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1 The Grothendieck group of an abelian monoid

Prerequisites
Abelian monoids

Recall that an abelian monoid is a set M together with a binary operation
@ : M x M — M and a distinguished element 0 such that the following
axioms hold true.

(AMon1) The operation @ is associative that means my @ (mas ® m3) =
(my1 ® mg) ® mg for all my, ma,ms € M,

(AMon2) The element 0 is neutral with respect to @ that means 0 & m =
m @0 =m for all m € M,

(AMon3) The operation @ is commutative that means m; ® mq = mq ® my
for all mq,ms € M.

The category AMon of abelian monoids is a full subcategory of the category of
monoids. Morphisms of AMon are given by maps f : M — M between abelian
monoids M and M with binary operations @ and @, respectively, such that the
following axiom holds true.

(MorMon) For all my,ma € M the relation f(my & ma) = f(m1)df(m2)
holds true.

Objective

The category AGrp of abelian groups is a full subcategory of AMon. The main
goal of the following considerations is to construct a left adjoint to the embed-
ding functor ¢ : AGrp — AMon.

Construction of the Grothendieck group

Definition 1.1. Let M be an abelian monoid. An abelian group K together
with a morphism « : M — K of monoids is called a Grothendieck group of M,
if the following universal property is satisfied:



(Gro) For every abelian group A and every morphism of monoids f : M — A
there exists a unique homomorphism of groups fx : K — A such that the
following diagram commutes.

f

Clearly, if a Grothendieck group exists for M, then it is unique up to iso-
morphism by the universal property. Let us show that for every ablian monoid
M there exists a Grothendieck group. To this end let F(M) be the free abelian
group generated by the elements of M, and denote for every m € M by m
the image of m in F(M) under the canonical injection M — F(M). Let
R(M) C F(M) be the (necessarily free) subgroup generated by all elements
of the form mq @ mo — My — M9, where mi,mo € M and where — denotes
subtraction within the abelian group F(M). Then the following holds true.

(1.1)

Proposition 1.2. For every abelian monoid M, the abelian group K& (M) :=
F(M)/R(M) together with the canonical morphism of monoids k§f° : M —
KG(A), m +— m + R(M) is a Grothendieck group for M.

Proof. Let A be an abelian group and M — A a morphism of monoids. By
the universal property of F(M), there exists a unique group homomorphism
fr(my : F(M) — A such that the diagram

(1.2) M—L 4

F(M)

commutes, where M — F(M) is the canonical embedding. Observe now that
for all my,my € M

feony(ma @ ma — My —ma) = frany (ma @ me) — fran (M) — fron (M2)
= f(m1 @ ma) — f(m1) — f(m2)
= f(m1) + f(ma) — f(m1) — f(ma) =0,

hence fr(nr) factorizes through the map F(M) — K& (M). In other words this
means that there exists a homomorphism fxcro(nsy : KS(M) — A such that



the diagram

(1.3)

M
l/
M

\L fKGTO(I\/I)

KGro

commutes. By the universal property of the free abelian group F(M), the ho-
momorphism fr(pr) is uniquely determined by f. Since F(M) — K& (M) is
an epimorphism, fxaro(ps) is uniquely determined by fr(as), hence uniqueness
of fkaro(ary follows. This proves the claim, since the composition of the two
vertical arrows in Diagram (1.3) coincides with x§re. O

From now on, we will denote by [m] the equivalence class of an element
m € M in the Grothendieck group K& (M). As we will see later, the map
M — K™ m s [m] need not be injective, in general.

Another representation of the Grothendieck group

Next, let us provide a second representation for K&, To this end consider the
map
A M x M — K™, (my,ms) — [m1] — [ma].

By construction of K&, this map must be surjective. Note that M x M in-
herits the structure of a commutative monoid from M. Let us determine, when
A(my,n1) = A(ma,ng) for my,ma,n1,ne € M. The following observation is
crucial for this.

KGro

Lemma 1.3. For all my,mg € M one has [m1] = [m2] in if and only if

there is an n € M such that mi1 ®n = mo ® n.

Definition 1.4. Two elements my, mo of an abelian monoid M are called stably
equivalent, if there is an n € M such that m; & n = msy dn.

