G\right) \otimes_{l G} M\right) \\
& =H_{i}(G, M)
\end{aligned}
$$

Here $P_{\bullet} \otimes_{k G} l G$ is an $l G$-projective resolution of l because $l G \otimes_{k G}-\cong l \otimes_{k}-$ and the sequence $P_{\bullet} \rightarrow k$ is split exact as k-modules ${ }^{41}$. Thus, $l \otimes_{k} P_{\bullet} \rightarrow l$ is a split exact sequence of l-modules, hence exact (but not split exact) as $l G$-modules.
For H^{i}, it is the same proof, using in the middle :

$$
\operatorname{Hom}_{k G}\left(P_{\bullet}, \operatorname{Hom}_{l G}(l G, M)\right) \cong \operatorname{Hom}_{l G}\left(l G \otimes_{k G} P_{\bullet}, M\right) .
$$

Theorem 2.5.8 ((weak form of) Maschke). Let G be a finite group and k be a commutative ring. Then, the trivial $k G$-module k is projective as a $k G$-module if and only if $|G|$ is invertible in k.
Proof. Consider $p: k G \rightarrow k$ the "augmentation" defined by $p\left(\sum_{g} a_{g} g\right)=\sum_{g} a_{g}$. So k is $k G-$ projective if and only if p is split epimorphism of $k G$-modules. Consider $k G$-linear $\sigma: k \rightarrow k G$. It is characterized by $\sigma(1)=\sum_{g} a_{g} g$ since $x \cdot \sigma(1)=\sigma(x \cdot 1)=\sigma(x)$ for $x \in k$. We must have $a_{g}=a \in k$

[^12]for all $g \in G$, i.e., $\sigma(1)=a \sum_{g} g$. The property $p \circ \sigma=i d$ is equivalent to $1=p \sigma(1)=a|G|$. This $a \in k$ exists if and only if $|G| \in k^{\times}$.

Corollary 2.5.9. Let G be a finite group and M be a $k G$-module such that multiplication by $|G|$ is invertible on M. Then, $H_{i}(G, M)=0=H^{i}(G, M)$ for all $i>0$.
Proof. Let $l=k\left[\frac{1}{|G|}\right]$ and $f: k \rightarrow l$. Then, M is naturally an $l G$-module, in other words, $M=\operatorname{res}_{f} M=: M^{\prime}\left(S^{-1} R-M o d=R-M o d\right.$ on which each $s \cdot-$ is invertible.) Then, $H_{i}(G, M) \cong$ $H_{i}\left(G, M^{\prime}\right)=\operatorname{Tor}_{i}^{l G}\left(l, M^{\prime}\right)=0$ (as abelian groups) for $i>0$ since l is a projective $l G$-module. Similarly, $H^{i}(G, M)=\operatorname{Ext}_{l G}^{i}\left(l, M^{\prime}\right)=0$ for $i>0$.

Example 2.5.10. Let $C_{2}=\left\langle x \mid x^{2}=1\right\rangle$. Then for any commutative ring k,

$$
\cdots \xrightarrow{(1+x)} k C_{2} \xrightarrow{(1-x)} k C_{2} \xrightarrow{(1+x)} k C_{2} \xrightarrow{(1-x)} k C_{2} \xrightarrow{p} k \rightarrow 0
$$

is a (periodic) projective resolution of k as a $k C_{2}$-module.
Exercise 2.5.11. Describe a (2-periodic) resolution of k over $k C_{p}$ where $C_{p}=\left\langle x \mid x^{p}=1\right\rangle$ for a prime p and show that $H^{i}\left(C_{p}, k\right)=k$ for all $i \geq 0 .{ }^{42}$

Corollary 2.5.12 (of above Corollary). If G is finite and k is a \mathbb{Q}-algebra, then $H_{i}(G, M)=0=$ $H^{i}(G, M)$ for all $i>0$ and for all $k G$-module M.
$\underline{\text { Bar resolution }}$ Let G be a group. For every $n \geq 0$, consider $P_{n}=k G G^{\left(G^{n}\right)}$, the free $k G$-module on G^{n}. It has a $k G$-basis

$$
\left\{\left[g_{1}\left|g_{2}\right| \cdots \mid g_{n}\right] \mid\left(g_{1}, \ldots, g_{n}\right) \in G^{n}\right\},
$$

in particular, $P_{0}=k G$.
A general element of P_{n} is a finite $\sum a_{g_{1}, g_{2}, \ldots, g_{n}}\left[g_{1}\left|g_{2}\right| \cdots \mid g_{n}\right]$ with $a_{g_{1}, g_{2}, \ldots, g_{n}} \in k G$. A k-basis of P_{n} is

$$
\left\{g_{0}\left[g_{1}|\cdots| g_{n}\right] \mid\left(g_{0}, g_{1}, \ldots, g_{n}\right) \in G^{n+1}\right\} .
$$

For every $0 \leq i \leq n$, define $\partial_{n, i}: P_{n} \rightarrow P_{n-1}$ on the $k G$-basis by

$$
\begin{aligned}
\partial_{n, 0}\left(\left[g_{1}|\cdots| g_{n}\right]\right) & =g_{1}\left[g_{2}|\cdots| g_{n}\right] \\
\partial_{n, i}\left(\left[g_{1}|\cdots| g_{n}\right]\right) & =\left[g_{1}|\cdots| g_{i-1}\left|g_{i} g_{i+1}\right| g_{i+2}|\cdots| g_{n}\right] \text { for } 0<i<n \\
\partial_{n, n}\left(\left[g_{1}|\cdots| g_{n}\right]\right) & =\left[g_{1}|\cdots| g_{n-1}\right]
\end{aligned}
$$

Finally we let $d_{n}: P_{n} \rightarrow P_{n-1}$ to be

$$
\begin{gathered}
d_{n}=\sum_{i=0}^{n}(-1)^{i} \partial_{n, i} \\
\cdots \rightarrow P_{n} \xrightarrow{d_{n}} P_{n-1} \rightarrow \cdots \rightarrow P_{1} \xrightarrow{d_{1}} P_{0} \xrightarrow[{[] \mapsto} 1]{\epsilon} k \rightarrow 0
\end{gathered}
$$

Lemma 2.5.13. The above "bar resolution" $P_{\bullet} \xrightarrow{\epsilon} k$ is a projective resolution of k over $k G$.

