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1 The Grothendieck group of an abelian monoid

Prerequisites

Abelian monoids

Recall that an abelian monoid is a set M together with a binary operation
⊕ : M × M −→ M and a distinguished element 0 such that the following
axioms hold true.

(AMon1) The operation ⊕ is associative that means m1 ⊕ (m2 ⊕ m3) =
(m1 ⊕m2)⊕m3 for all m1,m2,m3 ∈M ,

(AMon2) The element 0 is neutral with respect to ⊕ that means 0 ⊕m =
m⊕ 0 = m for all m ∈M ,

(AMon3) The operation ⊕ is commutative that means m1 ⊕m2 = m2 ⊕m1

for all m1,m2 ∈M .

The category AMon of abelian monoids is a full subcategory of the category of
monoids. Morphisms of AMon are given by maps f : M → M̃ between abelian
monoids M and M̃ with binary operations ⊕ and ⊕̃, respectively, such that the
following axiom holds true.

(MorMon) For all m1,m2 ∈ M the relation f(m1 ⊕ m2) = f(m1)⊕̃f(m2)
holds true.

Objective

The category AGrp of abelian groups is a full subcategory of AMon. The main
goal of the following considerations is to construct a left adjoint to the embed-
ding functor ι : AGrp ↪→ AMon.

Construction of the Grothendieck group

Definition 1.1. Let M be an abelian monoid. An abelian group K together
with a morphism κ : M → K of monoids is called a Grothendieck group of M ,
if the following universal property is satisfied:
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(Gro) For every abelian group A and every morphism of monoids f : M → A
there exists a unique homomorphism of groups fK : K → A such that the
following diagram commutes.

(1.1) M

κ

��

f // A

K

fK

>>

Clearly, if a Grothendieck group exists for M , then it is unique up to iso-
morphism by the universal property. Let us show that for every ablian monoid
M there exists a Grothendieck group. To this end let F(M) be the free abelian
group generated by the elements of M , and denote for every m ∈ M by m
the image of m in F(M) under the canonical injection M → F(M). Let
R(M) ⊂ F(M) be the (necessarily free) subgroup generated by all elements
of the form m1 ⊕m2 − m1 − m2, where m1,m2 ∈ M and where − denotes
subtraction within the abelian group F(M). Then the following holds true.

Proposition 1.2. For every abelian monoid M , the abelian group KGro(M) :=
F(M)/R(M) together with the canonical morphism of monoids κGro

M : M →
KGro(A), m 7→ m+ R(M) is a Grothendieck group for M .

Proof. Let A be an abelian group and M → A a morphism of monoids. By
the universal property of F(M), there exists a unique group homomorphism
fF(M) : F (M)→ A such that the diagram

(1.2) M
f //

��

A

F(M)

fF(M)

<<

commutes, where M → F(M) is the canonical embedding. Observe now that
for all m1,m2 ∈M

fF(M)(m1 ⊕m2 −m1 −m2) = fF(M)(m1 ⊕m2)− fF(M)(m1)− fF(M)(m2)

= f(m1 ⊕m2)− f(m1)− f(m2)

= f(m1) + f(m2)− f(m1)− f(m2) = 0,

hence fF(M) factorizes through the map F(M)→ KGro(M). In other words this
means that there exists a homomorphism fKGro(M) : KGro(M) → A such that
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the diagram

(1.3) M
f //

��

A

F(M)

fF(M)

;;

��
KGro(M)

fKGro(M)

DD

commutes. By the universal property of the free abelian group F(M), the ho-
momorphism fF(M) is uniquely determined by f . Since F(M) → KGro(M) is
an epimorphism, fKGro(M) is uniquely determined by fF(M), hence uniqueness
of fKGro(M) follows. This proves the claim, since the composition of the two

vertical arrows in Diagram (1.3) coincides with κGro
M .

From now on, we will denote by [m] the equivalence class of an element
m ∈ M in the Grothendieck group KGro(M). As we will see later, the map
M → KGro, m 7→ [m] need not be injective, in general.