Proof of the Lemma. If my; and mqy are stably equivalent, the relation [m,] =
[m2] follows immediately:

[ma] = [m1 @ n] = [n] = [m2 @ n] — [n] = [ma].

It remains to show that [m;] = [ms] implies the existence of an n € M
such that m; @ n = my @ n. By construction of K&™ (M), there exist elements
A1, 0, aY, .. ay, by, ..., by, b, ... b € M for some k,l € N such that in F(M)
the following relation holds true:

l

(Xk:az@a a;)-(Z(bi@b;)—bi—b;)

Jj=1



This implies that in F(M), the following equation holds:

MN
MN

k k
mi+ Y (ai+a) + Y (b @b) =ma+ Y (a;®a)+ Y (b +b)).
i=1 P i=1 '
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Since F(M) is free on elements of M, one concludes that the summands ap-
pearing on the left side of the equation are a permutation of the summands
appearing on the right side. Hence

(bj ®b;).

@N
@N

k k
my & P (a; @ af) & P(b; &) = my & @Pai © af) &
=1 =1

<
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—
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Putting n := @le(ai @ al) ® @ézl(bj @ b)), one obtains my ®n = ma @ n.
This finishes the proof. U

Let us come back to our original problem and assume that A(mi,ni) =
A(ma,n2). Then one concludes

[m1] + [n2] = [ma] + [n4],
hence by the lemma there exists n € M such that
(1.4) my+ne+n=ms+n, +n.

If one defines now (my,n1) ~ (me,ng) for my,ma,ny,ne € M if there exists
n € M such that Eq. (1.4) holds true, then the lemma implies that A(mq,n1) =
A(ma, n2) exactly when (mq,n1) ~ (ma,ng).

Lemma 1.5. The relation ~ on M x M is a congruence relation. This means
in particular that for all my,ma,n1,n2,a,b € M such that (my,n1) ~ (ma,n2)
the relation

(m1®a,ny ®b) ~ (m2 ®a,nz Gb)

holds true.

Proof. Clearly, the relation ~ is symmetric and reflexive. let us show that it is
transitive. To this end, assume (mq,n1) ~ (mg,ng) and (mg,ng) ~ (Mg, n3).
Then there exist n,n’ € M such that

M Bne@n=me®n1®n and MmePns®n =m3Pny,dn'.
Adding the two equalities, one obtains
m1On3® (Ma@na®ndn’) =mz®ny ® (me Dny Gndn’),
which proves that ~ is transitive. If my & no & n = my ® ny & n, then
mi&a®n, &bdn=m2Dadn ©bdn,

which entails that ~ is even a congruence relation. O



Proposition 1.6. For every commutative monoid M, the quotient space M x
M/~ of equivalence classes of the congruence relation ~ is an abelian group
which is canonically isomorphic to K™ (M).

Proof. Since ~ is a congruence relation, M x M/~ inherits from M x M the
structure of an abelian monoid. Moreover, since (m,n) & (n,m) ~ (0,0), every
element of M x M/~ has an inverse, thus M x M/~ is an abelian group. Since
A(mi,n1) = A(mae,ns) if and only if (mq,n1) ~ (M2, n2) and since A is surjective,

it follows immediately that the quotient map X : (M x M/~) — KS™©(M) is
well-defined and an isomorphism. O

Functorial properties

Sofar, we have defined K& only on objects of the category of abelian monoids.
Let us now extend KS™ to a functor K : AMon — AGrp. Assume to be
given two abelian monoids M, N and a morphism of monoids f : M — N.
By the universal property of the Grothendieck group K™ (M) there exists a
uniquely determined group homomorphism, which we denote K¢ ( f), such that
the following diagram commutes.

Gro

(1.5) M —4 KGro (M)
f lKG“’(f)

N — > KGro(N)

NGro
N
This in particular entails that
K9 (idpr) = idkeroary  and  K(fy 0 f1) = K9°(f2) 0 KE(f)

for abelian monoids M, M7, My, M3 and morphisms f; : My — My and fs :
M, — Ms. Hence KS™ is a functor from the category of abelian monoids to
the category of abelian groups, indeed. One sometimes calls this functor the
Grothendieck K-functor.