[^13]Proof. Exercise to show $d^{2}=0^{43}$. To show exactness of

$$
\cdots \rightarrow P_{n} \rightarrow \cdots \rightarrow P_{1} \xrightarrow{d} P_{0} \xrightarrow{\epsilon} k \rightarrow 0,
$$

it suffices to show split exactness as a complex of k-modules. We need k-linear $e_{i}: P_{i} \rightarrow P_{i+1}$ for all $i \geq 0$ and k-linear $e_{-1}: k \rightarrow P_{0}$ such that $\epsilon e_{-1}=i d_{k}$ and $d_{n+1} e_{n}+e_{n-1} d_{n}=i d_{P_{n}}$ for all $n \geq 0$.

$$
\cdots \longrightarrow P_{n} \underset{e_{n}}{\stackrel{d_{n}}{<}} P_{n-1} \longrightarrow \cdots \longrightarrow P_{1} \underset{e_{1}}{\stackrel{d_{1}}{\longleftrightarrow}} P_{0} \underset{e_{0}}{\stackrel{\epsilon}{<}} k \longrightarrow 0
$$

For e_{-1}, map 1 to []. For $n \geq 0$, define $e_{n}: P_{n} \rightarrow P_{n+1}$ by sending the k-basis element $g_{0}\left[g_{1}|\cdots| g_{n}\right]$ to $\left[g_{0}\left|g_{1}\right| \cdots \mid g_{n}\right]$.

Exercise 2.5.14. Check $d e+e d=i d$.
Remark 2.5.15. Let G be a group and A be an abelian group on which G acts (i.e., A is a $\mathbb{Z} G$ module). This happens for instance if we have an extension of G by A, that is, a short exact sequence of groups

$$
1 \rightarrow A \rightarrow E \xrightarrow{\pi} G \rightarrow 1
$$

The G-action on A is given by ${ }^{g} a=x a x^{-1}$ for any $x \in E$ such that $\pi(x)=g^{44}$. Conversely, given G and A, how many extensions E are those, as above $1 \rightarrow A \rightarrow E \rightarrow G \rightarrow 1$ up to isomorphism of extensions?

There is a well-known one : $A \rtimes G\left(=A \times G\right.$ with $\left.(a, g)(b, h)=\left(a\left({ }^{g} b\right), g h\right).\right)$
Pick an extension $1 \rightarrow A \rightarrow E \xrightarrow{\pi} G \rightarrow 1$. How far is it from being split, i.e., how far is E from $A \rtimes$ G ? Choose a set section of $\pi, s: G \rightarrow E$ such that $\pi s=i d$. For every $g_{1}, g_{2} \in G$, there is a potential problem : $s\left(g_{1} g_{2}\right) \neq s\left(g_{1}\right) s\left(g_{2}\right)$. Let $f\left(g_{1}, g_{2}\right)=s\left(g_{1}\right) s\left(g_{2}\right) s\left(g_{1} g_{2}\right)^{-1}$. Since $\pi\left(f\left(g_{1}, g_{2}\right)\right)=1$, we have $f\left(g_{1}, g_{2}\right) \in A$. So we have defined $f \in \operatorname{Map}(G \times G, A) \cong \operatorname{Hom}_{\mathbb{Z} G}\left((\mathbb{Z} G)^{G^{2}}, A\right)$. Recall for the bar resolution of G over $k=\mathbb{Z}$.

[^14]We have

where $\left(d_{3}^{*} f\right)\left(g_{1}, g_{2}, g_{3}\right)=g_{1} f\left(g_{2}, g_{3}\right)\left\{f\left(g_{1} g_{2}, g_{3}\right)\right\}^{-1} f\left(g_{1}, g_{2} g_{3}\right)\left\{f\left(g_{1}, g_{2}\right)\right\}^{-1}$.
Back to our extension $1 \rightarrow A \rightarrow E \underset{s}{\stackrel{\pi}{\rightleftharpoons}} G \rightarrow 1$. Our function $f=f_{s}$ with

$$
f_{s}\left(g_{1}, g_{2}\right)=s\left(g_{1}\right) s\left(g_{2}\right) s\left(g_{1} g_{2}\right)^{-1} \in A
$$

belongs to the kernel of $d_{3}^{*}: \operatorname{Map}\left(G^{2}, A\right) \rightarrow \operatorname{Map}\left(G^{3}, A\right)^{45}$. Thus it defines a class $\left[f_{s}\right] \in$ $H^{2}\left(\operatorname{Map}\left(G^{\bullet}, A\right)\right)=H^{2}(G, A)$. The dependency of $\left[f_{s}\right]$ on s disappears in H^{2} ! Another choice of s^{\prime} yields some $h \in \operatorname{Map}(G, A)$ such that $d_{2}^{*} h=f_{s}-f_{s^{\prime}}$.
Theorem 2.5.16. We keep notations as above. In particular, A is a given $\mathbb{Z} G$-module (the G-action on A is fixed.) The above construction yields a bijection between the isomorphism classes of extensions $1 \rightarrow A \rightarrow E \rightarrow G \rightarrow 1$ and $H^{2}(G, A)$. In particular, $\left[f_{s}\right]=0$ if and only if $E \cong A \rtimes G$ (as an extension).

