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1. ABELIAN CATEGORIES

1.1. Additive categories.
Roughly, this means we can add morphisms f + ¢ and add objects A & B.

Definition 1.1.1. An additive category is a category which satisfies the followings:
(1) there exists a zero object (final and initial)
(2) there exist a finite product & coproduct, and they are same (A I_I B % A X B)

(3) Hom(A, B) is an abelian group with induced operation, i.e., for f,¢: A — B

1 £ 0
f+g:AQ>A><A:AHA<O—g)> u)B

Remark 1.1.2. The following maps are from universality.

BxB=B]]B

Definition 1.1.3. A category is preadditive if Hom(A, B) is abelian with bilinear composition,
there is a zero object, and there is a biproduct APB=AxB=A I_[ B with four morphisms

\/
/\

satisfying pa oig =ida, iapa + iBPB = id pa, etc.

Definition 1.1.4. Let F : A — 3 be a functor between (pre)additive categories. F is called additive
if F(f+g) =F(f)+ F(g). This forces F(A® B) = F(A) ® F(B)."

Question 1.1.5. What are preadditive categories with only one object? *

Example 1.1.6. R-Mod, R-Proj (an R-module is projective if and only if it is a direct summand of
a free module) and R-Inj are additive. Here R-Proj and R-Inj are full subcategories of projective,
injective R-modules.

Example 1.1.7. If a category A is additive, then so is A°Y. We have A’ & B° = (A @ B)°, ig0 =
(pa)’, etc.

By universality, we get the maps F(A) @ F(B) = F(A® B) L F(A) ® F(B) and we can check that & = ip(4)F(pa) +
ZP(B)F(PB) and 'B = F(ZA)PF(A) =+ F(ZB)PF(B) Thus we have DCIB = idF(AEBB) and ‘BOC = idP(A)@P(B)'

*We have only one datum - Hom(0,0) - which is an abelian group with bilinear compositions. Thus, each preadditive
category corresponds to a ring, where the composition of morphisms corresponds to the multiplication of the ring.
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Remark 1.1.8. Consider f = (fij)uxm : A1 @ - © Ay — B1©--- OB, where f;; = pjpo foija.
Composition of these maps corresponds to the matrix multiplication.

1.2. Kernels and cokernels.

Definition 1.2.1. Let A be an additive category and f : A — B be a morphism. We define the
kernel of f by (ker f,i: ker f — A) if fi =0 and it is a pullback (a limit), i.e., if ft = 0 below,

A—— B

then there is a unique f : T — ker f satisfying it = t. Similarly, we can define the cokernel of f
(p: B — coker f) by a pushout:

7 . B

I
er f

O 4—

—— cok

\\\\\\i
M
5 S

Definition 1.2.2. f : A — B is a monomorphism if ft = ft' implies t = t' : T — A, which is
equivalent to say ker f = 0. f : A — B is an epimorphism if sf = s'f impliess =s' : B — §,
which is equivalent to say coker f = 0.

Remark 1.2.3. If there is ker f, then i : ker f — A is a monomorphism.

A
Remark 1.2.4. The pullback of lf :
8

B—— C

(f -g) (jg(: )

exists if and only if A ® B — C has kernel P —— A @ B.
A—— B

aLsp | |
Similarly, the pushout of lg tC——0Q

C

exists if and only if A — B @ C has cokernel.



ALB

Lemma 1.2.5. Let lg N lh be a commutative diagram in an additive category. (We use notations -

CL>D

for pullback and " for pushout.)
(1) If this is cartesian (A is a pullback) and ker h exists, then ker g exists and ker g = kerh in a
compatible way with f, i.e., thereis i : kerh — A, which is ker g, and fi = j : kerh — B is ker h.
(2) dual statement holds for cocartesian (D is a pushout) case.

Proof. Since A is a pullback, there is a unique i : kerh — A induced by hj =0 =ko0

ker h

3'1 s l

A—>B
g lh
c—*+pD

We can check that i : kerh — A is indeed the kernel of g. 3 O]

~.

1.3. Abelian categories.

Definition 1.3.1. An abelian category is an additive category in which every morphism has a
kernel and a cokernel, and ker(coker) = coker(ker):

oINS

ker f cokeri % ker p coker f

The map is induced as follows. Since fi = 0, f factors through A — cokeri — B. Since the
composition pf : A — cokeri — B —» coker f is zero and A — cokeri is an epimorphism, the
composition cokeri — B — coker f is zero. Thus cokeri — B factors through cokeri — ker p —
B. We require that this induced map is an isomorphism.

Definition 1.3.2. Let A be an abelian category and f : A — B in .A. We define the image of f by
im f = coker(ker f) = ker(coker f)

A—— B
as seen in the factorization \, /
im f
Example 1.3.3. Consider Z-proj, the full subcategory of finitely generated projective (=free)

Z-modules. Z-proj is NOT an abelian category. Consider f : Z *% Z in Z-proj. We have
ker f = 0 = coker f, but the induced map Z = cokeri “2, Ker p = Z is not an isomorphism.

3Given t : T — A such that gt = 0, there is a unique map f : T — ker & such that ft = jt by the definition of ker 7. We
can check that f(t —if) = 0 and g(t — if) = 0, thus t = if.
4



Question 1.3.4 (Final Problem #1). The category of Hausdorff topological abelian group (or
C-vector spaces) is not abelian even though all morphisms have kernels and cokernels. Cokernel

is given by coker(f : V — W) = W/im f.

Remark 1.3.5. Kernels and cokernels are natural in the morphisms:

B L 5 ker f A B coker f
llx lﬁ = There exist «, ,E such that l& J l lﬁ
P ker g Al B coker g

commutes.

Proposition 1.3.6 (Epi-mono factorization). In an abelian category A, all morphisms f : A — B factors

f
uniquely and naturally as A ~ B 4

Proposition 1.3.7. (1) A monomorphism is a kernel (of its cokernel).
(2) An epimorphism is a cokernel (of its kernel).
(3) If a morphism is a monomorphism and an epimorphism, then it is an isomorphism.

Proof. If f : A — B is a monomorphism, then ker f = 0, thus A = coker f. For (3), we have

! B

~ i m

cokeri —— kerp

A

Example 1.3.8. Let C be a small category (set of objects) and A be an abelian category. Define
A€ = Fun(C, A) be the category of functors and natural transformations. Then, A€ is abelian
with

ker(F:F — G) : C— ker(F(C) : F(C) — G(C)).

Example 1.3.9. Let C be an additive category and A be an abelian category. Then, Add(C, A), the
category of additive functors is abelian.

Example 1.3.10. Let X be a topological space and A be an abelian category. PreSh4(X) with
values in A is abelian with openwise kernel and cokernel. Indeed, PreSh 4(X) = A°P"X)” where

% ifU¢V

MWMWMMW:{U%V’HUCV

Example 1.3.11. Shy(X) is abelian. Kernels are the ones in PreSh4(X) and cokernels (or any
colimits) are the sheafifications of the ones in PreSh 4(X).

Remark 1.3.12. A morphism f : ' — G between sheaves is surjective if for all open U C X and for
all b € G(U), there is a covering U = UV; and a; € F(V;) such that f(V;)(a;) = bly, for all i. This
is equivalent to say that fy : Fy — Gy forall x € X.

A—— B . . cokeri —=— ker
4If we have another =, 5 =, then we get the commutative diagram . - P
N

C c’
5



1.4. Exact sequences.

Definition 1.4.1. The sequence A 1, B 3 C with ¢f = 0is exact at B if f : im f — ker g is an
isomorphism. °

0sALBSCco0

is a short exact sequence if f = ker ¢ and ¢ = coker f.

Exercise 1.4.2. 0 — A L, B % Cis exact if and only if f = kerg. © Dually, A Lpicois

exact if and only if g = coker f. Also, 0 — ker f — A L, B 3 ¢ - coker f — 01is exact.

Exercise 1.4.3. Suppose A 1, B 2 Cand gf = 0. The followings are equivalent.
(1) The sequence is exact at B
(2) f: A — ker g is epic
(3) g:coker f — C is monic
(4) 0 —im f — B — im g — 0 is a short exact sequence. 7

Exercise 1.4.4. In Sh 4(X), the sequence F IR G £ 7 is exact if and only if F, ELN Ge 55 2, is
exact for all x € X.

Theorem 1.4.5 (Five Lemma). Suppose we have the following commutative diagram with exact rows:

1 X2 a3 X4

A B C D E
L A
A Ppg P B PR

If f,g,1,] are isomorphisms, then so is h.

Proof. Prove the special case first: if A= A’ = E = E' = 0 and two of g, h,i are isomorphisms,
then so is the other. Then derive the general case from

0 —— il’n()éz c C il’n(X3 — 0
| | l
0*>im52 c C/ imﬁ3*>0

We get the two isomorphisms on the left and on the right by applying the special case successively
on the left and on the right. 0]

Remark 1.4.6. The above proof would be easier if we use element to chase around, i.e., when the
abelian category admits a fully faithful functor A — R-Mod such that a sequence in A is exact
if and only if it is exact in R-Mod. This is true for a small (set of objects) abelian category by
Freyd-Mitchell embedding theorem.

5Consider B LN coker f, kerg <y B and ker p <% B. We also have an induced kerp < ker g. Then (im f =
kerg) < pj=0 < (coker f = img) by the following. If ker ¢ = im f = ker p, then clearly pj = 0. If pj = 0, then
there exists ker g £> ker p satisfying uff = j. By using ja = u, we get jafp = uff = j. Since j is monic, = 1. Similarly
we have fa = 1, thus ker p = ker g.
6kerg =imf = fsince0 = A i> B is exact.
7For example, 0 — im f — B — im g is exact if and only if im f = ker(B — img) = kerg.
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Proposition 1.4.7. Let A be an abelian category and 0 — A L, B % € —5 0 be a short exact sequence.
The followings are equivalent:

(1) f is a split monomorphism (i.e., there is B — A such that rf = 1.)

(2) g is a split epimorphism.

(3) The sequence is split exact (ie., there are B — A,C > B such that rf = 1,gs = 1 and
fr+sg=1)

(4) There exists h : B — A @ C which makes the following commute:

0 B 0
0 — A —>AdC ——>C ——0
Proof. ((3) = (1),(2))and ((4) = (3)): Clear.
For (1) = (4), use h = (¢) and use the five lemma. O
AL B
Remark 1.4.8. In an abelian category, pushouts and pullbacks exist. For lg lh , Consider
c b
({) g im _ ()
A —- B®C — D — 0. We can take D = coker(A —— B® C).
e — ©
Definition 1.4.9. l l is (co)cartesian if it is a pullback (pushout). It is bicartesian if both.
e — ©
AL, B
Proposition 1.4.10. Consider the commutative diagram: lg l” . The followings are equivalent:
k
C —D

(1) It is bicartesian.

(¢) (h k)

(2) 0+ A—=B®C ——= D — 0is exact.
(3) the induced maps g : ker f — kerk and h : coker f — coker k are isomorphisms.

() f and k are isomorphisms.

Proof. (1) < (2) By the remark above.

(1) = (3),(4) We've already seen that fis an isomorphism in the additive case.
(4) = (1) By using A, it is enough to show that it is cartesian. We need to show that for all
T € A, there is a bijection

Homy(T,A) +— {(T % B,T % C)|hs = ku}
t = (ft.gt)
Suppose ft =0 and gt = 0. Let i : kerg < A and j : kerh — B. Then there exists f : T — kerg
such that t = if. Since jff = fif = ft = 0, we have f = 0, i.e., t = 0.
On the other hand, consider p : C — coker g and g : D — coker h. Since k is an isomorphism, we

have pu = E_lqku = E_lqhs = 0. Take the epi-mono factorization of g, then u factors through
7



kerp = Eviat: T — E. Take a pullback P of x and ¢.

coker g % coker h

We have hifb = kgb = kyxb = kyta = kua = hsa, thus h(fb —sa) = 0 = k(gb — ua). Now

0—+P—A®T—E — 0is exact. ° O
AL B

Corollary 1.4.11. Consider the commutative diagram: lg lh .
c b

(1) Suppose this is cartesian. Then, f is monic if and only if k is monic. Suppose further that h is epic.
Then, this is bicartesian and g is epic.