Theorem 1.7. The Grothendieck-functor K& : AMon — AGrp is left adjoint
to the forgetful functor v : AGrp — AMon.

Proof. Let M be an abelian monoid, A an abelian group, and consider the map
(K51°)" + AGrp(K®™°(M), A) — AMon (M, 1(A)), f > forS°.

By Diagram (1.5), this map is natural in M. Naturality in A is obvious by defi-
nition. Moreover, since K©*° satisfies the universal property (Gro) in Definition
1.1, (k§°)" is even bijective. The claim follows. O



Basic examples

Remark 1.8. Sometimes it happens that a set M carries two binary operations
@ and ® which both induce on M the structure of an abelian monoid. To
distinguish the corresponding two, possibly different, Grothendieck groups we
denote them in such a situation by K& (M, @) and K& (M, ®), respectively.

Example 1.9. 1. Consider the abelian monoid of natural numbers (N, +)
with addition as binary operation. Then K®™(N,+) = (Z,+). On the
other hand, one has K& (N, .) = {0}, but K&(N*,.) = (Qxo, ).

2. If Aisan abelian group, then by the universal property of the Grothendieck
group one immediately obtains K& (A4) = A.

3. Consider the set of non-zero integres Z* with multiplication - as binary
operation. Then K¢ (Z* .) = (Q,-).

4. Let X be a compact topological space, and Vecc(X) the category of com-
plex vector bundles over X. Since every complex vector bundle over X is
isomorphic to a subbundle of some trivial bundle X x C™, the category of
isomorphism classes of complex vector budnles over X is small. Denote
by Iso(Vecc (X)) its set of objects. Then the direct sum of vector bundles
over X induces the structure of an abelian monoid on Iso(Vecc(X)). The
isomorphism class of the trivial vector bundle X x {0} of fiber dimension
0 serves as the zero element in Iso(Vecc(X)). The K-theory of the space
X (in degree 0) is now defined as the Grothendieck-group of Iso(Vecc (X))
that means as the abelian group

KO(X) := K& (Iso(Vecc(X))).

For further reading on the K-theory of compact topological spaces see
[Ati89, Kar08].

2 The functor K; for a unital ring

Definition and fundamental properties

Let R be a unital (but possibly noncommutative) ring, and R -Mods, the cate-
gory of finitely generated projective left modules over R.

Proposition 2.1. The category of isomorphism classes of finitely generated
projective left R-modules is small. Denote by Iso(R -Modg,) the set of isomor-
phism classes of finitely generated projective left R-modules. Then the direct
sum in the abelian category R -Mod induces on Iso(R -Modg,) the structure of
an abelian monoid.

Proof. Every finitely generated projective left R-module is isomorphic to a direct
summand of some R™, n € N, and the finitely generated projective left R-
modules are characterized by this property. From this, it follows immediately



that Iso(R -Modg,) is small. To check the second claim, let f : M; — My and
g : N1 — Nj be two isomorphisms in R -Mods,. Then (f,g) : My & Nv —
Ms & N is an isomorphism as well, hence & descends to a binary operation on
Iso(R -Modg,) which we will denote by the same symbol:

@ : Iso(R -Modg,) x

Iso(R -Mody,) — Iso(R -Modg,) .It is immediate to prove that & is associa-
tive and commutative on Iso(R -Modg,), and that the equivalence class of the
zero module serves as neutral element. This proves the proposition. O

Definition 2.2. For every unital ring R one defines Ko(R), the K-theory of
order 0 of R, by
Ko(R) := K (Iso(R -Mods,))

Proposition 2.3. Two finitely generated projective left R-modules M and N
represent the same element in Ko(R) if and only if M & R™* =2 N @ R"™ for some
n € N.