Proof. Long verification. Given $[f] \in H^{2}(G, A)$, one can construct an extension $E_{f}=A \times G$ with

$$
(a, g) *_{f}(b, h)=\left(a+{ }^{g} b+f(g, h), g h\right) .
$$

2.6. Sheaf cohomology.

Setup Let X be a topological space and $\operatorname{Sh}(X)$ be the category of sheaves of abelian groups (or generalizations). We know that $\operatorname{Sh}(X)$ has enough injectives. $\left(F \hookrightarrow \prod_{x \in X}\left(i_{x}\right)_{*} I\left(F_{x}\right)\right.$ where $I(A)=\prod_{\operatorname{Hom}(A, \mathbb{Q} / \mathbb{Z})} \mathbb{Q} / \mathbb{Z}$.) Recall that $\Gamma(X,-): \operatorname{Sh}(X) \rightarrow A b$ is only left exact.

Definition 2.6.1. Let $F \in \operatorname{Sh}(X)$. The $i^{\text {th }}$ right derived functor of $\Gamma(X,-)$ evaluated at F is the $i^{\text {th }}$ cohomology group of X with coefficients in F.

$$
H^{i}(X, F):=\left(R^{i} \Gamma(X,-)\right)(F)
$$

Take an injective resolution $F \rightarrow I^{\bullet}$ of F in $\operatorname{Sh}(X)$. Then,

$$
H^{i}(X, F)=H^{i}\left(\Gamma\left(X, I^{\bullet}\right)\right)
$$

for all $i \in \mathbb{Z}$. In particular, $H^{0}(X, F)=\Gamma(X, F)=F(X)$.
From the general theory, for every short exact sequence of sheaves,

$$
0 \rightarrow F^{\prime} \rightarrow F \rightarrow F^{\prime \prime} \rightarrow 0
$$

we have a long exact sequence of abelian groups

$$
0 \rightarrow F^{\prime}(X) \rightarrow F(X) \rightarrow F^{\prime \prime}(X) \xrightarrow{\partial} H^{1}\left(X, F^{\prime}\right) \rightarrow \cdots
$$

[^15]Definition 2.6.2. A sheaf $E \in \operatorname{Sh}(X)$ is called flasque (flabby) if for every open $V \subseteq U \subseteq X$, the restriction $E(U) \rightarrow E(V)$ is onto.

Proposition 2.6.3. (1) Injectives are flasque.
(2) If $0 \rightarrow E \rightarrow F \rightarrow F^{\prime} \rightarrow 0$ is exact in $\operatorname{Sh}(X)$ and E is flasque, then $0 \rightarrow E(X) \rightarrow F(X) \rightarrow$ $F^{\prime}(X) \rightarrow 0$ is exact.
(3) Flasque sheaves are $\Gamma(X,-)$-acyclic : if E is flasque, then $H^{i}(X, E)=0$ for all $i>0$.
(4) Every sheaf F admits a monomorphism $F \hookrightarrow \prod_{x \in X}\left(i_{x}\right)_{*}\left(F_{x}\right)=$: E_{F} with E_{F} flasque. In cash, $E_{F}(U)=\prod_{x \in U} F_{x}$.

Proof. (1) For every open $U \subseteq X$, consider $\underline{\mathbb{Z}}_{U}=$ the sheafification of the presheaf

$$
W \mapsto \begin{cases}\mathbb{Z} & \text { if } W \subseteq U \\ 0 & \text { otherwise }\end{cases}
$$

$\left(\underline{\mathbb{Z}}_{U}=j_{!} \mathcal{O}_{U}\right)$. Two facts : if $V \subseteq U$, then $\underline{\mathbb{Z}}_{V} \hookrightarrow \underline{\mathbb{Z}}_{U}$.

$$
\operatorname{Hom}_{S h(X)}\left(\underline{\mathbb{Z}}_{U}, F\right)=\operatorname{Hom}_{\operatorname{Presh}(X)}\left(\mathbb{Z}_{U}^{p r e}, F\right) \cong \operatorname{Hom}_{A b}(\mathbb{Z}, F(U)) \cong F(U)
$$

Also,

if $V \subseteq U$. If F is injective, then the left vertical map is surjective ${ }^{46}$. Hence, F is flasque.
(2) Let $0 \rightarrow E \xrightarrow{\alpha} F \xrightarrow{\beta} F^{\prime} \rightarrow 0$ be exact and E be flasque. We want to show that $\beta: F(X) \rightarrow F^{\prime}(X)$ is onto. Pick $t \in F^{\prime}(X)$ and let's construct $s \in F(X)$ such that $\beta(s)=t$. The assumption implies that t is in the image of β locally, around every point.
On $\left\{(U, s) \mid U \subseteq X\right.$ open $\left., s \in F(U), \beta(s)=\left.t\right|_{U}\right\}$, we set $(U, s) \leq\left(U^{\prime}, s^{\prime}\right)$ if $U \subseteq U^{\prime}$ and $\left.s^{\prime}\right|_{U}=s$. Since F is a sheaf, there exists by Zorn's lemma a maximal such (U, s). We claim that $U=X$. Otherwise, pick $x \in X \backslash U, x \in V \subseteq X$ open, and $s^{\prime} \in F(V)$ such that $\left.s^{\prime} \stackrel{\beta}{\mapsto} t\right|_{V}$. To define $\widehat{s} \in F(U \cup V)$ by gluing $s \in F(U)$ and $s^{\prime} \in F(V)$, we would need $\left.s\right|_{U \cap V}=\left.s^{\prime}\right|_{U \cap V}$. In fact, $\left.s\right|_{U \cap V}-\left.\left.s^{\prime}\right|_{U \cap V} \stackrel{\beta}{\mapsto} t\right|_{U \cap V}-\left.t\right|_{U \cap V}=0$. Hence there exists $r \in E(U \cap V)$ such that $\alpha(r)=$ $\left.s\right|_{U \cap V}-\left.s^{\prime}\right|_{U \cap V}$. Since E is flasque, there exists $F^{\prime} \in E(V)$ such that $\left.r^{\prime}\right|_{U \cap V}=r$. Then correct $s^{\prime} \in F(V)$ by r^{\prime}, that is $s^{\prime \prime}=s^{\prime}+\left.\alpha\left(r^{\prime}\right) \in F(V) \stackrel{\beta}{\mapsto} t\right|_{V}$. Now, by construction, $\left.s\right|_{U \cap V}=\left.s^{\prime \prime}\right|_{U \cap V}$. Hence there exists $\widehat{s} \in F(U \cup V)$ such that $\left.\widehat{s}\right|_{U}=\left.s \mapsto t\right|_{U}$ and $\left.\widehat{s}\right|_{V}=\left.s^{\prime \prime} \mapsto t\right|_{V}$. Hence $\left.\widehat{s} \mapsto t\right|_{U \cup V}$ (because F is a sheaf.) Hence $(U, s) \lesseqgtr(U \cup V, \widehat{s})$, which is a contradiction. So $U=X$.
(3) Let E be flasque and let $0 \rightarrow E \rightarrow I \rightarrow F \rightarrow 0$ be exact with I injective. Then,