(2) Suppose this is cocartesian. Then, g is epic if and only if h is epic. Suppose further that f is monic.
Then, this is bicartesian and k is monic.

Proof. For (1), we have ker f —— ker k. If & is epic, then

0—A—B®C—-D—=0

is exact. n

Theorem 1.4.12 (Snake Lemma). Suppose we have the following commutative diagram with exact rows.

Al B, ¢ 0
I
0 AN SINYC'

8(2?) need to fill in details!



Then, we have the long exact sequence given by the red line below:

0—— kerf kera kerb —— ke7

f g
A > B > C >0
a 5 b c
0 y A — ! — !
f g

cokera — cokerb — cokerc — cokerg’ —— 0

This morphism ¢ is natural in the original data.

Question 1.4.13 (Final Problem #2). Prove Freyd-Mitchell embedding theorem or the snake
lemma without using elements.

1.5. Functoriality in abelian categories.

Definition 1.5.1. An (additive) functor F : A — B between abelian categories A, B is exact if it
preserves exact sequences.

Exercise 1.5.2. F preserves exact sequences
< F preserves short exact sequences
& F preserves kernels and cokernels.

Remark 1.5.3. If F preserves kernel (or cokernel), then it is automatically additive: F(A @ B) =
F(A) @ F(B).

Example 1.5.4. If S C R is a multiplicative central subset (S C Z(R),SS C S,1 € S), then the
functor S~1(—) : R-Mod — (S™'R)-Mod is exact.

Example 1.5.5. The sheafification functor a : PreSh(X) — Sh(X) is exact. However, the forgetful
functor u : Sh(X) — PreSh(X) is not exact. Find an example! °

Definition 1.5.6. Let B be an abelian category. A subcategory .A C B is an abelian subcategory if
A is abelian and A — B is exact. ( < sequences in A is exact if and only if they are exact in 5.)

Example 1.5.7. Let R be a ring and R-mod be the category of finitely generated R-modules. This
is an abelian subcategory of R-Mod if and only if R is (left) noetherian. *°

Exercise 1.5.8. Let F : A — B be an exact functor. Then,
(1) Fis faithful (F(f) =0 = f = 0) if and only if F is conservative (F(A) =0 = A =0)

9Consider the sheaves O and O on C \ {0} defined by the following : O(U) is the additive group of holomorphic
functions on U and O™ (U) is the multiplicative group of nonzero holomorphic functions on U. Consider the morphism
exp : O — O which maps f € O(U) to ¢¥™f € O*(U) for each U C X. Note that exp(C \ {0}) is not surjective
because z € O* (C \ {0}) is not in the image, but exp, : Oy — Oy is surjective for each x, thus exp is surjective.

0A ring R is noetherian if and only if every submodule of finitely generated R-module is finitely generated.

9



(2) F is fully faithful, then F detects exactness. '

Definition 1.5.9. Let A C B be a subcategory.

A is closed under subobjects if B <— A € A in B implies B € A.

A is closed under quotients if A 3 A — B in B implies B € A.

A is closed under extensions if 0 -+ A — B — A’ — 0 is a short exact sequence in B and
A, A" € A, then B € A.

A is a Serre subcategory of B if it is a full, abelian subcategory closed under subobjects, quotients,
and extensions.

Example 1.5.10. Let S C R be a central multiplicative subset. Let S-Tors be the full subcategory
of R-Mod such that M € S-Tors if and only if S™'M = 0. (S-Tors = ker(S~1(—))) This is a Serre
subcategory of R-Mod.

Example 1.5.11. Let F : B — C be an exact functor between abelian categories. Then, ker(F) is a
Serre subcategory of B.

In fact, the converse also holds.

Theorem 1.5.12 (Gabriel, 1962). Let A C B be a Serre subcategory of an abelian category B. Then, there
exists an exact functor Q : B — B/ A to an abelian category 3/ A which is initial (thus universal) among
those Q(A) = 0, i.e., for all exact functor F : B — D such that F(A) = 0, there exists a unique functor
F:B/A — D satisfying Fo Q ~ F.

Remark 1.5.13. Q : B — B/ A is a (categorical) localization. Let
S={f:B— B in B | ker f,coker f € A}

Then for exact F : B — D, we have F(A) =0 < F(S) C isomorphisms. Note that (0 — A) is
inS forall A € A.

Remark 1.5.14. Strictly speaking, B/.A need to remain a category such that all B € B have only
sets of isomorphism classes of subobjects.

Proof of Theorem 1.5.12. (Gabriel construction of 5/ .A)
Define Obj(B/.A) = Obj(B).
For B, B’ € B, we define Morp, 4(B, B') by the equivalence classes of

B ----- > B/
7l
X —Y

Firstly, we can show that a fully faithful exact functor F detects isomorphic objects. Suppose F(A) - F(B) is an

isomorphism in B. Since F is full, there is A LB such that F(f) = a. The sequence 0 — ker f — A L> B is exact, thus

=F
sois 0 — F(ker f) — F(A) % F(B). Since & is monic, F(ker f) = 0. Thus ker f = 0 since F is conservative. Dually,

we can show that f is epic, thus A = B in A. Now we only need to show that F detects kernels and cokernels. Suppose

for given A Ly A C in A, we have the exact sequence 0 — F(A) M F(B) M) F(C)in B. Let kerg 1, B. Since

F(f) = kerF(g) and F(g)F(j) = 0, there’s a morphism F(kerg) — F(A). We can show that this is an inverse of the
induced map F(A — ker B), thus f = ker g. Dually, we can do the same for cokernels.
10



such that cokera, ker B € A. The equivalence relation is given by having common amplification:

B ----- s B
Jo b
X —Y
b
X' — Y
The composition is defined as follows:
B oo > B » B
X f Y P ( })7 777777 X/ f Y/
\ L r
o Zz\ (2) %
X// ° Y”
where you
(1) compose X' — B = Y
(2) get epi-mono factorization of (1)
(3) get a pullback X” and a pushout Y”
(4) and compose X" — o — Y”.
B ,,Q,([),> B/ B/ e B/
Define Q : B — B/ Aby H H . Note that Q(<) is an isomorphism by a] H . O
B—L,p Bty B

Remark 1.5.15. We say that an exact functor F : B — C is a quotient or a localization if you set
A =ker(F) or S = {f | F(f) = 0}, then there is a unique map F : B/ A — C such that FoQ ~ F
is an equivalence.

Example 1.5.16. Let R be a ring and B = R-Mod. Let S C R be a central multiplicative subset. Then
S~!: R-Mod — (S7!'R)-Mod is a quotient (i.e., localization) with respect to t = ker(S™1(—)) =
S-Tor the S-torsion R-modules. Indeed, we can identify (S™!R)-Mod with the full subcategory of
R-Mod on those M € R-Mod such that s : M — M, m +— sm is an isomorphism for all s € S. It is
then easy to check the universal property for S™1(—).

Example 1.5.17. Let X be a space and consider a : PreSh(X) — Sh(X), the associative sheaf
PreSh(X)

functor. This exact functor is a localization. Remember there is an adjunction: al "
Sh(X)

C
Remark 1.5.18. Recall that a pair of functors FlTG are called adjoints if there exists a natural

D
bijection
a : Morp(F(x),y) —— More(x, G(y))

11



for x € C,y € D. It means to give "natural” transformations

n =a(idp) : Ide — GF, € =a"Y(idg): FG — Idp

(7 : unit, € : counit) ** such that F M FGF —*% F and G —°» GFG & G .Y
id id
Conversely, to recover «,
Morp (F(x),y) =N Mor¢(GF(x),G(y)) -, More(x, G(y))
(f :F(x) 2y) — G(f) = G(f)on =:a(f)

Similarly, a ! (g) :==€oF(g) "

Remark 1.5.19. In particular, if C, D are (pre)additive, and F, G are additive, then « is automatically
an isomorphism of abelian groups (i.e., Z-linear).

B
Proposition 1.5.20. Let Ql TR be an adjunction of additive functors between abelian categories. Suppose

C
Q is exact and R is fully faithful. Then, Q is a Gabriel quotient (i.e., localization).

Proof. For ¢,c’ € C, one checks that the composite isomorphism

Home (¢, ') ——~— Homg(R(c), R(c')) = Home(QR(c), )
fully faithful adj

is given by precomposition with €, : QR(c) — ¢. Hence by Yoneda, €, is an isomorphism for all
ceCb.
By the unit-counit relation (eq o Q(17) = id), it follows that Q(#,) is an isomorphism for all b € B.
In other words, since Q is exact, 17, : b — RQ(b) has kernel and cokernel in A := ker(Q). Let
B—t5D
us prove the universal property: Ql e . Let F : B — D be exact such that F(A) = 0.
.-~ 3F
C
Then, F(7,) is an isomorphism for all b € B. Thus we have F(y) : F(idp) = FRQ. Let
F:C — DtobeF = FR, then we have FQ ~ F. Uniqueness is clear from € : QR 2 id,
(FoQx=FoQ=2TFx~Fp), O

naturality of 7 and € is from that of a.
13For example, we have the following commutative diagram:

Homyp (FGF(x), F(x)) < Homg(GF(x), GF(x))
70F(’7k)$ i/_on’f
Homyp (F(x), F(x)) —%— Hom¢(x, GF(x))
From this, we get (ep o F(57))(x) = a’l(idcp(x)) o F(nx) = idp(y).-

MFor F(x) 1, y, we have a 1o (f) = €y o FG(f) o F(1x) = fo€p(xy o F(i1x) = f o (er o F(17))(x) = f by naturality of e.
5By Yoneda’s lemma, we have Homcor(Homge (¢, —), Home (QR(c), —)) =~ Hom¢ (QR(c),¢) D €.
12



Sh(X)
Example 1.5.21. Let U C X open, and let j : U — X the inclusion. Consider j*:mul . resy is

Sh(U)
exact. It has a right adjoint j, : Sh(U) — Sh(X) defined by j.G(V) = G(UN V). (No sheafification
needed) Note that j*j, —— id. Hence j, is faithful. It is also fully faithful. Hence res is a

localization.

Exercise 1.5.22. Write the adjunction in detail! *°

1.6. Left and right exact functors.

Remark 1.6.1. Many functors between abelian categories are only partially exact.

(1) M®g — : R-Mod — Ab does not preserve monomorphisms, unless M is flat.
(2) Homg(M, —) : R-Mod — Ab does not preserve epimorphisms, unless M is projective.
(3) Homg(—, M) : (R-Mod)°? — Ab does not send all monomorphisms to epimorphisms,
unless M is injective.
(4) T(X,—) : Sh(X) —— Ab does not preserve epimorphisms.
F—=F(X)

Exercise 1.6.2 (Tor-teaser). Prove thatif 0 — M; — M, — M3 — 0 is exact, then 0 > M; ® N —
M, @ N — M3 ® N — 0 is exact if M3 is flat. '7

Definition 1.6.3. A (additive) functor F : A — BB between abelian categories is left exact if it
preserves kernels (F(ker f) = ker F(f)). It is right exact if it preserves cokernels.
A contravariant functor F : 4 — B is said to have those properties when considered as (covariant)

AP — B.

Example 1.6.4. F : A’ — B is left exact if Ay — Ay — A3 — Oexact = 0 — F(A3) — F(A2) —
F(A1) exact.

Proposition 1.6.5. (1) F: A — B is left exact if and only if for every short exact sequence 0 —

Ay — Ay — Az — 0, the sequence 0 — F(A1) — F(Az) — F(A3) is exact.

(2) F: A — Bis right exact if and only if for every short exact sequence 0 — A1 — Ay — Az — 0,
the sequence F(A1) — F(Az) — F(A3z) — 0 is exact.

(3) F: AP — B is left exact if for every short exact sequence 0 — Ay — Ay — Az — 0, the sequence
0 — F(A3) — F(A) — F(A1) is exact.