Proof. Clearly, if M @& R" = N® R"™ and [M], [N] denote the equivalence classes
of M respectively N in Ko(R), then the equation

[M] = [M & R"| - [R"] = [N ® R"] - [R"] = [N]

follows immediately. It remains to show the converse. Assume that [M] = [N].
Then, by definition of KGrO(Iso(R —Modfp)) there exist finitely generated pro-
jective left R-modules A;, A}, B;, B, i =1,...,k such that in F(Iso(R -Modg,)),
the free abelian group over the set of isomorphism classes of finitely generated
projective left R-modules, the equality

(Bi ® B} — B; — B])

-

Il
—

k
M-N=) (4eA -4 -4)-
i=1

?

holds true, where we have denoted by M the image of M in F(Iso(R —Modfp))
and likewise for the other left R-modules. This implies that

k k k k
M+> (BioB)+)Y (Ai+A)=N+> (4@ A)+ > (Bi+B)
=1 1=1

i=1 i=1

which means that the R-modules appearing as summands on the left hand side
are permutations of the summands appearing on the right hand side. Thus, in
Iso(R -Mods,), the following equality holds true.

k k k k
Mo @B o B)o P @A) =NoPs o A) o @B @ B)

i=1 i=1 i=1 i=1



Hence we obtain M @ P = N @ P for
k k
P=PAioA)e@BieB) .
i=1 i=1
Since P is a finitely generated projective left R-module, there exists a left R-
module @ such that P & Q = R" for some n € N. This entails

MPR"EMOPPIQENSGPPIQENDR",
and the claim follows. O

Remark 2.4. 1. Note that since a finitely projective R-module is a direct
sum of some R", the relation M @ R™ = N @ R™ holds true, if and only if M
and N are stably equivalent in the sense of Definition 1.4. This observation
also shows that Proposition 2.3 is a direct consequence of Lemma 1.3.

2. Sometimes, one writes K3'8(R) instead of Ko(R) to emphasize that one
considers the algebraic K-theory of the ring R and not a topological version
of K-theory. Note, however, that for a Banach-algebra A the topological
K-theory of A in degree 0 coincides with its algebraic K-theory as defined
above. This means in particular, that in this case the not so precise
notation Ko(A) will not lead to any confusion.

Basic examples

Example 2.5. 1. Let k be a field. A finitely generated projective module
over k is a k-vector space of finite dimension. The isomorphism classes of
finitely generated projective k-modules are therefore uniquely determined
by dimension. Moreover, under this characterization, the isomorphism
class of the direct sum of two finitely generated projective k-modules cor-
responds to the sum of the dimensions of the two modules. Hence, by
Example 1.9.1 it follows that

Ko(k) = KS™°(N) = Z.

2. Let X be a compact topological space. Recall that by the Serre-Swan The-
orem the category Vecg(X) of complex vector bundles over X is equivalent
to the category of finitely generated projective modules over the algebra
C(X) of continuous functions on X, hence one has a natural isomorphism
of monoids

Iso(Vecg (X)) = Iso(C(X) -Modg,).
By Example 1.9.4 the K-theory of C(X) then has to coincide with the
K-theory of the space X (in degree 0):
Ko(C(X)) = K°(X).
Note that, if X is a smooth manifold, one even has
Ko(C(X)) = K*(X),

where C*°(X) denotes the algebra of smooth functions on X.



3 The functor K for a unital ring

Prerequisites

Groups of invertible infinite matrices. Let R be a unital ring, and n €
N*. Recall that by GL,,(R) C M, xn(R) one denotes the group of invertible
n X n-matrices with entries in R. For natural n > m > 0 one has a natural
embedding ¢y, : GL,,(R) — GL,, which is defined by the requirement that
r = (rij)i<ij<m € GLy(R) is mapped to the matrix tpm(r) € GL,(R) with
entries

Tig, 1f1§z,]§m,

(an(r))ij =<1, ifi=7and m <i<mn,
0, ifi# jandi>mor j >m.

By definition, ((GLn(R))neN*, (an)mgn) then forms a direct system of groups.
It has a direct limit which is denoted by GL (R) and which can be represented
as the set of all matrices r = (r;;); jen Wwith entries r;; € R for which there is
an n € N such that

1, ifd,j >nandi=j,

3.1 ii)1<ii<n € GL, (R d i =
(B1) (righi<iis (R) an i {O, ifi>mnorj>mnandi#j.

The product of two elements 7,7 € GLy(R) is given by

r-7:=s5,  where s;:= g Til Ty -
keN

It is immediate to check that 7 - 7 is an element of GLoo(R). The unit element
in GLy (R) is given by the matrix e with components

1, ifi=j,
€ij ‘= e .
0, ifi#j.