$$
0 \rightarrow E(X) \rightarrow I(X) \rightarrow F(X) \rightarrow H^{1}(X, E) \rightarrow H^{1}(X, I)=0 \rightarrow \cdots
$$

So $H^{1}(X, E)=0$ (by (2)) and $H^{i+1}(X, E)=H^{i}(X, F)$ for all $i \geq 1$. It suffices to show that F is flasque. More generally, if $0 \rightarrow E \rightarrow E^{\prime} \rightarrow F \rightarrow 0$ is exact and E, E^{\prime} are flasque, then F is flasque. Since E is flasque, $\left.E\right|_{U}$ is also flasque. So, $\left.\left.\left.0 \rightarrow E\right|_{U} \rightarrow E^{\prime}\right|_{U} \rightarrow F\right|_{U} \rightarrow 0$ is exact. By (2),

[^16]$0 \rightarrow E(U) \rightarrow E^{\prime}(U) \rightarrow F(U) \rightarrow 0$ is exact. For $V \subseteq U$, we have a commutative diagram

This shows that the right vertical map $\operatorname{res}_{U, V}: F(U) \rightarrow F(V)$ is onto. (4) $F \rightarrow E_{F}$ is injective "stalk-wise" and E_{F} is clearly flasque.

Corollary 2.6.4. If $0 \rightarrow F \rightarrow E^{0} \rightarrow E^{1} \rightarrow \cdots \rightarrow E^{n} \rightarrow E^{n+1} \rightarrow \cdots$ is exact with all E^{i} flasque, then $H^{i}(X, F)=H^{i}\left(E^{\bullet}(X)\right)$.

3. Spectral sequences (an introduction)

Reference for more : J. McClear y "A User's Guide to Spectral Sequences"
For the whole chapter, there is fixed abelian category \mathcal{A} (satisfying some axioms, for convergence issues). e.g. $\mathcal{A}=R$-Mod for some ring R.

3.1. Introduction.

Recall that if $A_{\bullet}^{\prime} \hookrightarrow A_{\bullet} \rightarrow A_{\bullet} / A_{\bullet}^{\prime}$ is an exact sequence in $\operatorname{Ch}(\mathcal{A})$, then we have a long exact sequence in homology :

$$
\cdots \rightarrow H_{i}\left(A_{\bullet}^{\prime}\right) \rightarrow H_{i}\left(A_{\bullet}\right) \rightarrow H_{i}\left(A_{\bullet} / A_{\bullet}^{\prime}\right) \rightarrow H_{i-1}\left(A_{\bullet}^{\prime}\right) \rightarrow \cdots
$$

We thus have some control ("homological") of A, or rather $H_{*}(A)$, once we know $H_{*}\left(A^{\prime}\right)$ and $H_{*}\left(A / A^{\prime}\right)$ - think of the latter as "known" and $H_{*}(A)$ as unknown. More precisely, there exist maps

$$
H_{*}\left(A / A^{\prime}\right) \xrightarrow{\partial} H_{*-1}\left(A^{\prime}\right)
$$

which yield some (known) objects ker ∂ and coker ∂. Then $H_{*}(A)$ has a (one-step) filtration
$H_{i}(A) \supseteq J_{i} \supseteq 0$ such that $H_{i}(A) / J_{i} \cong \operatorname{ker} \partial$ and $J_{i} / 0 \cong$ coker ∂ where

Exercise 3.1.1. Suppose $0 \subseteq A^{\prime \prime} \subseteq A^{\prime} \subseteq A$ subcomplexes. Think $A^{\prime \prime} / 0, A^{\prime} / A^{\prime \prime}$ and A / A^{\prime} are known. How to get $H_{*}(A)$ from $H_{*}\left(A^{\prime \prime} / 0\right), H_{*}\left(A^{\prime} / A^{\prime \prime}\right)$ and $H_{*}\left(A / A^{\prime}\right)$?

Definition 3.1.2. A (homological) spectral sequence starting on $s^{\text {th }}$ page (s is usually 0,1, or 2) is a collection $\left(E_{p, q}^{r}, d_{p, q}^{r}\right)_{r \geq s,(p, q) \in \mathbb{Z}}$ where $E_{p, q}^{r}$ is an object in \mathcal{A} and $d_{p, q}^{r}$: $E_{p, q}^{r} \rightarrow E_{p-r, q+r-1}^{r}$ (total degree goes down by 1) such that $d^{r} d^{r}=0$ together with isomorphisms

$$
E_{p, q}^{r+1} \cong H\left(E_{p+r, q-r+1}^{r} \xrightarrow{d^{r}} E_{p, q}^{r} \xrightarrow{d^{r}} E_{p-r, q+r-1}^{r}\right)=\frac{\operatorname{ker} d_{p, q}^{r}}{\operatorname{im} d_{p+r, q-r+1}^{r}} .
$$