(4) F : AP — B is right exact if for every short exact sequence 0 — A; — Ay — Az — 0, the
sequence F(Az) — F(Az) — F(Aq) — 0 s exact.

Proof. Exercise! O

Remark 1.6.6. The goal of so-called “Derived Functors” is to provide a measure of failure of
exactness.

®We define maps Homgy,p (*F, G) = Homyg,(x)(F,j«G) by a(¢)(V) = ¢(V N U) oresy,yny for V C X open, and
B

B()(W) = (W) for W C U open. We can easily see that « and § are inverses.
7An R-module is flat if and only if it is a direct limit of finitely generated free modules. See also 2.4.10.
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C
Proposition 1.6.7. Let Fl TG be an adjunction of functors between abelian categories. Then the left adjoint

D
F is right exact, and the right adjoint G is left exact (and they are additive).

Proof. In any adjunction of categories, the left adjoint preserves those colimit which exist in C, and
the right adjoint preserves those limits which exist in D. Indeed,

MorD(F(lig Xi),y) = Morc(lig xi, G(y)) = @Morc(xi, G(y))
o l'LnMorp(F(xi),y) &~ Morp(li_n>1 F(x),y)

Hence F preserves coproduct (hence &, hence F is additive), 0 (as an empty colimit), and pushouts,

S
e.g., that of l , i.e., cokernels. So F is right exact. O
0
PreSh(X)
Example 1.6.8. (1) l} : a is left exact '® , hence a is exact.
Sh(X) .
(2) ]*lwﬁ where U < X, open : j* is left exact, hence j* is exact. *
Sh(U)
R-Mod
(3) Mex— lTHoms _) for sMg : M ®g — is right exact, Homg (M, —) is left exact. *°
S-Mod
Mod-R

(4) (??) Homg(— lTHoms ) for sNg : (check this!) Homg(—, N) is right exact, BUT as a

S-Mod
functor Mod-R — (S-Mod)F it is left exact (Mod-R)°Y — S-Mod. **

18, preserves kernel because a presheaf kernel is a sheaf.
Sh(Y)
91n general, if we have a morphism f : X — Y, we have the adjunction f—ll T f. where f ~1 is the sheafification of the
Sh(X)
presheaf f~1G(U) = lim G(Vv).
fcv

2OThis is from Homg(sMg ®g rN,s N') = Hompg (g N, Homg(sMg,s N')). Note that we have sAg ®g B € S-Mod,
Cr ®@r rDs € Mod-S, Homg (rCs,r D) € S-Mod, Homg (g A,r Bs) € Mod-S.

Sets Gp Ab? G-Mod
*IMore examples are : freel Tforget A(diagonal) l TH , tBl T A~/ l T and forgetl Tlndc for groups H < G.
Gp sz Ab H-Mod

14



1.7. Injectives and projectives.
Let A be an abelian category throughout this section.

Definition 1.7.1. An object I in A is injective if Hom(—,I) : A’ — Ab is exact. An object P in A
is projective if Hom(P, —) : A — Ab is exact. Since both functors are always left exact, we have
the "usual” definition:

I injective

& forall M <5 N and forall f: M — I, thereis f : N — I such that foa = f

MLI

< Vj /; : I has the "right lifting property” with respect to monomorphisms.
N

Dually,

P projective

& forall M E» Nand forallg: P —+ N, thereis g: P —+ M such that Bog =g
M

& 3.7 lv : P has the "left lifting property” with respect to epimorphisms.

LN

Example 1.7.2. In R-Mod, an object is projective if and only if it is a direct summand of a free
module. Indeed,

(1) free modules F = R for a set B (f =) frep € F) are projective:
beB
Sets
HomR-Mod(R(B)/ M) = Mors,s (Br M), p:R(*)lTU
R-Mod
(2) every R-module M is a quotient of a free module :

F(UM))=RM —— M

en—m

(3) the following useful general fact.
Proposition 1.7.3. (1) If F E» P is an epimorphism and P is projective, then B is a split epimorphism.
(2) If 1 <% Nisa monomorphism and 1 is injective, then « is a split monomorphism.

(3) If My < My = Mj is a short exact sequence and M is injective or M3 is projective, then the
sequence is split exact. (hence the image of the sequence remains exact under any additive functor.)

F
Proof. (1) Look at the following: 3.7 l
p

(2) Do the case(1)’s op.

3) ()+(2). 0
Proposition 1.7.4. A (left) R-module I is injective if and only if it has the right lifting (i.e., the extension)
property with respect to the monomorphisms of the form | — R for | (left) ideal in R.

15



Proof. This is necessary.
]I 1
7

j Suppose I has this property. Let M — N be an arbitrary monomorphism of R-
=

s

R
modules and f : M — I a homomorphism.
By Zorn’s lemma, there exists M C M’ C N and f' : M’ — I such that f’|;; = f and which is
maximal among extensions (obvious sense). We have to show that M’ = N. So we’re back to
initial question but we can assume that M is maximal.
Suppose M # N, and let m € N \ M. It suffices to show that

M%I

-
-
-
-
-
-
-
-

M+ Rm

there is an extension of f to M + Rm to get a contradiction. Let ] = Anng(m) and consider the
following:

RmnNM - M

J s

R/] =2 Rm —— M+ Rm

Since this is a pushout, the existence of f follows if I has the extension property with respect to
Rm N M < Rm. Note that for some ideal ] C J' C R, we have |'/] = Rm N M, thus

J ——=J/)] —— 1

P
p
\{ \[ //
p
.

R —> R/J

Note that this is a pushout again. So the extension property boils again to the extension property
with respect to ]’ < R. O

Corollary 1.7.5. An abelian group I is injective (in A = Z-Mod) if and only if it is divisible, i.e., for all
x € Iand all n # 0, there exists y € I such that ny = x.

Proof. Do the extension property with respect to nZ — Z. O

Definition 1.7.6. A has enough projectives if for every object A € A, there exists projective P and
an epimorphism P — A.
A has enough injectives if for every A € A, there exists injective I and a monomorphism A — I.

Exercise 1.7.7. An arbitrary product of injectives is injective, and an arbitrary coproduct of
projectives is projective. *

Proposition 1.7.8. Let M be an abelian group. Then, M ——— I Q/Z is a monomor-
m=(FM)f feHomz(MQ/Z)
phism into an injective. Hence, Z-Mod = Ab has enough injectives.

227 product of exact functors is exact.
16



Proof. Since Q/Z is divisible, thus HQ /Z is injective. Now it is enough to show that « is a
monomorphism. We can show that for all 0 # m € M, there exists f : M — Q/Z such that

£(m) #0,
Let Anng(m) = I1Z. If | = 0, then

any nonzero map

Z : Q/Z
an—)amj ,/’//
]
M-
If I # 0, then
1
Z/17Z —— Q/Z
>
O
m—)amj /,/’/Hf
M

Theorem 1.7.9. Let F : A — B be an exact functor of abelian categories such that F is faithful ( <
conservative : F(A) =0 = A =0).

A
(1) Suppose that B has enough injectives and that F has a right adjoint G : Fl TG , then A has enough

B
injectives. In cash : for every object A € A, choose a monomorphism a : F(A) — I in B with
I € Inj(B), then

A - G(a)ora G(I)
h %(a)
GF(A)
is a monomorphism into an injective object.
B
(2) If B has enough projectives and F has a left adjoint E : El TF , then A has enough projectives. For
A
every A € A, choose an epimorphism B : P — F(A) with P € Proj(B), then E(P) APl 4 g
an epimorphism from a projective object.
A
Proof. (1) Fl TG : G is left exact, thus it preserves monomorphisms. Under F, because e€r o F(17) =
B

id, 17 preserves a (split) monomorphism. Since F is exact, F(ker#) = ker(F(y)) = 0. Since F is
conservative, ker(74) = 0 implies 174 is a monomorphism. Now we are left to prove the following,

which is independently interesting. 4
A

Proposition 1.7.10. Consider an adjunction Fi TG between abelian categories.
B

17



(1) If F is exact, then G preserves injective objects.
(2) If G is exact, then F preserves projective objects.

Proof. For I € Inj(B), the functor Hom 4(—, G(I)) % Homp(F(—),1) = Homg(—, 1) o F, which
adj

is a composition of exact functors, is exact. ]

Corollary 1.7.11. Let R be a ring, then R-Mod has enough injectives (and projectives, too).

Proof. Consider F : R-Mod — Ab the forgetful functor (which is exact and conservative). Since Ab
has enough injectives, we just need a right adjoint to F. We have
R-Mod
F:R®R_lTH0mZ(ZRRr7)

Ab
by using zRr ®r rRM =z M as an abelian group. ]

Exercise 1.7.12. Unfold this corollary and the construction in Ab to explicitly describe M — I(M)
for M € R-Mod. *>

Remark 1.7.13. When dealing with Sh 4(X) for a topological space X and an abelian category A
(other than A = Ab), one should require that A has all limits and (filtered) colimits, and that
filtered colimits commute with products. This works for A = R-Mod.

Corollary 1.7.14. Let X be a topological space and A be a (nice) abelian category as above, e.g., A = Ab
or A = R-Mod. Then, Sh4(X) has enough injectives.

Proof. For every x € X, consider j, : {x} — X and j; : Sh4(X) =5 Ab. Then consider
—JSx

F : Shy(X) J]A where J] A is just componentWise. Then, [ A has
Fr (3 F ) xex=(Fx)xex xeX xeX xeX

enough injectives (componentwise). This functor F is exact and conservative. We just need a right
adjoint. Let (jy)« : A — Sh4(X) be defined by

A ifxel
0 otherwise

((x)A) (U) = {

for open U C X.
Sha(X)

Gor*| 1o
A

The counit €4 : (A =)(jx)"(jx)+A — A is the identity. The unit F — (jy).(jx)*F is defined on
every open U C X by the obvious map

Fy ifxeld
FU) =
() {O ifx¢g U
23We have M — Homz(zRgr,z M) — Homz(zRg, 11 Q/Z) =] [Homy(zRg,Q/Z).
feHomz(M,Q/Z) f

18



Then, putting together,
Sha(X)

<<jx)*)xexﬂnx<jx>*
I[1A

xeX

Read more - Grothendieck: abelian categories, Tohoku J.
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2. DERIVED FUNCTORS

2.1. Complexes.

A basic idea of derived functors is that most homological complications would disappear if we
were dealing only with projectives (or only with injectives).
Key example : A short exact sequence 0 — A; — A, — A3 — 0 with A; injective goes to an exact
sequence under any additive functor F (e.g., left exact, but not right exact). **
Idea : To replace an object A € A by injectives,

awa

00— A<=

with all I; injective. Really,

SN

and this map is a quasi-isomorphism of complexes, i.e., an isomorphism in homology. Applying
F to the second line yields:

0 0 F(Iy) F(I}) — -

which is the “complete” homological measure of A and its relation to F at least for F left exact.
In particular, H°(F(L.)) = F(A) but the H(F(I,)) are also important. They are R'F(A), the right
derived functors.

Definition 2.1.1. Let A be an additive category. A complex in A is a collection

d; d;
i A A DAL —

of objects A; € A and morphisms d; : A; — A; 1 such that d; ;od; = 0(d*> = 0) for alli € Z.
(homological notation)
Alternatively, in cohomological notation,

. di—l .di .
e AT IS AT S AT

A morphism of complexes f : (A.,d) — (A,,d") is a collection f; : A; — A/ for all i such that
dio f; = fi_1 od;. Let Ch(.A) be the category of complexes in A with morphisms of complexes.

Proposition 2.1.2. (1) If A is additive, then Ch(.A) is additive.
(2) If A is abelian, then Ch(.A) remains abelian.

Proof. Exercise! m
Remark 2.1.3. There is a fully faithful A — Ch(.A) defined by
Ar— (- —>0—2>A—=>0—--)

with A in degree 0, and this is exact if A is abelian.

24The image of a split exact sequence under an additive functor is split exact.
20



Definition 2.1.4. For A additive, we say that two morphisms f,¢ : Ae — A, in Ch(A) are
homotopic if there exists a homotopy f ~ g, that is, a collection of morphisms €; : A; — Al 1
(NOT a morphism of complexes) such that f = ¢ +d’e + ed or explicitly, f; = g; + di 1€ + €;_1d;
for all i € Z. This notation is additive: f ~ ¢ < (f —g) ~0.