The set GLoo (R) of matrices (r4); jen satisfying (3.1) together with the prod-
uct - froms a group indeed. Moreover, for every n € N* there is a natural
embedding ¢y, : GL,(R) — GLoo(R) which is defined by the requirement that
r = (rij)1<ij<n € GLn(R) is mapped to the matrix ¢, (r) € GLoo(R) with
entries

Tig, 1f1§z,j§n,

(Ln(r))ij =<1, ifi =7 and n < i,

0, ifi# jandi>norj>n.

It is straightforward to prove that (GLoo(R), (tn)nen) is the direct limit of

((GLn(R))neN*, (an)mgn) indeed. Sometimes, one calls GLy (R) the group of
invertible infinite matrices over R.



Groups of elementary matrics. Let us now recall the definition and basic
properties of the group of elementary matrices. To this denote for A € R,
n € N*U{oo} and all integers i # j with 1 <i,j < n+1 by e};(\) the matrix in
GL,,(R) having entry A at the i-th row and j-th column, entry 1 at all diagonal
elements, and 0 at all other places. In other words, this means

1 ifk=land 1 <k<n+1,
(efs(N),, =< A, ifk=iandl=j,
0, ifk#I (k1)#(,7),and 1 <kl<n+1

A matrix of the form e’ (1)) is called an elementary matriz over R of order n.
The subgroup of GL,,(R) generated by all elementary matrices over R of order
n is called the group of elementary matriz over R of order n and is denoted by
E,.(R). By slight abuse of language one sometimes calls Eo,(R) the group of
elementary matrices over R.

It is immediate to check that under the group homomorphism ¢, from
above with 0 < m < n < oo, the group E,,(R) is mapped into E, (R), and that
((En(R))neN*, (an)mgn) is a direct system of groups. The direct limit of this
direct systems is E(R) as one easily checks.

Recall that for two elements g,h of a group G one denotes by [g,h] the
commutator ghg~'h~!. With this notation, the following holds true.

Proposition 3.1. The elementary matrics g5 ()), 55 (u) satisfy for all A, i € R
the following relations.

(i) ey (N) - ey (u) = ey (A + ), if i # 7,
(ii) [ez Nyegw)] =1, ifi#j, k#1, j#k, andi #1,
(iii) [ei‘()‘% €ji (N)] =ex(A-p), ifi#j, i#1, and j #1,
(iv) [eg V) eps(w)] = epg(—n-N), ifi#j, i # k, and j # k.
The essential tool for the proof of the proposition is the following result.
Lemma 3.2. For1<i,j,k,l<nwithi# j, k%1 andi#1 or j# k one has
el A) - e = (1= 8a) ey (A Gy -+ ) +
+ (1 —0;%)0ul+
+ (1 =) (er(p) = 1) + (1 = dju) (el (V) = 1),

where 6,5 denotes the Kronecker symbol, i.e. 6, = 1 for r = s and 6,5 = 0 for

r#£Ss.
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Proof of the Lemma. Let us compute the components of the matrix ef’; (A)ey; (11)-

(el eta(m),g = D (el V), (eu(m)) =

t

>t 0rtOts = Ops, for r #1, s #£1,
Dt 0rt0ts + Adjs = i, forr=i,s#1,j=1I,
Do 0rtlrs + Ajs = 055 + ANjs,  forr=1i,s#1, j#I,
= Q>4 0rt0es + i = 0, forr#i,s=1,j=Fk,
S, OriOis + bk = Ot + b, for v £ 4, s =1, j £,
Adjx + Adji 4 10k, forr=i,s=1,1#I,
1, forr=i,s=1,i=1,j#k.

The claim follows.

Proof of the Proposition.

Definition and fundamental properties of K

Definition 3.3. Let R be a unital ring. Then K¥'8(R), the algebraic K-theory
of degree 1 of R, is defined as the abelian group

K38 (R) := GLuo(R)/[CLoo(R), GLoo (R)] -
Proposition 3.4. For every unital ring R the following equality holds true.
Ki'*(R) = GL(R) = GLoo(R)/[Exc(R), Exc(R)] = GLoo(R)/Exc(R) -

Proof. The claim is immediate by definition of K¥'¢(R) and results from elemen-
tary matrix theory as stated in the prerequisites. O
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