(Pictures) $s=1$

$$
\begin{aligned}
& \cdots \longleftarrow E_{0,1}^{1} \longleftarrow E_{1,1}^{d_{1,1}^{1}} E^{1} \longleftarrow \\
& \cdots \longleftarrow E_{0,0}^{1} \longleftarrow d_{1,0}^{d_{1,0}^{1}} E_{1,0}^{1} \longleftarrow \cdots
\end{aligned}
$$

with $E_{p-1, q}^{1} \stackrel{d_{p, q}^{1}}{\leftrightarrows} E_{p, q \cdot}^{1}$. Every line is a complex, $d^{1} d^{1}=0$.

$$
s=2
$$

with $E_{p-2, q+1}^{2} \stackrel{d_{p, q}^{2}}{\stackrel{d_{p, q}}{2}} E_{p}^{2}$.
Remark 3.1.3. Cohomology spectral sequences are same : $\left(E_{r}^{p, q}, d_{r}^{p, q}: E_{r}^{p, q} \rightarrow E_{r}^{p+r, q-r+1}\right)$ with $E_{r+1} \cong H\left(E_{r}, d_{r}\right)$.
Remark 3.1.4. $E_{p, q}^{r+1}$ is a subquotient of $E_{p, q}^{r}$, hence they are all subquotients of $E_{p, q}^{s}$. Hence $E_{p, q}^{r} \cong Z_{p, q}^{r} / B_{p, q}^{r}$ where

$$
0=B_{p, q}^{s} \subseteq B_{p, q}^{s+1} \subseteq \cdots \subseteq B_{p, q}^{r} \subseteq \cdots \subseteq Z_{p, q}^{r} \subseteq \cdots \subseteq Z_{p, q}^{s+1} \subseteq Z_{p, q}^{s}=E_{p, q}^{s}
$$

Definition 3.1.5. With the above notation, $E_{p, q}^{\infty}=Z_{p, q}^{\infty} / B_{p, q}^{\infty}$ where

$$
\mathrm{Z}_{p, q}^{\infty}=\bigcap_{r \geq s} Z_{p, q}^{r}(\text { limit }), \quad B_{p, q}^{r}=\bigcup_{r \geq s} B_{p, q}^{r}(\text { colimit })
$$

Remark 3.1.6. We say that a spectral sequence collapses at place (p, q) at page r_{0} if $d_{p, q}^{r}=0$ and $d_{p+r, q-r+1}^{r}=0$ for all $r \geq r_{0}$. In that case, $E_{p, q}^{r_{0}} \cong E_{p, q}^{r_{0}+1} \cong \ldots \cong E_{p, q}^{r} \cong E_{p, q}^{\infty}$ for all $r \geq r_{0}$.

Example 3.1.7. If the spectral sequence is a first quadrant spectral sequence, i.e., $E_{p, q}^{r}=0$ unless $p \geq 0$ and $q \geq 0$, then it collapses at every place at some corresponding page.
Definition 3.1.8. A spectral sequence $\left(E_{p, q}^{r}\right)_{r \geq s}$ weakly converges towards a collection of objects $\left(H_{n}\right)_{n \in \mathbb{Z}}$ if there exist filtrations

$$
\cdots \subseteq J_{p-1, n} \subseteq J_{p, n} \subseteq J_{p+1, n} \subseteq \cdots \subseteq H_{n}
$$

such that $J_{p, n} / J_{p-1, n} \cong E_{p, n-p}^{\infty}$. (Note that $q=n-p$, that is, $p+q=n$.)
Notation : $E_{p, q}^{s} \underset{n=p+q}{\longrightarrow} H_{n}$
e.g. $E_{p, q}^{2}=($ known stuff $) \Rightarrow H_{p+q}=$ (mysterious stuff $)$

Remark 3.1.9. The above doesn't say that H_{n} is exhausted by the filtration. ($\bigcup_{p} J_{p, n}=H_{n}$? and $\bigcap_{p} J_{p, n}=0$?) Meditate $\cdots \subseteq 2^{n} \mathbb{Z} \subseteq \cdots \subseteq 2 \mathbb{Z} \subseteq \mathbb{Z}$. Even if it exhausts, the information about H_{*} can be weak. (all $J_{p} / J_{p-1}=\mathbb{Z} / 2 \mathbb{Z}$, but $H=\mathbb{Z}$ is quite different.)
Definition 3.1.10. A spectral sequence $\left(E_{p, q}^{r}, d_{p, q}^{r}\right)$ is bounded below if for every (total degree) n, there exists $p_{0}=p_{0}(n)$ such that $E_{p, n-p}^{s}=0$ for all $p \leq p_{0}(n)$ (thus $E_{p, n-p}^{r}=0$ for all $r \geq s$.)

Definition 3.1.11 (Bounded-below convergence). A bounded below spectral sequence converges to $\left(H_{n}\right)_{n \in \mathbb{Z}}$ if it weakly converges, i.e.,

$$
\cdots \subseteq J_{p-1, n} \subseteq J_{p, n} \subseteq \cdots \subseteq H_{n}
$$

such that $J_{p, n} / J_{p-1, n} \cong E_{p, n-p}^{\infty}$ and moreover, $\bigcap_{p} J_{p, n}=0$ (if and only if $J_{p, n}=0$ for $p \ll 0$) and $\bigcup_{p} J_{p, n}=H_{n}$.

3.2. Exact couples.

Definition 3.2.1. An exact couple $(D, E, \alpha, \beta, \gamma)$ is an exact sequence

at D, at D, and at $E)$. Note that $d=\beta \gamma: E \rightarrow E$ satisfies $d d=0$.