Another representation of the Grothendieck group

Next, let us provide a second representation for KGro. To this end consider the
map

λ : M ×M → KGro, (m1,m2) 7→ [m1]− [m2].

By construction of KGro, this map must be surjective. Note that M ×M in-
herits the structure of a commutative monoid from M . Let us determine, when
λ(m1, n1) = λ(m2, n2) for m1,m2, n1, n2 ∈ M . The following observation is
crucial for this.

Lemma 1.3. For all m1,m2 ∈ M one has [m1] = [m2] in KGro if and only if
there is an n ∈M such that m1 ⊕ n = m2 ⊕ n.

Definition 1.4. Two elements m1,m2 of an abelian monoid M are called stably
equivalent, if there is an n ∈M such that m1 ⊕ n = m2 ⊕ n.

Proof of the Lemma. If m1 and m2 are stably equivalent, the relation [m1] =
[m2] follows immediately:

[m1] = [m1 ⊕ n]− [n] = [m2 ⊕ n]− [n] = [m2].

It remains to show that [m1] = [m2] implies the existence of an n ∈ M
such that m1 ⊕ n = m2 ⊕ n. By construction of KGro(M), there exist elements
a1, . . . , ak, a

′
1, . . . a

′
k, b1, . . . , bl, b

′
1, . . . b

′
l ∈M for some k, l ∈ N such that in F(M)

the following relation holds true:

m1 −m2 =
( k∑
i=1

(ai ⊕ a′i)− ai − a′i
)
−
( l∑
j=1

(bi ⊕ b′i)− bi − b′i
)
.
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This implies that in F(M), the following equation holds:

m1 +

k∑
i=1

(ai + a′i) +

l∑
j=1

(bj ⊕ b′j) = m2 +

k∑
i=1

(ai ⊕ a′i) +

l∑
j=1

(bj + bj).

Since F(M) is free on elements of M , one concludes that the summands ap-
pearing on the left side of the equation are a permutation of the summands
appearing on the right side. Hence

m1 ⊕
k⊕
i=1

(ai ⊕ a′i)⊕
l⊕

j=1

(bj ⊕ b′j) = m2 ⊕
k⊕
i=1

(ai ⊕ a′i)⊕
l⊕

j=1

(bj ⊕ bj).

Putting n :=
⊕k

i=1(ai ⊕ a′i) ⊕
⊕l

j=1(bj ⊕ b′j), one obtains m1 ⊕ n = m2 ⊕ n.
This finishes the proof.

Let us come back to our original problem and assume that λ(m1, n1) =
λ(m2, n2). Then one concludes

[m1] + [n2] = [m2] + [n1],

hence by the lemma there exists n ∈M such that

(1.4) m1 + n2 + n = m2 + n1 + n.

If one defines now (m1, n1) ∼ (m2, n2) for m1,m2, n1, n2 ∈ M if there exists
n ∈M such that Eq. (1.4) holds true, then the lemma implies that λ(m1, n1) =
λ(m2, n2) exactly when (m1, n1) ∼ (m2, n2).

Lemma 1.5. The relation ∼ on M ×M is a congruence relation. This means
in particular that for all m1,m2, n1, n2, a, b ∈ M such that (m1, n1) ∼ (m2, n2)
the relation

(m1 ⊕ a, n1 ⊕ b) ∼ (m2 ⊕ a, n2 ⊕ b)

holds true.

Proof. Clearly, the relation ∼ is symmetric and reflexive. let us show that it is
transitive. To this end, assume (m1, n1) ∼ (m2, n2) and (m2, n2) ∼ (m3, n3).
Then there exist n, n′ ∈M such that

m1 ⊕ n2 ⊕ n = m2 ⊕ n1 ⊕ n and m2 ⊕ n3 ⊕ n′ = m3 ⊕ n2 ⊕ n′.