Picture for f ~ 0:

AT

where we have f = d’e + ed.

Remark 2.1.5. ~ preserves + ando: f ~ f,g ~¢ = fog~ f og, etc.  Hence we get a
well-defined homotopy category K(.A) of an additive category .4, with same abjects as Ch(.A) but
morphisms up to homotopy:

HOIIIK(A) (A., A/.) = HomCh(A) (A., A/.)/ ~ = HOI’I’ICh(A) (A., A’,)/(subgroup of f ~ 0)

Remark 2.1.6. A ——— Ch(A) —tetfaithful g 4)

\_/

fully faithful
Remark 2.1.7. If A is abelian, K(.A) is not, a priori!

Exercise 2.1.8 (Final Problem #3). Show that K(.A) is not abelian, in general. (Take A = Ab or
R-Mod.) Find conditions under which K(.A) is abelian.
Remark 2.1.9. We will see later that K(.A) is actually triangulated (there are exact triangles

C
@/ '\ which replace exact sequences) even if A is only additive: A — B — C — A[l].

A—— B

Definition 2.1.10. A morphism f : A, — B, in Ch(A) for additive A is called a homotopy
equivalence if [f] € Homg(4)(A., Bs) is an isomorphism: i.e., there exists g : Bs — A, such that
fogn~idg, and go f ~idy, in Ch(A).

Remark 2.1.11. Any additive functor F : A — B between additive categories will induce F =
Ch(F) : Ch(A) — Ch(B) and F = K(F) : K(A) — K(B). In particular, F : Ch(A) — Ch(B)
preserves homotopy equivalence.

Let’s add the assumption that A is abelian.

Definition 2.1.12. Let A be abelian and (A.,d) € Ch(.A) be a complex. For every i € Z, the i-th
homology object H;(A.) is the coker(imd;; < kerd;) where the morphism imd,;; — kerd; is
the unique one such that

d; d;
Aita / A Aiq
imd;q g kerd;

25We can show that, for example, f ~ 0 implies ho f ~ 0.
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which exists because d* = 0.

Proposition 2.1.13. For every i € Z, H; defines a functor H; : Ch(A) — A. This functor is additive.
Moreover, if f ~ 0, then H;(f) = O for all i € Z. Hence we get a well-defined additive functor
H;: K(.A) — A.

dA

AH—l Hl/ Ai
imdﬁH <3 kerd? H;(A.)
& 3
Bi+1 i+1 / Bi i
ideB+1 <---» kerd? H;(B.)
Proof. Exercise! 2 O

Definition 2.1.14. We say that a morphism f : A, — B. (in Ch(A) or K(A)) is a quasi-
isomorphism if H;(f) is an isomorphism for all i € Z.

Corollary 2.1.15. A homotopy equivalence is a quasi-isomorphism.

Exercise 2.1.16. Let A,B,C € Aanda: A — B, p: B — C. Consider
0 A——B 0 0
I
0 0 0 0

C

(1) When is this a morphism? */

(2) When is this a homotopy equivalence
(3) When is this a quasi-isomorphism? *
(4) Give (plenty of) examples of quasi-isomorphisms which are NOT homotopy equivalences.

7 28

26We have
A Hi(f) - A B
kerd{ — H;(As) —— H;(B.) | = <kerd1- — kerd;] — Hi(B))
— (kerd — A; % Biyy — imdf; — kerdf — H;(B)) =0
thus H;(f) = 0.

27if and only if Ba = 0.

Bif and only if 0 - A & B csois split exact.

*if and only if 0 — A 4B E> C — 0 is a short exact sequence.
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Remark 2.1.17. We have the following.

d; d;
AH_l / Ai \ Ai_l
imdj, <---+ kerd; % imd;
H;(A.)
0 — Hl'(A.)
imd;q A; cokerd; 1
|
T ~3
ker d; A; imd;
Hi(As) —— 0

One verifies that H;(A,) is simply the image of the unique map induced by kerd; — A; —
cokerd;q.
Lemma 2.1.18. Let A, be a complex in an abelian category A.
(1) We have
H;(As) = coker(imd;, 1 — kerd,)
= ker(cokerd; 1 — imd;)
= im(kerd; — cokerd; 1)
(2) There is a natural exact sequence:

0 — H;(A.) — cokerd, 1 ﬁ> kerd; 1 — H;_1(As.) — 0

where d:l is the unique map induced by d;.

d

cokerd; i kerd;_q
Proof. See above for (1). For (2), note that \ / and use (1). [
imd;
Theorem 2.1.19. Let A be an abelian category and let
04 LB S c. >0

be a short exact sequence in Ch(A), i.e., 0 — A; Ji, B; &5 C; — 0 is a short exact sequence in A for all i.

Then, there exists a natural long exact sequence:

= H(A) 2 gy 28 o) % H (A

(Think : 9; = 9;(Ae, Be,Ce, f,g).)

) Hi—l(f) Hi_l(B) N
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Proof. Consider

0 A, B —¥ ¢ 0

b e e

0 —— Ai—l % Bi—l 81 Ci—l 0

By the (non-snake part of the) snake lemma, we get two exact sequences:

0 — kerd? ER ker d? 3 ker d¢

coker d?! 7, coker d? 3, coker ¢ — 0

Hence we get a commutative diagram:

Hi(A.) _— HZ(B.) e HZ(C.)

A B C
cokerd;; —— cokerd; ; —— cokerd; ; —— 0

Y B d i
i

a; a; a

0 — kerd?, ——— kerd? | ——— kerd"

Hi_1(As) —— H;_1(B.) —— H;_1(C,)

Use the previous lemma (2) with the snake lemma! O

2.2. Projective and injective resolutions.

Definition 2.2.1. Let 4 be an abelian category and A € A be an object. An injective resolution of
A is an exact sequence

0A-I" =1 — ...

with all I injective in A. In other words, it is a quasi-isomorphism:

L]

A projective resolution of A is an exact sequence

o= PP —>P—>A—0

with all P; projective in A, i.e., a quasi-isomorphism P, — ¢o(A) with Py € Ch>o(Proj(A)) =
Ch=°(Proj(A)).
24



Note 2.2.2. For any additive A,

Ch(A)
/ (X
Ch=°(A) = Ch>(A) Cheo(A) = Ch=°(A)
\ ) /

and more generally,
Chiap(A) = {Xe | X; = 0 except for i € [a,b]}

Chi*Pl(A) = {X* | X' = 0 except for i € [a,b]} = Chi_p,—a)(A)

Proposition 2.2.3. Let A be abelian.
(1) If A has enough injectives, then any object has an injective resolution.
(2) If A has enougn projectives, then any object has a projective resolution.

Proof. (1) Let A € A. There exists a monomorphism & : A < I° € Inj(A). Consider coker &.
There exists a monomorphism & : coker & < I' € Inj(A). By induction, we construct exact
sequences

coker(¢;) S 1, coker Cin

for all i > 0. Putting those short exact sequences together, we get

IH_l*)

& | N @

coker ¢ coker ¢;

0 A0

in which the differentials d’ : I' — I'*! are defined as the compisotion I' — coker & < I'*1,
(2) Dual. O

Proposition 2.2.4. Let A be abelian.

(1) Let A,B € A and let P, S Abea projective resolution of A and Q. X Bbea projective
resolution of B. Let f : A — B be a morphism in A. Then, there exists a morphism of complexes

fo : Po — Q. such that f o &y = 19 © fo.
g

P, e P —2+% A 0
lfn lfo Jf
Qn e Q —™., B 0

Moreover, this f, is unique up to homotopy, i.e., if fo : Po — Qa is another morphism of complexes
such that f o &y = 1o o fo, then there exists f ~ f.
(2) The dual : any morphism extends to injective resolutions in a unique way up to homotopy.
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Proof. We have the following construction:

P, d Py -2 A 0
NG |

- |

(d)13f ker 1o (@) 13fo f

¢ / (b) \ U

Q1 = Qo —> B 0

(@) Py is projective and Qo x, B

(b) Qs — B s exact

() nofod = fGod =0
(d) Py is projective and Q; — ker

Suppose we have built f; : P, — Q; for i < n such that d'f; = f;_1d for all i. Similarly, we get

Pn+1 Py Py ——

~
~
~
~
~
~

M

a1 i kerd’ fa

/\

S Qn+1 Qr1 — -+

For uniqueness, because the problem is additive, it suffices to show f, ~ 0 if f = 0. We have

P R A 0
360 /,/// /,///
) el " (a)
ker 1o 0
7o B 0

(@) 70fo = 0 and Q. — B is exact.
(b) Q1 — imd’ = kerg and P, is projective. So there exists €y : Py — Q1 such that d’'ey = fo.

Let’s assume that we have constructed €; : P; — Q;41 for all i < n such that f; = d'e; +€;_1d.

'*>Pn+2 —_c Pn+1 Pn Pn71*>“‘
€n+1 ,’/// ///,/
e .
// /
fn+2 L kerd fn+1 €n fn €n_1 fn—l
u// \4
: ” Qn+2 Qn+1 Qn Qn—l ro

Consider f, 1 — €,d and apply d.
d(fue1 —€4d) = dfy1 — deyd = fud — deyd = (fy — dey)d = €,-1dd =0
Then, there exists a : P, 41 — kerd’ such that f, ;1 — ed = ix where i : kerd" — Q,1. Since P14
is projective, there exists €11 : Pyy1 — Qui1. Then, d'e, 1 = fu11 — €,d as needed. O
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Corollary 2.2.5. Resolutions are unique up to unique (up to homotopy) homotopy equivalence. >°

Proof. Just apply the previous proposition to A = B and f = id. O

Remark 2.2.6. The above means up to isomorphism of resolutions, i.e., not just P, L) P., but

P —L . p

\ / . In other words, resolutions = complexes of Inj/Proj with the map from/to A.
go &
A

Recall that K(—) is the homotopy category of any additive category where objects are complexes
and morphisms are morphisms of complexes modulo homotopy equivalences. For instance,
K>o(Proj(A)) C K(A), K=%(Inj(A)) = K<o(Inj(A)). We have

Cp : A — K(.A)
Ar— (=202 A -0—>--+)
Ny

Consider A < K=o(Proj(A)) C K(A).

Theorem 2.2.7. Suppose A has enough projectives.
(1) There exists a functor P : A — Kxo(Proj(A)) C K(.A) together with a natural transformation

¢:P—c
P(A) : P Py 0
N |l
co(A) : 0 A 0

such that {4 : P(A) — co(A) is a quasi-isomorphism for all A € A.
(2) This pair (P, &) is unique up to unique isomorphism, i.e., if (P',&") is another such pair with
P’ : A — K>o(Proj(.A)) with objectwise quasi-isomorphism and &' : " — co, then there exists a
unique isomorphism of such pairs, say f : P — P (isomorphism of functors) such that &' o f = €.
Dually, if A has enough injectives, then there exists T : A — K=°(Inj(A)) with objectwise quasi-
isomorphism 1 : ¢co — 1 (as functors A — K(.A)) which is unique up to unique isomorphism of such
pairs.

Proof. Choose for every A € A a projective resolution P(A) := P, LN (equivalently, choose a

P(A) — s P(B)
¢a

quasi-isomorphism P(A) == cy(A).) Choose for every map f : A — B a lift Ea & -

co(A) 25 ¢ (B)

Set P(f) = [f] € Homy4)(IP(A),P(B)). This yields the well-defined pair
(P: A — K>o(Proj(A)),¢: P — cp)
as in (1). We have P(fog) =P(f) o P(g) by the following argument. Choose lifts 7,8 so that
P(f) = [f],P(g) = @.\Therl observe that f o g is a lift ofA fog. By the previous proposition
(uniqueness of lift, fog ~ fog. Hence, P(f) o P(g) = [flo [g] = [fog] = P(fog). For (2),
3°thus give the same homology/cohomology.
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same story : at each A € A, consider &4 : P — ¢9(A) and & : P’ — ¢o(A). By existence and
uniqueness of lift, we have

P

)

(A) ?A IP'(A
co(A)

Check the rest as an exercise. O

Definition 2.2.8. If A has enough projectives, the (unique) functor P : A — Kso(Proj(.A)) in
the unique pair (P, : P — ¢) is the projective resolution functor. Dually, if A has enough
injectives, there is the injective resolution functor I : A — K=°(Inj(.A)) uniquely characterized by
the existence of a natrual quasi-isomorphism co(A) — I(A) for A € A.