$D \xrightarrow{\alpha} D$

Proposition 3.2.2. Let $\sum_{E} \swarrow_{\beta}$ be an exact couple. Let $D^{\prime}=\operatorname{im} \alpha$ and $E^{\prime}=H(E, d)=$ $\operatorname{ker} \beta \gamma / \operatorname{im} \beta \gamma$. Let $\alpha^{\prime}: D^{\prime} \rightarrow D^{\prime}$ be the restriction of α and $\gamma^{\prime}: E^{\prime} \rightarrow D^{\prime}$ be the morphism induced by γ. (on elements, $\gamma^{\prime}([x])=\gamma(x)$)

Let $\beta^{\prime}: D^{\prime} \rightarrow E^{\prime}$ be " $\beta^{\prime}=\left[\beta \circ \alpha^{-1}\right]^{\prime \prime}$ which means on elements $\beta^{\prime}(y)=[\beta(x)] \in E^{\prime}$ for any $x \in B$ such that $y=\alpha(x)$. Since $y \in D^{\prime}=\operatorname{im} \alpha$, we have $y=\alpha(x)$ for same $x \in D$.

$$
D^{\prime} \xrightarrow{\alpha^{\prime}} D^{\prime}
$$

Then, these morphisms are well-defined and

Proof. Well-definedness is easy. Exactness is an exercise. For instance, if $x \in E^{\prime}$ such that $\gamma^{\prime}(x)=0$, then $x=[t] \in \operatorname{ker} \beta \gamma / \operatorname{im} \beta \gamma$ where $t \in E$ and $\beta \gamma(t)=0$. We have $\gamma(t)=0$, i.e., $t \in \operatorname{ker} \gamma=\operatorname{im} \beta$, so $t=\beta(u)$ for $u \in D$. Let $y=\alpha(u) \in \operatorname{im} \alpha=D^{\prime}$, then $\beta^{\prime}(y)=[\beta(u)]=[t]=x$.

Remark 3.2.3. Given an exact couple
 is called the derived
exact couple. By induction, we get a tower of exact couples

$$
(D, E, \alpha, \beta, \gamma) \xrightarrow{(-)^{\prime}}\left(D^{\prime}, E^{\prime}, \alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}\right) \xrightarrow{(-)^{\prime}} \cdots \xrightarrow{(-)^{\prime}}\left(D^{(t)}, E^{(t)}, \alpha^{(t)}, \beta^{(t)}, \gamma^{(t)}\right)
$$

Lemma 3.2.4. For every $t \geq 1$,

$$
D^{(t)}=\operatorname{im} \alpha^{(t)}, \quad \alpha_{47}^{(t)}=\alpha, \quad E^{(t)}=Z^{(t)} / B^{(t)}
$$

where $B^{(t)} \subseteq Z^{(t)} \subseteq E$ are given by

$$
Z^{(t)}=\gamma^{-1}\left(\operatorname{im} \alpha^{t}\right), \quad B^{(t)}=\beta\left(\operatorname{ker} \alpha^{t}\right)
$$

and $\gamma^{(t)}=\gamma \mid \ldots$ and $\beta^{(t)}=\left[\beta \circ \alpha^{-t}\right]$.
Proof. Exercise.
Lemma 3.2.5. Let $D_{. .}$and E.. be \mathbb{Z}^{2}-bigraded objects (collection of $D_{p, q}$ for $(p, q) \in \mathbb{Z}^{2}$). Let

be an exact couple of \mathbb{Z}^{2}-graded objects with α of bidegree $(1,-1), \beta$ of bidegree
$(-b, b)$ and γ of bidegree $(-1,0)$. Then, the derived couple

for $\alpha^{\prime},(-b-1, b+1)$ for β^{\prime} and $(-1,0)$ for γ^{\prime}.
Proof. Easy. $\operatorname{bideg}\left(\beta^{\prime}\right)=\operatorname{bideg}(\beta)-\operatorname{bideg}(\alpha)$, etc.
Corollary 3.2.6. Let $\left(D^{r}, E^{r}, \alpha^{r}, \beta^{r}, \gamma^{r}\right)$ be a collection of exact couples for $r \geq s$ such that

$$
\left(D^{r+1}, E^{r+1}, \cdots\right)=\left(D^{r}, E^{r}, \cdots\right)^{\prime}
$$

(i.e., we give $(D, E, \cdots)=\left(D^{s}, E^{s}, \cdots\right)$ and $\left(D^{r}, E^{r}, \cdots\right)=(D, E, \cdots)^{(r-s)}$.) Suppose that $\alpha=\alpha^{s}$ has bidegree $(1,-1), \gamma=\gamma^{s}$ has bidegree $(-1,0)$ and $\beta=\beta^{s}$ has bidegree $(-s+1, s-1)$ (typically $(0,0)$ if we start on $s=1)$. Then, $\left(E_{\bullet .}^{r}, d^{r}=\beta^{r} \gamma^{r}\right)$ is a spectral sequence starting on page s.
Definition 3.2.7. Like for spectral sequences, an exact couple ($\left.D_{\bullet .}, E_{\bullet \bullet}, \ldots\right)^{\prime}$ is bounded below if for every $n \in \mathbb{Z}$, there is $p_{0}=p_{0}(n)$ such that $D_{p, n-p}=0$ for $p \leq p_{0}$ (thus, $E_{p, n-p}=0$ for $p \ll 0$.) In that case, the associated spectral sequence is bounded below.

for α, β, γ and let $\left(E_{p, q}^{r}, d^{r}\right)_{r \geq s}$ be the associated spectral sequence. Suppose that the exact couple is bounded below. Let

$$
H_{n}=\operatorname{colim}_{p \rightarrow+\infty}\left(D_{p, n-p}, \alpha\right)=\operatorname{colim}\left(D_{p, n-p} \xrightarrow{\alpha} D_{p+1, n-p-1} \xrightarrow{\alpha} \cdots\right)
$$