Adding the two equalities, one obtains

m1 ⊕ n3 ⊕ (m2 ⊕ n2 ⊕ n⊕ n′) = m3 ⊕ n1 ⊕ (m2 ⊕ n2 ⊕ n⊕ n′),

which proves that ∼ is transitive. If m1 ⊕ n2 ⊕ n = m2 ⊕ n1 ⊕ n, then

m1 ⊕ a⊕ n2 ⊕ b⊕ n = m2 ⊕ a⊕ n1 ⊕ b⊕ n,

which entails that ∼ is even a congruence relation.
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Proposition 1.6. For every commutative monoid M , the quotient space M ×
M/∼ of equivalence classes of the congruence relation ∼ is an abelian group
which is canonically isomorphic to KGro(M).

Proof. Since ∼ is a congruence relation, M ×M/∼ inherits from M ×M the
structure of an abelian monoid. Moreover, since (m,n)⊕ (n,m) ∼ (0, 0), every
element of M ×M/∼ has an inverse, thus M ×M/∼ is an abelian group. Since
λ(m1, n1) = λ(m2, n2) if and only if (m1, n1) ∼ (m2, n2) and since λ is surjective,
it follows immediately that the quotient map λ : (M ×M/∼) → KGro(M) is
well-defined and an isomorphism.

Functorial properties

Sofar, we have defined KGro only on objects of the category of abelian monoids.
Let us now extend KGro to a functor KGro : AMon → AGrp. Assume to be
given two abelian monoids M,N and a morphism of monoids f : M → N .
By the universal property of the Grothendieck group KGro(M) there exists a
uniquely determined group homomorphism, which we denote KGro(f), such that
the following diagram commutes.

(1.5) M
κGro
M //

f

��

KGro(M)

KGro(f)

��
N

κGro
N

// KGro(N)

This in particular entails that

KGro(idM ) = idKGro(M) and KGro(f2 ◦ f1) = KGro(f2) ◦ KGro(f1)

for abelian monoids M,M1,M2,M3 and morphisms f1 : M1 → M2 and f2 :
M2 → M3. Hence KGro is a functor from the category of abelian monoids to
the category of abelian groups, indeed. One sometimes calls this functor the
Grothendieck K-functor.

Theorem 1.7. The Grothendieck-functor KGro : AMon → AGrp is left adjoint
to the forgetful functor ι : AGrp→ AMon.

Proof. Let M be an abelian monoid, A an abelian group, and consider the map(
κGro
M

)∗
: AGrp

(
KGro(M), A

)
→ AMon

(
M, ι(A)

)
, f 7→ f ◦ κGro

M .

By Diagram (1.5), this map is natural in M . Naturality in A is obvious by defi-
nition. Moreover, since KGro satisfies the universal property (Gro) in Definition
1.1,

(
κGro
M

)∗
is even bijective. The claim follows.
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Basic examples

Remark 1.8. Sometimes it happens that a set M carries two binary operations
⊕ and ⊗ which both induce on M the structure of an abelian monoid. To
distinguish the corresponding two, possibly different, Grothendieck groups we
denote them in such a situation by KGro(M,⊕) and KGro(M,⊗), respectively.

Example 1.9. 1. Consider the abelian monoid of natural numbers (N,+)
with addition as binary operation. Then KGro(N,+) = (Z,+). On the
other hand, one has KGro(N, ·) = {0}, but KGro(N∗, ·) = (Q>0, ·).

2. IfA is an abelian group, then by the universal property of the Grothendieck
group one immediately obtains KGro(A) = A.

3. Consider the set of non-zero integres Z∗ with multiplication · as binary
operation. Then KGro(Z∗, ·) = (Q, ·).

4. Let X be a compact topological space, and VecC(X) the category of com-
plex vector bundles over X. Since every complex vector bundle over X is
isomorphic to a subbundle of some trivial bundle X ×Cn, the category of
isomorphism classes of complex vector budnles over X is small. Denote
by Iso(VecC(X)) its set of objects. Then the direct sum of vector bundles
over X induces the structure of an abelian monoid on Iso(VecC(X)). The
isomorphism class of the trivial vector bundle X × {0} of fiber dimension
0 serves as the zero element in Iso(VecC(X)). The K-theory of the space
X (in degree 0) is now defined as the Grothendieck-group of Iso(VecC(X))
that means as the abelian group

K0(X) := KGro
(
Iso(VecC(X))

)
.