Remark 2.2.9. For a functor F : A — B, we can consider various compositions of the following
functors:

A—2 k) k)
]
K>o(Proj(A))

Note that the triangle on the left is NOT commutative.

Theorem 2.2.10 (Horseshoe Lemma). Let 0 — A’ = A = A" — 0 be a short exact sequence in an
abelian category A. Let P, S A" and p; 0, A" e projective resolutions. Then, there exists a projective
resolution P, O A and lifts

0 p. %, p, %, pr 0
0 Y/ LNy SN U 0

such that the sequence of complexes 0 — P, — Py — P — 0 is exact in Ch(A), i.e., degree-wise exact.
Hence, in particular, P; = P} @ P/ for all i.

Proof. Let Py = Py Py. Since Py is projective and a” is an epimorphism, we have &y : P& P — A
which makes the following diagram commute.

0 P P& P) — PY 0
I o 7 |w
0 A/ o A K7 o A// O



Note that, by snake, ¢p is epic. Then we have

0 0 0

0 —— ker¢) — ker¢y —— kerd —— 0

0 P} Py Py 0
0 Al A A" 0
0 0 0

Apply the same to the following:
P Py
0 —— ke%@{) «— ker&y —» ke;Léj(’)’ — 0
Hence the result by induction. O
Lemma 2.2.11 (Schanuel). Suppose A € A for an abelian category A and
0—-B—P,— ---—>FPh—>A—-0

0=-C—=>Qy—-—=>Q —+A—=0

be exact sequences with all P;, Q; projective. (Note that we have same n.) Then, there are projective objects
P, Q such that B® P ~ C & Q. More precisely,

BOQu@®Py1 @ @ (Poor Q) =CE&P®Qu-1® - & (Qoor R)
Proof. When n = 0, we have the following:

0 0
0 B P A 0
| ® | @
0 B D Q 0
(b)
C—=20C
0 0

(a) pull-back
(b) general property of pull-back along epimorphisms (see Lemma 1.2.5 and Corollary 1.4.11)
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Since P and Q are projective, the middle sequence split:
C®P~D~BdQ
For n > 1, the sequence
0—>B—P,— =P =P &Q —ADdQ —0
exact for A’ < Py — A. Similarly,
02C—=Qi—= Q=06 —>A"®P—0

is exact for A” < Qp — A. We have A’ & Qp ~ A” & Py by n = 0 case. By induction, we have the
result. O

2.3. Left and right derived functors.

Definition 2.3.1. Let F : A — BB be an additive functor between abelian categories.

(1) Suppose that A has enough projectives. Then the i-th left derived functor of F for i > 0 is
the following composition:

AP L ko(Proj(A) /P k) 5
L;F

In cash, L;F(—) = H;(F(IP(-))).
(2) Suppose that A has enough injectives. Then the i-th right derived functor of F is the

composition:
I >0( 7, F=K(F) H
A ———— K="(Inj(A)) ———— K(B) B
R'F

Hypothesis : For this section, A is assumed to have enough injectives (resp. projectives) as
needed.

Proposition 2.3.2. Let A € Aand let F : A — B be an additive functor. Let P, £, A be some projective
resolution. Then there exists a canonical isomorphism L;F(A) —— H;(F(P.)). Moreover, for every

morphism f : A — B in A and any choice of Q. ™, B of a projective resolution and any choice of a lift
fo : Po — Q. of f, the following square commutes in B:

LF(A) —— Hy(F(P.))
LE() | |Ee)
LiF(B) —— H;(F(Q.))

Dually, the same holds for injective resolutions and right derived functors.
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Proof. The projective resolution IP(A) is unique up to unique isomorphism, as an object in
K>o(Proj(A)) together with the map IP(A) — A. The same for the maps (the obvious square

]P(A)%p. ]P(A)LA

commutes in K>o(Proj(A)) : p( f)l lf' since l l lf are two lifts, thus same
P(B) —— Q. Q. —° B

in K>¢.) Then, apply the functor K>o(Proj(.A)) EN K(B) Hon O

Exercise 2.3.3. Show that for F : A — B additive between abelian categories, the induced
K(A) — K(B) preserves quasi-isomorphisms if and only if F is exact. 3"

Theorem 2.3.4. Let F : A — B be additive. Suppose A has enough projectives (resp. injectives) and let
0— A" % A% A" = 0 be a short exact sequence in A. Then, there exists a natural canonical long

exact sequence:

LoF(a)=a, L()F(A)

LQF(OL//):

o LF(A") D Lo(A) ST LoF(A”) = 0

(resp. --- — R'F(A’) — R'F(A) — R'F(A") % RIFIF(A) — ) If moreover F is right exact (resp.
left exact), then Ly ~ F (resp. R® ~ F.)

Proof. By the Horseshoe lemma, we can find projective resolutions:

0 P! P, p/ 0
I
0 Al A A 0

degree-wise (split) exact. Since F is additive, 0 — F(P,) — F(P.) — F(P.) — 0 is degree-wise
(split) exact. This lives in Ch(). Then apply the homology long exact sequence (in B). If F is
right exact and

o= P =>P—=A—=0

is a projective resolution, then this gives
Lo(A) =Hy(--- — F(Py) = F(Py)) -0 — ---) =F(A)
in B. O

Definition 2.3.5. Let F : A — B be a (right exact) additive functor between abelian categories. An
object E € A is called (left) F-acyclic if L;F(E) = 0 for all i > 0.

Example 2.3.6. Projective objects of A are left acyclic. (0 — P L P>oisa projective resolution.)

Lemma 2.3.7. Let F : A — B be right exact.

(1) If A" < A — E is a short exact sequence in A and E is F-acyclic, then F(A") < F(A) — F(E)
is a short exact sequence in B.

(2) If A — E — E' is a short exact sequence in A and E, E' are F-acyclic, then A is F-acyclic.

(3) If E« € Chy(A) is a homologically bounded below complex of F-acyclic which is exact, then
F(E,) € Chy(B) is exact.

(4) If fo : Eo — E. is a quasi-isomorphism of (homologically) bounded below complexes of F-acyclics,
then F(f,) is a quasi-isomorphism.

31gee 2.1.16
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Proof. (1) We have 0 = L;F(E) — F(A') — F(A) — F(E) — 0.
(2) Foralli >1,0=L;1F(E") — L;F(A) — L;F(E) = 0 is exact.
(3) Consider the following

~ /'"”\ /

By induction on (2), all A; = imd; are F-acyclic because (by exactness of E,) Ay+1 < Epg1 —
Ay, is a short exact sequence in A. Thus by (1), F(Ay+1) < F(Enut+1) — F(An) is exact. Thus

. —— Ens

() F(d)

\ / '"“\ /

m

C F(Em+2

(Ep) —— 0 —— -~

is exact, hence (3).
(4) Let fo : E« — E, be a quasi-isomorphism. We first reduce to the case where f; : E; — E! is
an epimorphism in each degree. It is enough to add to E. a complex of F-acyclic E, which is

homotopic to 0. Take E, to be the @ of complexes of the form (- - -0 — E! L El —0---),ie,
Ee=@(—>0->E—>E—>0—-)

icZ
then we have
0 E, %, 0
L |
- —— Eiy E; Ei 4 Ei ,

Thus this defines E, i> E, degree-wise epimorphism f ~ 0. 3 Then contemplate E @ E -~ v E'.

Since F( f ) ~ 0, we are reduced to the special case where f, : E, — E, is a bounded below
F-acyclic quasi-isomorphism and each f; is an epimorphism. We want to show that F(f,) is a
quasi-isomorphism. Consider A, = ker f, in Ch(.A). We have an exact sequence A, — E, , E..
By (2) and the short exact sequence A; — E; ﬁ» E!, we see that A; is F-acyclic. By the long exact
sequence in H,

— H;(E) = H;(E') = H;_1(A) — H;_1(E) = H;_1(E)
(A abelian), H;_1(A.) = 0. So A, is a bounded below exact complex of F-acyclic, thus by (3),
F(A.) is exact. Since A; — E; — E; and by (1), F(As) — F(E.) — F(E,) is degree-wise exact. By

32 is defined as follows.

(15)

00
- —— E{®Ej MY e eE MY (%) El ,®E | — -+

(id disr) l / lzd d;) l(id dis1)

B, — 5 B

01 ~
Here the maps €; : E_; © Ej o, E gives f = (id de) ~
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long exact sequence in H, in B
— 0= H;(F(A;)) — Hi(F(E;)) — Hi(F(E{)) = 0
(B abelian), He(F(f,)) is an isomphism, i.e., F(f.) is a quasi-isomorphism. O
Exercise 2.3.8 (Final Problem #4). If B — E — A is exact in A and E is F—acyclic, then there
exists a natural isomorphism L;1F(A) ~ L;F(B) for i > 1. More generally, if
0—+-B—+E;—---—E —+A—=0
is exact and all E; are F—acyclic, then L;,,,F(A) ~ L;F(B) for all i > 1.

Theorem 2.3.9 (Derived functors using acyclic objects). Let A and B be abelian and F : A — B be
right exact. Suppose that A has enough projectives. Let A € A. For any resolution of A by F-acyclics

o= E, =+ =E —-E—+A—=0,
there exists a natural and canonical isomorphism L;F(A) ~ H;F(E,) for all i > 0. Dually for right derived
functors.

Proof. Let P, % Abea projective resolution. We know that there exists a (unique up to homotopy)

morphism f, : Po — E, such that

P P A 0
[
E; Fo A 0

So H;(f.) : Hi(P,) — H;(E,) is an isomorphism for all i € Z>. So f, is a quasi-isomorphism of
bounded below complexes of F-acyclic (because projectives are). By the lemma, F(f,) remains a
quasi-isomorphism. Hence H;(F(f.)) : L;F(A) = H;F(P,) — H,;F(E.,). O

Remark 2.3.10. If A doesn’t have enough projectives, but has enough objects in a nice subcategory
& C A, then we can define L;F by the formula of the theorem. "Nice” means

(1) If A< E — E'" withE,E' € £,then A € £.
(2) If A’ — A — E with E € & (is it enough all in £?) then FA" < FA —» FE is exact.

2.4. Ext and Tor.

We want to derive Hom and ®. Let us discuss the situation of a functor F : A x B — C where
A, B,C are abelian and F is additive in each variable : F(—,B) : A — C and F(A,—) : B — C are
additive for all A € A and B € B.

Double complexes : Let C be additive. We can consider objects in ChCh(C) as double complexes

- —— Cijor —— Cigjog —— -+
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i.e., the data of objects C;; € C for (i,j) € Z X Z and morphisms dfj :Cij — Cjj—1 and dZ- : Cij —
Ci_1,j such that d°d” = 0, d"d" = 0 and d"d” = d°d".

Suppose that Ce. is bounded below in both directions : there exist m,n such that C;; = 0 if i < m
or j < n. Then we define Tot(C,s) to be the complex by

TOt(C..)k = @ Cl] L> @ Ci’j' = TOt(Coo)k—l
i+j=k i'+j'=k—1

=

Cij Ci1;®Cija

Check this is a complex! 3

Remark 2.4.1. If you need to handle unbounded double complexes, there is a choice between TotH
and Tot!! to replace the above .
finite

Example 2.4.2. For F: A x B — C, we get

Ch (A) x Chy (B) U Ch. (C)
X W
ChyCh. (C)

which is defined by F"'(A., B.) = Tot®F(A., B.).