Then, the bounded below sequence $E_{p, q}^{s} \underset{n=p+q}{\longrightarrow} H_{n}$ converges to that H_{*}.
Proof. The filtration on H_{n} is given by

$$
\cdots \subseteq J_{p-1, n} \subseteq J_{p, n} \subseteq \cdots \subseteq H_{n}
$$

where $J_{p, n}=\operatorname{im}\left(D_{p+s-1, n-p-s+1} \rightarrow \operatorname{colim}_{i \rightarrow \infty} D_{i, n-i}=H_{n}\right)$. This filtration exhausts H_{n} because the couple is bounded below. We need to give isomorphisms

$$
J_{p, n} / J_{p-1, n} \cong E_{p, n-p}^{\infty}=Z_{p, q}^{\infty} / B_{p, q}^{\infty} \quad(q=n-p)
$$

where $Z_{p, q}^{\infty}=\bigcap_{r} Z_{p, q}^{r}$ and $B_{p, q}^{r}=\bigcup_{r} B_{p, q}^{r} \subseteq E_{p, q}$.
Recall that $E_{p, q}^{r}=\frac{\gamma^{-1}\left(\operatorname{im} \alpha^{r-s}\right)}{\beta\left(\operatorname{ker} \alpha^{r-s}\right)}$ or more precisely, $Z_{p, q}^{r}=\gamma^{-1}\left(\operatorname{im} \alpha^{r-s}\right)$ and $B_{p, q}^{r}=B\left(\operatorname{ker} \alpha^{r-s}\right)$.

$$
Z_{p, q}^{r}=\gamma^{-1}\left(\operatorname{im}\left(\alpha^{r-s}: D_{p-r+s-1, q+r-s} \rightarrow D_{p-1, q}\right)\right)
$$

$$
\xlongequal[\overline{D_{i, n-1-i}=0 \text { for } i \ll 0}]{ } Z_{p, q}^{\infty}=\bigcap Z_{p, q}^{r}=\operatorname{ker}\left(\gamma: E_{p, q} \rightarrow D_{p-1, q}\right)
$$

For each p, q such that $p+q=n$, consider

$$
0 \rightarrow K_{p+s-1, n-p-s+1} \rightarrow D_{p+s-1, n-p-s+1} \rightarrow J_{p, n} \rightarrow 0
$$

Compare two consecutive sequences.

(1) Apply Snake.
(2) By the exact couple, coker $\alpha=\operatorname{im} \beta=\beta\left(D_{\text {... }}\right)$.
(3) By (1) and (2).

By construction,

$$
\beta\left(K_{p+s-1, \ldots}\right)=\bigcup_{t \geq 1} \beta\left(\operatorname{ker} \alpha^{t}\right)=\bigcup_{r \geq 1} B_{p, q}^{r}=B_{p, q}^{\infty}
$$

3.3. Some examples.

Spectral sequence of a filtered complex Let

$$
\cdots \subseteq F_{p-1} C_{\bullet} \subseteq F_{p} C_{\bullet} \subseteq \cdots \subseteq C_{\bullet}
$$

be a filtration by subcomplexes. Suppose the filtration is bounded below : for all $n \in \mathbb{Z}, F_{p} C_{n}=0$ for $p \ll 0$. Suppose $C_{n}=\bigcup_{p \in \mathbb{Z}} F_{p, n}$. Then, there exists a bounded below converging spectral sequence

$$
E_{p, q}^{1}=H_{p, q}\left(F_{p} C_{\bullet} / F_{p-1} C_{\bullet}\right) \underset{p+q=n}{\Longrightarrow} H_{n}\left(C_{\bullet}\right)
$$

Proof. Let $D_{p, q}=H_{p+q}\left(F_{p} C_{\bullet}\right)$ and $E_{p, q}=H_{p+q}\left(F_{p} C_{\bullet} / F_{p-1} C_{\bullet}\right)$. There is a long exact sequence in H_{*} on $F_{p-1} \hookrightarrow F_{p} \rightarrow F_{p} / F_{p-1}$.

Spectral sequence of a double complex If $C_{\bullet .}$ is $1^{\text {st }}$ quadrant ($C_{p, q}=0$ unless $p \geq 0$ and $q \geq 0$) double complex, then

$$
{ }^{I} E_{p, q}^{2}=H_{p}^{h}\left(H_{q}^{v}\left(C_{\bullet \bullet}\right)\right) \Longrightarrow H_{p+q}\left(\operatorname{Tot}^{\oplus}\left(C_{\bullet \bullet}\right)\right)
$$

and same for ${ }^{I I} E_{p, q}^{2}=H_{p}^{v} H_{q}^{h}\left(C_{\bullet \bullet}\right)$.
$\underline{\text { Grothendieck spectral sequence }}$ Suppose $\mathcal{A} \xrightarrow{F} \mathcal{B} \xrightarrow{G} \mathcal{C}$ and F, G are both right exact. If $F($ proj $) \subseteq G$-acyclic, then

$$
E_{p, q}^{2}=\left(L_{p} G\right)\left(L_{q} F\right)(A) \Longrightarrow L_{p+q}(G F)(A) .
$$

[^0]: ${ }^{1}$ By universality, we get the maps $F(A) \oplus F(B) \xrightarrow{\alpha} F(A \oplus B) \xrightarrow{\beta} F(A) \oplus F(B)$ and we can check that $\alpha=i_{F(A)} F\left(p_{A}\right)+$ $i_{F(B)} F\left(p_{B}\right)$ and $\beta=F\left(i_{A}\right) p_{F(A)}+F\left(i_{B}\right) p_{F(B)}$. Thus we have $\alpha \beta=i d_{F(A \oplus B)}$ and $\beta \alpha=i d_{F(A) \oplus F(B)}$.
 ${ }^{2}$ We have only one datum $-\operatorname{Hom}(0,0)$ - which is an abelian group with bilinear compositions. Thus, each preadditive category corresponds to a ring, where the composition of morphisms corresponds to the multiplication of the ring.

[^1]: ${ }^{8}$ (??) need to fill in details!