For further reading on the K-theory of compact topological spaces see
[Ati89, Kar08].

2 The functor K0 for a unital ring

Definition and fundamental properties

Let R be a unital (but possibly noncommutative) ring, and R -Modfp the cate-
gory of finitely generated projective left modules over R.

Proposition 2.1. The category of isomorphism classes of finitely generated
projective left R-modules is small. Denote by Iso(R -Modfp) the set of isomor-
phism classes of finitely generated projective left R-modules. Then the direct
sum in the abelian category R -Mod induces on Iso(R -Modfp) the structure of
an abelian monoid.

Proof. Every finitely generated projective leftR-module is isomorphic to a direct
summand of some Rn, n ∈ N, and the finitely generated projective left R-
modules are characterized by this property. From this, it follows immediately
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that Iso(R -Modfp) is small. To check the second claim, let f : M1 → M2 and
g : N1 → N2 be two isomorphisms in R -Modfp. Then (f, g) : M1 ⊕ N1 →
M2 ⊕N2 is an isomorphism as well, hence ⊕ descends to a binary operation on
Iso(R -Modfp) which we will denote by the same symbol:

⊕ : Iso(R -Modfp)×

Iso(R -Modfp)→ Iso(R -Modfp) .It is immediate to prove that ⊕ is associa-
tive and commutative on Iso(R -Modfp), and that the equivalence class of the
zero module serves as neutral element. This proves the proposition.

Definition 2.2. For every unital ring R one defines K0(R), the K-theory of
order 0 of R, by

K0(R) := KGro
(
Iso(R -Modfp)

)
.

Proposition 2.3. Two finitely generated projective left R-modules M and N
represent the same element in K0(R) if and only if M ⊕Rn ∼= N ⊕Rn for some
n ∈ N.

Proof. Clearly, if M⊕Rn ∼= N⊕Rn and [M ], [N ] denote the equivalence classes
of M respectively N in K0(R), then the equation

[M ] = [M ⊕Rn]− [Rn] = [N ⊕Rn]− [Rn] = [N ]

follows immediately. It remains to show the converse. Assume that [M ] = [N ].
Then, by definition of KGro

(
Iso(R -Modfp)

)
there exist finitely generated pro-

jective left R-modules Ai, A
′
i, Bi, B

′
i, i = 1, . . . , k such that in F

(
Iso(R -Modfp)

)
,

the free abelian group over the set of isomorphism classes of finitely generated
projective left R-modules, the equality

M −N =

k∑
i=1

(Ai ⊕A′i −Ai −A′i)−
k∑
i=1

(Bi ⊕B′i −Bi −B′i)

holds true, where we have denoted by M the image of M in F
(
Iso(R -Modfp)

)
and likewise for the other left R-modules. This implies that

M +

k∑
i=1

(Bi ⊕B′i) +

k∑
i=1

(Ai +A′i) = N +

k∑
i=1

(Ai ⊕A′i) +

k∑
i=1

(Bi +B′i)

which means that the R-modules appearing as summands on the left hand side
are permutations of the summands appearing on the right hand side. Thus, in
Iso(R -Modfp), the following equality holds true.

M ⊕
k⊕
i=1

(Bi ⊕B′i)⊕
k⊕
i=1

(Ai ⊕A′i) = N ⊕
k⊕
i=1

(Ai ⊕A′i)⊕
k⊕
i=1

(Bi ⊕B′i)

7



Hence we obtain M ⊕ P ∼= N ⊕ P for

P :=

k⊕
i=1

(Ai ⊕A′i)⊕
k⊕
i=1

(Bi ⊕B′i) .

Since P is a finitely generated projective left R-module, there exists a left R-
module Q such that P ⊕Q ∼= Rn for some n ∈ N. This entails

M ⊕Rn ∼= M ⊕ P ⊕Q ∼= N ⊕ P ⊕Q ∼= N ⊕Rn ,
and the claim follows.

Remark 2.4. 1. Note that since a finitely projective R-module is a direct
sum of some Rn, the relation M⊕Rn ∼= N⊕Rn holds true, if and only if M
and N are stably equivalent in the sense of Definition 1.4. This observation
also shows that Proposition 2.3 is a direct consequence of Lemma 1.3.