Exercise 2.4.3. F"'(—,—) : Chy(A) x Chy(B) — Ch,(C) preserves homotopy equivalence and
degree-wise split short exact sequences in each variable : if A, < A, — A, is a degree-wise split
exact sequence in Ch (A) and B, € Ch(B) is arbitrary, then

F'(A,,B.) — F"'(A., B.) — F'(A{,B,)
is a degree-wise split exact sequence in Ch.(C). This is purely additive. 3

Theorem 2.4.4. Let A, B,C be abelian and F : A x B — C be additive in each variable. Suppose that A
and B have enough projectives and that F is right exact (meaning that F(—,B) : A — C is right exact for
all B € Band F(A,—) : B — C is right exact for all A € A.) Suppose

(1) F(P,—) : B — Cis exact if P € A is projective.

(2) F(—,Q) : A — C is exact if Q € B is projective.
Then, there exist natural and canonical isomorphisms (L;F(A,—))(B) = (L;F(—,B))(A) for every
A € Aand B € B. In cash, it means that if P, — A and Q. — B are projective resolutions, then
Hi(F(A,Q.)) = Hi(F(Ps, B)).

We need the following.

Lemma 2.4.5. Let F : A x B — C be as in the theorem. Let fo : Ae — A\, be a quasi-isomorphism of
bounded below complex in A. Let Qa be a bounded below complex of projectives in BB. Then, F'**(f,,idp,) :
F'(A., Qo) — F'(A,,Q.) is a quasi-isomorphism.

33Basically from the matrix representation of d : Tot(Cee ) — T0t(Ces)r_1. In the product of matrices d o d, we have
dn
— hgh _ h _
d°d’* =0,d"d" =0 and (+£d° d )(:de) =0.
34An additive functor preserves split exact sequences. Here F(—,Be) : Chy(A) — ChyChy(C) and Tot® :
Ch4Ch4(C) — Chy4(C) are both additive.
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Proof. Consider the following.

F(Ae, Qo) F'(Ay, Qe)n

D F(A,Q) " @ Fa, Q)

i+j=n i+j=n
ld:F(d,id)—&-(—l)"F(id,d) l
FtOt(Aor Qo)n—l FtOt(A/./ Qo)n—l

Since, in each degree 7, only finitely many Q; intervene, we can assume that Q is actually bounded
on both sides : Q; = 0 unless p < j < 4. Proceed by induction on g — p.

Forg—p =0, wehave Qo = (- - 0 = Q, = 0 — ---). Then, F'(—,Q.) = F(—,Q))
somewhat shifted in degree. So, it suffices to show that F(—, Q) preserves quasi-isomorphism for
Q € Proj(B). This follows from (2).

Suppose the result for 4 — p = r and contemplate Qo with Q; = 0 except p < j < g with
q — p = r+ 1. We have a degree-wise split short exact sequence

Q. 0 0 Q1 Qp 0
I ] L]
Q. 0 Qq Qg1 Qp 0
: TP S S

By the additive comments before the theorem, F'( A,, —) and F"'( A}, —) will preserve (degree-
wise split) exactness of such sequences. So the rows below are short exact sequences.

Fro'(id,,B) F'(id4, p')
— —

0 —— F(A,, Q) F*'(A., Q.) F°'(A., Q) ——— 0

(@] fuidgy) | |@

0 —— FY(A,,Q.,) ——— F"(A,,Qs) — F'A,,Q)) —— 0

These are complexes in C. Apply the H, long exact sequence in C *°, then the two vertical maps
Ho(F"'(fo,idg;)) and He(F(fa,idgy)) (induced by (a)) are quasi-isomorphisms by induction on
the length of Q-complexes. By 5-lemma in C, the map H.(F(f,,idp,)) is an isomorphism. So
F'(f,,idp,) is a quasi-isomorphism. O

Proof of Theorem 2.4.4. Consider P, IR co(A) and Q. 5 co(B) quasi-isomorphisms with P, &
Ch (Proj(A)), Qe € Ch, (Proj(B)). Consider F"'(—,—) on these :

(P, Q) — ) ot 0 (B)) = E(—, BY(P.)

[P @itan) |

F(co(A),Qs) = F(A, —)(Qs) —— F*(co(A),co(B)) = F(A, B)

35We have two rows of long exact sequences with induced vertical maps.
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the left and top maps are quasi-isomorphisms by the lemma. Taking H; gives
(LiF(A, =))(B) = Hi(F(A, Qu)) «— Hi(F"* (P, Qu)) — Hi(F(Ps, B)) = (LiF(—, B))(A)
thus the theorem holds. U

Remark 2.4.6. A right exact F : A — B is exact if and only if L;F = 0 for all i > 0 if and only if
LiF =0.7°

Corollary 2.4.7. Let A be an abelian category with enough injectives and enough projectives. Then for
every M, N € A, we have (R'Hom (M, —))(N) = (R'Hom(—, N))(M). In other words, if P, S Mis
a projective resolution and N - I* is an injective resolution, then H'(Hom(M, I*)) = H'(Hom(P,, N)).

Proof. By Theorem 2.4.4, for right derived functors, applied to Hom 4 : A x A — Ab. Here
Hom 4(P, —) (resp. Hom 4(—, I)) is exact for projective P (resp. injective I). 37 O

Notation For M,N € Aandic Z,
Ext'y(M, N) := (R"Hom(M, —))(N) = (R'Hom(—, N))(M)
Long exact sequence  For every short exact sequence N’ < N — N” in A,
0 — Hom4 (M, N") — Hom4 (M, N) — Hom4 (M, N") — Exty(M,N’) — - --
— Ext'(M,N') — Ext' (M, N) — Ext'(M,N") — Ext™(M,N") — - --

is exact in Ab. Similarly, for every M’ — M — M”,
0 — Hom(M”,N) — Hom(M, N) — Hom(M’, N) — Exty(M",N) — - --
is exact. (e.g. A = R-Mod).

Corollary 2.4.8. Let R be a ring and consider — @r — : Mod-R x R-Mod — Ab. Then for every right
R-module M and left R-module N, we have

(Li(M &g —))(N) = (Li(— ®& N))(M)

Proof. This follows from the theorem because projective modules are flat : if P € Mod-R is
projective, then P ®g — : R-Mod — Ab is exact. This is true for P = R, hence true for P free
(— ®r — commutes with H), and also for a direct summand of a free module. 3° O

Notation For M € Mod-R, N € R-Mod, i € Z,
Tor{ (M, N) := (Li(M ®g —))(N) = (Li(— @& N))(M)

Long exact sequence If M' < M — M” is a short exact sequence in Mod-R and N € R-Mod,
then we have a long exact sequence of abelian groups :

-+« — Tori;1(M’,N) — Tor;(M,N) — Tor;(M",N) — Tor;(M',N) —
oo = TorR(M",N) = M' @k N - M@r N = M" @g N — 0

301f F is exact, then H;F (Ps) = 0 for a projective resolution P,. If L1 F = 0, then F is exact from the long exact sequence.
37Injectives in A are projective in .A!
38Note that ]_[Ml- is flat if and only if M; is flat for all i. Consider N — L and

i

N ([[M) — Le (M)

1 1
l l

[INe M) — [](Le M)

1
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Proposition 2.4.9. A (right) R-module E is flat (i.e., E ®r — : R-Mod — Ab is exact) if and only if
Tor;(E, M) = 0 for all M € R-Mod and all i > 0 if and only if E is (— ®g M)-acyclic for all M € R-Mod.

Proof. E is flat (i.e., E ®g — is exact) if and only if (L;(E ®g —))(M) = 0 for all M, i (i.e., Tor = 0)
if and only if (L;(— ®g M))(E) = 0 for all M, i (i.e., E is (— ®@gr M)-acyclic). O

Example 2.4.10. If M’ — M — M" is exact, N is arbitrary and M" is flat, then
M/®RN‘—>M®RN—»MN®RN
is exact. Simply, Torf(M”,N) = 0.

Corollary 2.4.11. To compute TorR (M, N), it suffices to use flat resolutions. If E¢ — M is a resolution of
M with all E; flat, then TorX (M, N) = H;(E. ®g N). And similarly on the right.

Proof. Theorem on the resolution by (—®r N )—acyclic, i.e., flat modules. O

Exercise 2.4.12 (Final Problem #5). Compute Tor?(M, N) and Exty, (M, N) for all i € Z and all
possible M,N € {Z,Q,Q/Z,Z/nZ}.

Proposition 2.4.13. Let R be a commutative local ring (R \ R* forms an ideal). Suppose R is noetherian.
Let k = R/wm. Suppose that k has a finite projective resolution (i.e., there is an exact sequence

0O—-P, —-P1—-—>P—>P—>k—>0

with all P; projective.) Then, every finitely generated R-module M has a finite projective resolution (i.e., R
is regular).

Proof. Let M be a finitely generated R-module and let
O=N—-Q 11— =01 —=0Q—->M—=0

be an exact sequence with all Q; projective, finitely generated and N finitely generated (R is
noetherian). It is enough to show that N is free. Observe that Tor;(L, k) = H;(L ®g P.) = 0 for all
L and i > n. We claim that Tor; (N, k) = 0. More generally, from

= Qi Qi — - = Q1 ———— Qo — M =N
NS NS
Nit1 Ny

we have Tor;(N;, k) = 0 for j > n — i. We use induction on i. The above observation is for i = 0
(No = M). Apply Tor long exact sequence to N1 — Q; — N;:
0= TOI']’_H(Qi,k) — Torj+1(Ni, k) = TOI']'(NH_l,k) — TOI‘]'(Q,', k) =0

for j > 0. Hence the claim follows.
We also claim that if N is finitely generated and Tor; (N, k) = 0, then N is free. Pick & : k" = N/mN

for r > 1. Take a lift R” = N, then by right exactness of — ®g k, cokera ®g k = coker& = 0. By
Nakayama, cokera = 0. So « is an epimorphism. Consider 0 — kera — R” % N — 0 and

0 = Tor1(N, k) — kera @gk — k" L N/mN = 0
Thus ker « ®g k = 0. By Nakayama again, kera« = 0, thus « is an isomorphism and R" = N. [

Exercise 2.4.14 (Final Problem #6). Find a derived functor which has not been discussed in class
(Tor, Ext, group (co)homology, sheaf (co)homology) and explain how it is a derived functor.
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Remark 2.4.15. For modules M, N over R, there is a way to describe Extz (M, N) as equivalence
classes of exact sequences

0O—-N—=P, 71— =P —>M-=0.

Also Extg (M, N) = Homp (M, N[n]) where D(R) is “the derived category of R” = K(R)[g.i.71].

R A A O
BN A B S

2.5. Group homology and cohomology.

Let G be a group (often a finite one) and let k be a commutative ring (often k = Z or a
field). Consider k-linear representations of G, that is, kG-modules. (Recall that kG is the ”group
algebra”, free k-module with basis G and multiplication defined by extending k-bilinearly the rule
g -h = gh.) There is a trivial kG-module functor

triv: k-Mod — kG-Mod
N +— N=N"

with g¢-x = x for all g € G and x € N. It has adjoints on both sides :

kG-Mod

()| v |0

k-Mod

givenby M® = {mc M | g-m=m, forallg € G} and Mg = M/(gm —m | g € G,m € M). We
have M® < M and M — Mg. Equivalently, M® is the biggest kG-submodule of M on which G
acts trivially and Mg is the biggest quotient of M on which G acts trivially.

Remark 2.5.1. The above (gm —m | g € G,m € M) means the kG-submodule generated by {gm —
m | g € G,m € M}, but it is also the abelian group generated by those k - (¢m —m) = kgm —km =
(kgm — m) — (km — m).

Definition 2.5.2. The i homology of G with coefficients in M, denoted H;(G, M) or H¥(G, M)
(very rare!), is the i™" derived functor of (—)¢ evaluated at M. The i" cohomology of G with

coefficients in M, denoted H'(G, M) is the i™" right derived functor of (—) evaluated at M. These
are k-modules.