[^2]: ${ }^{9}$ Consider the sheaves \mathcal{O} and \mathcal{O}^{\times}on $\mathbb{C} \backslash\{0\}$ defined by the following: $\mathcal{O}(U)$ is the additive group of holomorphic functions on U and $\mathcal{O}^{\times}(U)$ is the multiplicative group of nonzero holomorphic functions on U. Consider the morphism $\exp : \mathcal{O} \rightarrow \mathcal{O}^{\times}$which maps $f \in \mathcal{O}(U)$ to $e^{2 \pi i f} \in \mathcal{O}^{\times}(U)$ for each $U \subseteq X$. Note that $\exp (\mathbb{C} \backslash\{0\})$ is not surjective because $z \in \mathcal{O}^{\times}(\mathbb{C} \backslash\{0\})$ is not in the image, but $\exp _{x}: \mathcal{O}_{x} \rightarrow \mathcal{O}_{x}^{\times}$is surjective for each x, thus exp is surjective. ${ }^{10} \mathrm{~A}$ ring R is noetherian if and only if every submodule of finitely generated R-module is finitely generated.

[^3]: ${ }^{11}$ Firstly, we can show that a fully faithful exact functor F detects isomorphic objects. Suppose $F(A) \xrightarrow{\alpha} F(B)$ is an isomorphism in \mathcal{B}. Since F is full, there is $A \stackrel{f}{\rightarrow} B$ such that $F(f)=\alpha$. The sequence $0 \rightarrow \operatorname{ker} f \rightarrow A \xrightarrow{f} B$ is exact, thus so is $0 \rightarrow F(\operatorname{ker} f) \rightarrow F(A) \xrightarrow{\alpha=F(f)} F(B)$. Since α is monic, $F(\operatorname{ker} f)=0$. Thus $\operatorname{ker} f=0$ since F is conservative. Dually, we can show that f is epic, thus $A \cong B$ in \mathcal{A}. Now we only need to show that F detects kernels and cokernels. Suppose for given $A \stackrel{f}{\rightarrow} B \stackrel{g}{\rightarrow} C$ in \mathcal{A}, we have the exact sequence $0 \rightarrow F(A) \xrightarrow{F(f)} F(B) \xrightarrow{F(g)} F(C)$ in \mathcal{B}. Let ker $g \xrightarrow{j} B$. Since $F(f)=\operatorname{ker} F(g)$ and $F(g) F(j)=0$, there's a morphism $F(\operatorname{ker} g) \rightarrow F(A)$. We can show that this is an inverse of the induced map $F(A \rightarrow \operatorname{ker} B)$, thus $f=\operatorname{ker} g$. Dually, we can do the same for cokernels.

[^4]: ${ }^{16}$ We define maps $\operatorname{Hom}_{S h(U)}\left(j^{*} \mathcal{F}, \mathcal{G}\right) \underset{\beta}{\stackrel{\alpha}{\rightleftharpoons}} \operatorname{Hom}_{S h(X)}\left(\mathcal{F}, j_{*} \mathcal{G}\right)$ by $\alpha(\phi)(V)=\phi(V \cap U) \circ \operatorname{res}_{V, V \cap U}$ for $V \subseteq X$ open, and $\beta(\psi)(W)=\psi(W)$ for $W \subseteq U$ open. We can easily see that α and β are inverses.
 ${ }^{17} \mathrm{An} R$-module is flat if and only if it is a direct limit of finitely generated free modules. See also 2.4.10.

[^5]: ${ }^{24}$ The image of a split exact sequence under an additive functor is split exact.

[^6]: ${ }^{25} \mathrm{We}$ can show that, for example, $f \sim 0$ implies $h \circ f \sim 0$.

[^7]: ${ }^{30}$ thus give the same homology/cohomology.

[^8]: ${ }^{31}$ see 2.1.16

[^9]: ${ }^{33}$ Basically from the matrix representation of $d: \operatorname{Tot}\left(\mathcal{C}_{\bullet \bullet}\right)_{k} \rightarrow \operatorname{Tot}\left(\mathcal{C}_{\bullet \bullet}\right)_{k-1}$. In the product of matrices $d \circ d$, we have $d^{v} d^{v}=0, d^{h} d^{h}=0$ and $\left(\pm d^{v} d^{h}\right)\binom{d^{h}}{\mp d^{v}}=0$.
 ${ }^{34} \mathrm{An}$ additive functor preserves split exact sequences. Here $F\left(-, B_{\bullet}\right): C h_{+}(\mathcal{A}) \rightarrow C h_{+} C h_{+}(\mathcal{C})$ and $T o t{ }^{\oplus}$: $C h_{+} C h_{+}(\mathcal{C}) \rightarrow C h_{+}(\mathcal{C})$ are both additive.

[^10]: ${ }^{35} \mathrm{We}$ have two rows of long exact sequences with induced vertical maps.

[^11]: ${ }^{36}$ If F is exact, then $H_{i} F\left(P_{\bullet}\right)=0$ for a projective resolution P_{\bullet}. If $L_{1} F=0$, then F is exact from the long exact sequence. ${ }^{37}$ Injectives in $\mathcal{A}^{o p}$ are projective in \mathcal{A} !
 ${ }^{38}$ Note that $\coprod_{i} M_{i}$ is flat if and only if M_{i} is flat for all i. Consider $N \hookrightarrow L$ and

[^12]: ${ }^{39} k=k G /\langle g-1 \mid g \in G\rangle$ gives $k \otimes_{k G} M=M /\langle g-1 \mid g \in G\rangle M=M_{G}$
 ${ }^{40} f \in \operatorname{Hom}_{k G}(k, M)$ is determined by $f(1)$ and $g \cdot f(1)=f(g \cdot 1)=f(1)$ for all $g \in G$
 ${ }^{41}$ vector spaces!

[^13]: $p=0$ when char $k=p$. If char $k \neq p$?

[^14]: ${ }^{43}$ We have $\partial_{n-1,0} \partial_{n, 0}=\partial_{n-1,0} \partial_{n, 1}$ and $\partial_{n-1,0} \partial_{n, i}=\partial_{n-1, i-1} \partial_{n, 0}$ for $1<i<n$, etc.
 ${ }^{44}$ This makes sense because $x a x^{-1} \in \operatorname{ker} \pi=A$

[^15]: ${ }^{45} A$ is abelian!

[^16]: ${ }^{46} \operatorname{Hom}_{S h(X)}(-, F)$ is exact!