2. Sometimes, one writes Kalg
0 (R) instead of K0(R) to emphasize that one

considers the algebraic K-theory of the ring R and not a topological version
of K-theory. Note, however, that for a Banach-algebra A the topological
K-theory of A in degree 0 coincides with its algebraic K-theory as defined
above. This means in particular, that in this case the not so precise
notation K0(A) will not lead to any confusion.

Basic examples

Example 2.5. 1. Let k be a field. A finitely generated projective module
over k is a k-vector space of finite dimension. The isomorphism classes of
finitely generated projective k-modules are therefore uniquely determined
by dimension. Moreover, under this characterization, the isomorphism
class of the direct sum of two finitely generated projective k-modules cor-
responds to the sum of the dimensions of the two modules. Hence, by
Example 1.9.1 it follows that

K0(k) ∼= KGro(N) = Z.

2. Let X be a compact topological space. Recall that by the Serre–Swan The-
orem the category VecC(X) of complex vector bundles over X is equivalent
to the category of finitely generated projective modules over the algebra
C(X) of continuous functions on X, hence one has a natural isomorphism
of monoids

Iso(VecC(X)) ∼= Iso(C(X) -Modfp).

By Example 1.9.4 the K-theory of C(X) then has to coincide with the
K-theory of the space X (in degree 0):

K0(C(X)) ∼= K0(X).

Note that, if X is a smooth manifold, one even has

K0(C∞(X)) ∼= K0(X),

where C∞(X) denotes the algebra of smooth functions on X.
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3 The functor Kalg
1 for a unital ring

Prerequisites

Groups of invertible infinite matrices. Let R be a unital ring, and n ∈
N∗. Recall that by GLn(R) ⊂ Mn×n(R) one denotes the group of invertible
n × n-matrices with entries in R. For natural n ≥ m > 0 one has a natural
embedding ιnm : GLm(R) → GLn which is defined by the requirement that
r = (rij)1≤i,j≤m ∈ GLm(R) is mapped to the matrix ιnm(r) ∈ GLn(R) with
entries (

ιnm(r)
)
ij

:=


rij , if 1 ≤ i, j ≤ m,
1, if i = j and m < i ≤ n,
0, if i 6= j and i > m or j > m.

By definition,
(
(GLn(R))n∈N∗ , (ιnm)m≤n

)
then forms a direct system of groups.

It has a direct limit which is denoted by GL∞(R) and which can be represented
as the set of all matrices r = (rij)i,j∈N with entries rij ∈ R for which there is
an n ∈ N such that

(3.1) (rij)1≤i,j≤n ∈ GLn(R) and rij =

{
1, if i, j > n and i = j,

0, if i > n or j > n and i 6= j.

The product of two elements r, r̃ ∈ GL∞(R) is given by

r · r̃ := s, where sij :=
∑
k∈N

ril · r̃kj .

It is immediate to check that r · r̃ is an element of GL∞(R). The unit element
in GL∞(R) is given by the matrix e with components

eij :=

{
1, if i = j,

0, if i 6= j.

The set GL∞(R) of matrices (rij)i,j∈N satisfying (3.1) together with the prod-
uct · froms a group indeed. Moreover, for every n ∈ N∗ there is a natural
embedding ιn : GLn(R) → GL∞(R) which is defined by the requirement that
r = (rij)1≤i,j≤n ∈ GLn(R) is mapped to the matrix ιn(r) ∈ GL∞(R) with
entries (

ιn(r)
)
ij

:=


rij , if 1 ≤ i, j ≤ n,
1, if i = j and n < i,

0, if i 6= j and i > n or j > n.