Proposition 2.5.3. There are natural isomorphisms :
H;(G, M) = Torf®(k, M) and H'(G, M) = Exti.(k, M)

where k = k"™,
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Proof. We have natural isomorphisms k ®xc M = Mg3? and Homyg (k, M) = M4, Then derive!
Alternatively,

kG-Mod

| T |

(7)G:k®kG7 HOmk(k,f):tI'iVIk@k* HomkG (k,*):(*)c

! | !

k-Mod
where k is considered ki on the left and ygky on the right. O

Corollary 2.5.4. For any resolution Py — k of k"™ by "projective” kG-modules P;, we have
H;(G,M) = H;(Ps @¢ M) and H'(G,M) = H'(Homyg(P., M)) = H_;(Homyg (P., M))
Proof. General fact about Tor and Ext. O

Remark 2.5.5. It is therefore enough to find one “good” projective resolution of k over kG.

Remark 2.5.6. The notation H'(G, M) does not usually involve k. The reasons are that k is
usually clear from the setting, but more importantly, it does not see “restriction” (push-forward)
along k — [. Indeed, let f : k — | be a homomorphism of commutative rings. We have
resy : [-Mod — k-Mod and resy : kG-Mod — 1G-Mod which is just restriction of the scalar action
from Il tokvia fbyx-m= f(x) -mforx €k, me M(stillg-m=g-mfor g € G).

Proposition 2.5.7. With the above notation, we have natural isomorphisms
H;(G,resf M) = resy H;(G, M) and H'(G, resy M) = ress H'(G, M)
for all IG-module M.
Proof. Pick a kG-projective resolution P, — k. We have
Homy (jly, M) = resf M = ; @ M
H;(G,resy M) = H;(Ps @ (IG @16 M))

= Hi((Ps @k IG) ®ic M)

= H;(G, M)
Here P, ®¢ IG is an [G-projective resolution of I because IG Qg — = | ®; — and the sequence

P, — k is split exact as k-modules*'. Thus, | ®; P, — [ is a split exact sequence of I-modules,
hence exact (but not split exact) as /G-modules.

For H i, it is the same proof, using in the middle :
Homyg (P,, Hom; (IG, M)) = HOIII[G<ZG @G Ps, M). ]

Theorem 2.5.8 ((weak form of) Maschke). Let G be a finite group and k be a commutative ring. Then,
the trivial kG-module k is projective as a kG-module if and only if |G| is invertible in k.

Proof. Consider p : kG — k the “augmentation” defined by p Zagg Zag So k is kG-

projective if and only if p is split epimorphism of kG-modules. Cons1der kG- lmear c:k— kG. Itis
characterized by 0'(1) = ) "a,g since x - 0'(1) = o'(x - 1) = o'(x) for x € k. We must have a; = a € k
8

Pk=kG/{(g—1|g€G) givesk®@cM=M/{g—1]| g€ G)M= Mg
4°f € Homyg (k, M) is determined by f(1) and g- f(1) = f(g-1) = f(1) forallg € G
4Lvector spaces!
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forall g € G, ie, 0(1) =a) _g. The property poo = id is equivalent to 1 = po(1) = a|G|. This
8
a € k exists if and only if |G| € k™. O

Corollary 2.5.9. Let G be a finite group and M be a kG-module such that multiplication by |G| is invertible
on M. Then, H;(G,M) =0 = H'(G, M) forall i > 0.

Proof. Let | = k [|1GJ and f : k = [. Then, M is naturally an /G-module, in other words,

M =resy M = M’ (S"'R-Mod = R-Mod on which each s - — is invertible.) Then, H;(G, M) =
Hi(G,M') = Tor'® (I, M") = 0 (as abelian groups) for i > 0 since [ is a projective /G-module.
Similarly, H' (G, M) = Extj(I, M") = 0 for i > 0. O

Example 2.5.10. Let C; = (x | x> = 1). Then for any commutative ring k,

(1) (1—x) (1+x) (1-x)

kCo kC, kCo kCo k=0

is a (periodic) projective resolution of k as a kC-module.

Exercise 2.5.11. Describe a (2-periodic) resolution of k over kC, where C, = (x | x¥ = 1) for a
prime p and show that H'(Cp, k) = k for all i > 0. +*

Corollary 2.5.12 (of above Corollary). If G is finite and k is a Q-algebra, then H;(G,M) = 0 =
H'(G, M) for all i > 0 and for all kG-module M.

(G")

Bar resolution Let G be a group. For every n > 0, consider P, = kG'~ /, the free kG-module on

G". It has a kG-basis
{lg1 182l 1gnl|(g1--.,8n) € G"},
in particular, Py = kG.
A general element of P, is a finite ) g, ¢,..0.[1 | &2 | -+ | gn] With ag, ¢, ..., € kG. A k-basis
of P, is
{solg1 |-l gul | (80,81, 8n) € G}
For every 0 <i < n, define 9,,; : P, — P,_1 on the kG-basis by

Ino(lgr |1 8n)) =g1lg2 | | gnl
i(lgr |-l gul)=1lg1 | 8i-118&+118&+2l - |gn]for0<i<n
Inu([g1 |- 1gnl) =181 1| 8&n1]
Finally we let d,, : P, — P,_1 to be
d, = f(—wam
i=0

~-—>Pnd—”>Pn_1—>-~—>P1d—1>POHL>k—>O
—1
Lemma 2.5.13. The above "bar resolution” Py < k is a projective resolution of k over kG.

42Use (14+x+4---+xP"1) and (1 — x). We also have Homyc, (kCp, k) =k, (1—x)* =0and (1+x+---+ P~y =
p = 0 when chark = p. If chark # p?
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Proof. Exercise to show d* = 0%3. To show exactness of

i Py PSP S k0,

it suffices to show split exactness as a complex of k-modules. We need k-linear e; : P; — P,y for
all i > 0 and k-linear e_; : k — Py such that ee_; = id; and d,; 1€, + €,-1d, = idp, for all n > 0.

di

dy €
By " Pay P Pk 0
en el €0
Fore_;, map 1to [|. Forn > 0, definee, : P, — P,.1 by sending the k-basis element go[g1 | - - - | gu]
tofgofg1| - [gul O

Exercise 2.5.14. Check de + ed = id.

Remark 2.5.15. Let G be a group and A be an abelian group on which G acts (i.e., A is a ZG-
module). This happens for instance if we have an extension of G by A, that is, a short exact
sequence of groups

1A ELSG—1

The G-action on A is given by éa = xax ™! for any x € E such that 7r(x) = ¢g**. Conversely, given
G and A, how many extensions E are those, as above 1 -+ A — E — G — 1 up to isomorphism
of extensions?

1 A E G 1
|
1 A E G 1

There is a well-known one : A X G (= A x G with (a,g)(b,h) = (a(3b), gh).)
Pick an extension 1 — A — E ©> G — 1. How far is it from being split, i.e., how far is E from A x
G ? Choose a set section of 71, s : G — E such that 7ts = id. For every g1, ¢> € G, there is a potential

problem : s(g182) # s(g1)s(g2). Let f(g1,82) = 5(¢1)s5(¢2)s(g182) " Since (f(81,82)) =1, we
have f(g1,$2) € A. So we have defined f € Map(G x G, A) = Homzg((ZG)%", A). Recall for the
bar resolution of G over k = Z.

ds do dq

Ph—7Z — 0

P, Ps
H

P, P;
H H
(ZG)®" (zG)® (z6)®  (zG)©

d
81| g2] = g1(82] — [182] + 1]
d
811821 83] = 81082 | 83] — (182 | 83] + [81 | §283] — [g1 | &2]
43We have Bn,lroamo = an,LOan,l and Bn,man,i = an_l/i_lamo for 1 <i < n,etc.

44This makes sense because xax ! € kert = A
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We have

d* d* d*
0 — Homzg(ZG, A) ~% Homyzs((ZG), A) =% Homzs((ZG)S, A) =5 Homyzc((ZG)S, A)
A Map(G, A) Map(G2, A) — P Map(G?, A)
W W
f ds f

where (45£)(g1,82,83) = ' f(82,83){f (8182, 83)} ' f (81, 8285) {f (§1.82)} .
Back to our extension 1 — A — E = G — 1. Our function f = fs with

£+(81,82) = 5(81)s(82)s(8182) " € A
belongs to the kernel of d} : Map(G?% A) — Map(G®, A)*. Thus it defines a class [f] €

H?*(Map(G®, A)) = H*(G, A). The dependency of [f;] on s disappears in H*! Another choice of s’
yields some h € Map(G, A) such that dyh = f; — f.

Theorem 2.5.16. We keep notations as above. In particular, A is a given ZG-module (the G-action
on A is fixed.) The above construction yields a bijection between the isomorphism classes of extensions
1— A—E—G— 1and H*(G, A). In particular, [f;] = 0 if and only if E = A x G (as an extension).

Proof. Long verification. Given [f] € H*(G, A), one can construct an extension Ef = A x G with

(a,8) *¢ (b,h) = (a+5b+ f(g h),gh). O

2.6. Sheaf cohomology.
Setup Let X be a topological space and Sh(X) be the category of sheaves of abelian groups
(or generalizations). We know that Sh(X) has enough injectives. (F < [](ix)«I(Fx) where
xeX
I(A)= J] Q/Z)Recall that T(X,—) : Sh(X) — Ab is only left exact.
Hom(A,Q/Z)

Definition 2.6.1. Let F € Sh(X). The i right derived functor of I'(X, —) evaluated at F is the i"
cohomology group of X with coefficients in F.

H'(X,F) := (RT(X,—))(F)
Take an injective resolution F — I°® of F in Sh(X). Then,
H'(X,F) = H(I'(X,I%))

for all i € Z. In particular, HO(X,F) =T(X,F) = F(X).
From the general theory, for every short exact sequence of sheaves,

0—F F—=F' =0,

we have a long exact sequence of abelian groups
0 — F/(X) = F(X) = F'(X) % H\(X,F') = - -

45 A is abelian!
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Definition 2.6.2. A sheaf E € Sh(X) is called flasque (flabby) if for every open V C U C X, the
restriction E(U) — E(V) is onto.

Proposition 2.6.3. (1) Injectives are flasque.
(2) If0 - E — F — F' — 0 is exact in Sh(X) and E is flasque, then 0 — E(X) — F(X) —
F'(X) — 0 is exact.
(3) Flasque sheaves are T'(X, —)-acyclic : if E is flasque, then H'(X,E) = 0 for all i > 0.
(4) Every sheaf F admits a monomorphism F — [ (ix)«(Fc) =: Er with Ep flasque. In cash,

xeX
Er(U) =]] FE.

xel

Proof. (1) For every open U C X, consider Z;; = the sheafification of the presheaf

Z ifWCU
W — .
0 otherwise

(Zy; = j1Oy). Two facts : it V C U, then Z;, — Z;.
Homyg;, x)(Zy, F) = Hompresy(x) (Z{;", F) = Homy(Z, F(U)) = F(U)
Also,
Homyg,(x)(Zy, F) —— F(U)

l lresu,v

Homgy,x)(Zy, F) —— F(V)

if V C U. If F is injective, then the left vertical map is surjective*’. Hence, F is flasque.

(2) Let0 - E S F Py F' 5 0 be exact and E be flasque. We want to show that g : F(X) — F'(X)

is onto. Pick t € F/(X) and let’s construct s € F(X) such that B(s) = t. The assumption implies
that t is in the image of § locally, around every point.

On {(U,s) | U C Xopen,s € F(U),B(s) = tlu}, we set (U,s) < (U,s")if U C U’ and
s'lu = s. Since F is a sheaf, there exists by Zorn’s lemma a maximal such (U, s). We claim that

U = X. Otherwise, pick x € X\ U, x € V C X open, and s’ € F(V) such that s LN tly. To
define s € F(UU V) by gluing s € F(U) and s’ € F(V), we would need s|ynv = §'|unv. In

fact, s|lunv — s’ |unv li tlunv — tluny = 0. Hence there exists r € E(UN V) such that a(r) =
slunv — §'|lunv. Since E is flasque, there exists F' € E(V) such that #'|yny = r. Then correct

s’ € F(V) by 7/, thatis s = ¢’ +a(+') € F(V) LN tlv. Now, by construction, s|yny = s”|unv.
Hence there exists § € F(U U V) such that 5]y = s — t|y and §|y = s” — t|y. Hence 5 — t|yuy
(because F is a sheaf.) Hence (U,s) < (UUV,5s), which is a contradiction. So U = X.

(3) Let E be flasque and let 0 —+ E — I — F — 0 be exact with I injective. Then,

0—EX)—=I(X) = F(X) = HY(X,E) - HY(X,I) =0 — - -

So H'(X,E) = 0 (by (2)) and H(X,E) = H'(X,F) for all i > 1. It suffices to show that F
is flasque. More generally, if 0 - E — E' — F — 0 is exact and E, E’ are flasque, then F is
flasque. Since E is flasque, E|; is also flasque. So, 0 — E|y — E'|y — F|u — 0 is exact. By (2),

46H0m3h(x> (—, F) is exact!
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0 — E(U) — E'(U) — F(U) — 0is exact. For V C U, we have a commutative diagram
0 — E(U) — E'(U) — F(U) — 0
lresu,v lresu,v lresu,v
0 —— E(V) —— E'(V) —— F(V) —— 0

This shows that the right vertical map resyy : F(U) — F(V) is onto.
(4) F — Er is injective “stalk-wise” and Er is clearly flasque.

Er(U) == [] k&
xel
| :
Er(V) — [] E
xeV

Corollary 2.6.4. If 0 — F — E® - E' — ... = E" — E"! — ... is exact with all E' flasque, then
H'(X,F) = H'(E*(X)).
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3. SPECTRAL SEQUENCES (AN INTRODUCTION)

Reference for more : J. McClear y ”A User’s Guide to Spectral Sequences”
For the whole chapter, there is fixed abelian category A (satisfying some axioms, for convergence
issues). e.g. A = R-Mod for some ring R.

3.1. Introduction.
Recall that if A, < A, — A./ A, is an exact sequence in Ch(.A), then we have a long exact
sequence in homology :

- = Hi(A,) = Hi(As) = Hi(As/ A,) — Hi_1(Ay) — -+

We thus have some control (“homological”) of A, or rather H.(A), once we know H,(A’) and
H,(A/A’) - think of the latter as “known” and H,(A) as unknown. More precisely, there exist
maps

H.(A/AY S H, (A
which yield some (known) objects kerd and cokerd. Then H.(A) has a (one-step) filtration

Hi(A,) —— Hi(A.)
H;(A) D J; 2 0 such that H;(A)/]; = kerd and J;/0 = coker d where N
Ji

Exercise 3.1.1. Suppose 0 C A” C A’ C A subcomplexes. Think A”/0, A’/A” and A/ A’ are
known. How to get H.(A) from H,(A"/0), H.(A"/A") and H.(A/A")?

Definition 3.1.2. A (homological) spectral sequence starting on s™ page (s is usually o,1, or 2)
is a collection (E}, o, d), ;),>s (p,q)ez Where Ej, ; is an objectin Aand d},, : E, , — E,_, .\, ; (total
degree goes down by 1) such that d'd" = 0 together with isomorphisms

E1’+1 ~ H Er a Er a Er _ ker d;/q
pa = HEprgrin = By = Eprgr) = (0 '
p+rg—r+1

(Pictures) s =1

d}
with E;fl,q L E%z,q' Every line is a complex, d'd' = 0.
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. 2 Y]
with E5 14 «— E, .

Remark 3.1.3. Cohomology spectral sequences are same : (Ef’q,df’q - EPT — EF H’q_rﬂ) with
Er+1 = H(Er/ dr)-

r

r+1 . :
Remark 3.1.4. E, " is a subquotient of E, ,

hence they are all subquotients of E, ,. Hence
E,, = Z,,/B,, where

_ B stlc . ..CB C...C7' C...C7¥lcys _ps
O_BPI’J < BP/q < < BPI’J < gzprq < gZP/q QZP/Q EP/’J

Definition 3.1.5. With the above notation, E;}, = Z;’,/ B, where

Zy. = () Z},(limit), By, = | J B}, ,(colimit)

r>s r>s
Remark 3.1.6. We say that a spectral sequence collapses at place (p,q) at page g if 4, ; = 0 and

pirg-ri1 = 0 forall ¥ > ro. In that case, E}), & E;}j;l =...=E =Ep forallr > 1.

Example 3.1.7. If the spectral sequence is a first quadrant spectral sequence, i.e., E}, , = 0 unless
p > 0and g > 0, then it collapses at every place at some corresponding page.

Definition 3.1.8. A spectral sequence (E
(Hp)nez if there exist filtrations

e C ]pfl,n - ]p,n - ]erl,n c---CH,y

such that J,n/Jp-1,n = Ey,_p,. (Note that g =n — p, thatis, p+q =n.)

pq)r>s weakly converges towards a collection of objects

Notation : E; g — Ha
T n=p+q

e.g. E;%,q = (known stuff) = H,,, = (mysterious stuff)

Remark 3.1.9. The above doesn’t say that H, is exhausted by the filtration. (U Jp = Hy? and
P
ﬂ Jpn = 0?) Meditate --- C 2"Z C --- C 2Z C Z. Even if it exhausts, the information about H,

14
can be weak. (all J,/],~1 = Z/2Z,but H = Z is quite different.)

Definition 3.1.10. A spectral sequence (E},;,d), ) is bounded below if for every (total degree) n,

there exists pg = po(n) such that E;,,,_,, = 0 for all p < po(n) (thus E},,_, =0 forall 7 > s.)
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Definition 3.1.11 (Bounded-below convergence). A bounded below spectral sequence converges
to (Hy)nez if it weakly converges, i.e.,

'g]pfl,ng]p,ng"'an

such that [, »/Jp-1» = E},_, and moreover, ()Jpn = 0 (if and only if J,, = 0 for p < 0) and

p
U]p,n = Hn-
p

3.2. Exact couples.

D—* D

Definition 3.2.1. An exact couple (D, E,«, 8,) is an exact sequence \ / (i.e., exact
v B

E
at D, at D, and at E). Note that d = By : E — E satisfies dd = 0.

D—2—D
Proposition 3.2.2. Let \ / be an exact couple. Let D' = ima and E' = H(E,d) =

ker By/imB7y. Let o' : D' — D' be the restriction of a and «' : E' — D' be the morphism induced by .
(on elements, 7' ([x]) = v(x))

D' =ima — % 5 D

Let B': D' — E' be "B’ = [Boa']” which means on elements B'(y) = [B(x)] € E' for any x € B such
that y = a(x). Since y € D' = ima, we have y = uc( )for same x € D.
l Dl

Then, these morphisms are well-defined and \ / is again exact.

Proof. Well-definedness is easy. Exactness is an exercise. For instance, if x € E’ such that 9/(x) =0,
then x = [t] € ker By/ im By where t € E and By(t) = 0. We have y(t) =0, i.e., t € kery =imp,
sot=p(u) foru € D. Lety = a(u) € ima = D', then B/'(y) = [B(u)] = [t] = x. O

D—* D D —% D

Remark 3.2.3. Given an exact couple '\ / \ / is called the derived

exact couple. By induction, we get a tower of exact couples

(D,E,a,,7)
Lemma 3.2.4. For every t > 1,

DY =ima, a) =4, EO =zO /B0
47

o B, B,y s (D), ED), o) g ()



where BY C z® C E are given by
z®) = 4 Yima'), B® = B(kera')
and vV = | and pY = [Boa!].
Proof. Exercise. O

Lemma 3.2.5. Let Do and Eee be Z*-bigraded objects (collection of Dy, for (p,q) € Z?). Let
D.. —> Doo

'\ / be an exact couple of Z*-graded objects with « of bidegree (1, —1), B of bidegree

(=b,b) and «y of bidegree (—1,0). Then, the derived couple has bidegrees (1, —1)

fora/, (=b—1,b+1) for B’ and (—1,0) for .
Proof. Easy. bideg(B’) = bideg(B) — bideg(a), etc. O
Corollary 3.2.6. Let (D", E",a”, ', ") be a collection of exact couples for r > s such that

(Dr+l, EH_l, . ) — (Dr, Er’ . )/
(ie., we give (D,E,---) = (D*,ES,---) and (D', E’,---) = (D,E,---)"=5).) Suppose that « = o° has
bidegree (1, —1), v = +° has bidegree ( 1,0) and B = B° has bidegree (—s + 1,5 — 1) (typically (0,0) if
we start on s = 1). Then, (E,,,d" = B'v") is a spectral sequence starting on page s.
Definition 3.2.7. Like for spectral sequences, an exact couple (Dee, Eo, - - . )’ is bounded below if

for every n € Z, there is pg = po(n) such that D, ,, = 0 for p < py (thus, E;,,, = 0 for p < 0.)
In that case, the associated spectral sequence is bounded below.

D.. % Doo
Th .2.8. Let be an exact couple with bidegrees (1,—1),(—s+1,s—1),(—1,0
eorem 3.2 N, p grees (1,-1), ), (-1,0)

for o, B,y and let (E}, ,d")r>s be the associated spectral sequence. Suppose that the exact couple is bounded
below. Let

H, = colimy_;, 1 oo(Dyp—p, &) = colim(D, - L Dpi1n—p-1 LI -)
Then, the bounded below sequence Ej , n::er; H,, converges to that H,.

Proof. The filtration on H, is given by
'g]pfl,n g]p,n C---CH,

where [, = im(Dpys—1,1—p-st1 — colim; e D;,—; = Hy). This filtration exhausts H, because
the couple is bounded below. We need to give isomorphisms

]p,n/]p—ln = E;On p= Z;?q/B;?q (q =n-—- P)
where Z;’,‘,’q = ﬂZ;/EI and B;,,q = U B;,q CEp,.
r T

Recall that E}, | = M or more precisely, Z,, , = 7~ !(ima’*) and Bj,, = B(kera'*)
pa ﬁ(ker DC’/_S) p y’ pq ’)/ pq — .
Z;,q = ry_l(im([xi’_s : Dp*r+5*1,b]+i’fs — Dpfllq))
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:>ZOO: Zr :ker :E —>D_1
Diy1_i=0fori<0 P4 (25 (7 Eng p-1a)

For each p, q such that p + g = n, consider
0= Kpys—1n—p-s+1 = Dpys—1n—p-st1 = Jpu — 0

Compare two consecutive sequences.

0
0 ——— Kp-1,.. Dp-14s-1,.. L Jp-1n — 0
| |
0 Kp DP+S*1,... ]pn 0

L“. ]p

)

0 —— ,B(Kersfl,...)(:s) EE— ,B(Dersfl,...) EE— ]p,n/]pfl,n — 0
ker(y: Epq — Dp-14) = Zp, 0
(1) Apply Snake.

(2) By the exact couple, cokera =impB = B(D ).

(3) By (1) and (2).
By construction,

B(Kpss-1,..) = |J Blkera’) = | B}, = B,

t>1 r>1

3.3. Some examples.
Spectral sequence of a filtered complex Let

"'ngflcongCog"‘gCo

be a filtration by subcomplexes. Suppose the filtration is bounded below : for all n € Z, F,C;, = 0
for p < 0. Suppose C,;, = U Fyn. Then, there exists a bounded below converging spectral

pEZ
sequence

1
Epq = Hpq(FyCo/Fy—1Ca) paw— H,(C,)

Proof. Let Dy = Hpy(F,C,) and E; 3 = Hpy4(Fy,Co/Fp_1Cs). There is a long exact sequence in

H, on Fp—l — Fp — Fp/Fp—l-

Des “ D..
=
K\\\\Q\LO)(ijE/////

7 f
E..
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Spectral sequence of a double complex If C,, is 1*" quadrant (C,; = 0 unless p > 0and g > 0)
double complex, then

TE2,, = HJ\(HY(Cas)) = Hy4q(Tot®(Cur))
and same for HEf,,q = H;H';(C..).

Grothendieck spectral sequence  Suppose A 5 B S C and F,G are both right exact. If
F(proj) C G-acyclic, then

E} ., = (Ly,G)(LyF)(A) = Ly14(GF)(A).
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