It is straightforward to prove that
(
GL∞(R), (ιn)n∈N∗

)
is the direct limit of(

(GLn(R))n∈N∗ , (ιnm)m≤n
)

indeed. Sometimes, one calls GL∞(R) the group of
invertible infinite matrices over R.
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Groups of elementary matrics. Let us now recall the definition and basic
properties of the group of elementary matrices. To this denote for λ ∈ R,
n ∈ N∗∪{∞} and all integers i 6= j with 1 ≤ i, j < n+1 by enij(λ) the matrix in
GLn(R) having entry λ at the i-th row and j-th column, entry 1 at all diagonal
elements, and 0 at all other places. In other words, this means

(
enij(λ)

)
kl

:=


1, if k = l and 1 ≤ k < n+ 1,

λ, if k = i and l = j,

0, if k 6= l, (k, l) 6= (i, j), and 1 ≤ k, l < n+ 1.

A matrix of the form enij(λ) is called an elementary matrix over R of order n.
The subgroup of GLn(R) generated by all elementary matrices over R of order
n is called the group of elementary matrix over R of order n and is denoted by
En(R). By slight abuse of language one sometimes calls E∞(R) the group of
elementary matrices over R.

It is immediate to check that under the group homomorphism ιnm from
above with 0 < m ≤ n <∞, the group Em(R) is mapped into En(R), and that(
(En(R))n∈N∗ , (ιnm)m≤n

)
is a direct system of groups. The direct limit of this

direct systems is E∞(R) as one easily checks.
Recall that for two elements g, h of a group G one denotes by [g, h] the

commutator ghg−1h−1. With this notation, the following holds true.

Proposition 3.1. The elementary matrics e∞ij (λ), e∞ij (µ) satisfy for all λ, µ ∈ R
the following relations.

(i) e∞ij (λ) · e∞ij (µ) = e∞ij (λ+ µ), if i 6= j,

(ii)
[
e∞ij (λ), e∞kl (µ)

]
= 1, if i 6= j, k 6= l, j 6= k, and i 6= l,

(iii)
[
e∞ij (λ), e∞jl (µ)

]
= e∞il (λ · µ), if i 6= j, i 6= l, and j 6= l,

(iv)
[
e∞ij (λ), e∞ki (µ)

]
= e∞kj(−µ · λ), if i 6= j, i 6= k, and j 6= k.

The essential tool for the proof of the proposition is the following result.

Lemma 3.2. For 1 ≤ i, j, k, l ≤ n with i 6= j, k 6= l and i 6= l or j 6= k one has

enij(λ) · enkl(µ) = (1− δil) enil
(
λµδjk + λδjl + µδik

)
+

+ (1− δjk)δil1+

+ (1− δik)
(
enkl(µ)− 1

)
+ (1− δjl)

(
enij(λ)− 1

)
,

where δrs denotes the Kronecker symbol, i.e. δrs = 1 for r = s and δrs = 0 for
r 6= s.
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Proof of the Lemma. Let us compute the components of the matrix enij(λ)enkl(µ).(
enij(λ) enkl(µ)

)
rs

=
∑
t

(
enij(λ)

)
rt

(
enkl(µ)

)
ts

=

=



∑
t δrtδts = δrs, for r 6= i, s 6= l,∑
t δrtδts + λδjs = δis, for r = i, s 6= l, j = l,∑
t δrtδts + λδjs = δis + λδjs, for r = i, s 6= l, j 6= l,∑
t δrtδts + µδrk = δrl, for r 6= i, s = l, j = k,∑
t δrtδts + µδrk = δrl + µδrk, for r 6= i, s = l, j 6= k,

λµδjk + λδjl + µδik, for r = i, s = l, i 6= l,

1, for r = i, s = l, i = l, j 6= k.

The claim follows.

Proof of the Proposition.

Definition and fundamental properties of Kalg
1

Definition 3.3. Let R be a unital ring. Then Kalg
1 (R), the algebraic K-theory

of degree 1 of R, is defined as the abelian group

Kalg
1 (R) := GL∞(R)/[GL∞(R),GL∞(R)] .

Proposition 3.4. For every unital ring R the following equality holds true.

Kalg
1 (R) = GLab

∞(R) = GL∞(R)/[E∞(R),E∞(R)] = GL∞(R)/E∞(R) .

Proof. The claim is immediate by definition of Kalg
1 (R) and results from elemen-

tary matrix theory as stated in the prerequisites.
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