Algebraic K-Theory in Low Degrees

Markus J. Pflaum

March 8, 2017

1 The Grothendieck group of an abelian monoid

Prerequisites

Abelian monoids

Recall that an abelian monoid is a set M together with a binary operation $\oplus: M \times M \longrightarrow M$ and a distinguished element 0 such that the following axioms hold true.
(AMon1) The operation \oplus is associative that means $m_{1} \oplus\left(m_{2} \oplus m_{3}\right)=$ $\left(m_{1} \oplus m_{2}\right) \oplus m_{3}$ for all $m_{1}, m_{2}, m_{3} \in M$,
(AMon2) The element 0 is neutral with respect to \oplus that means $0 \oplus m=$ $m \oplus 0=m$ for all $m \in M$,
(AMon3) The operation \oplus is commutative that means $m_{1} \oplus m_{2}=m_{2} \oplus m_{1}$ for all $m_{1}, m_{2} \in M$.

The category AMon of abelian monoids is a full subcategory of the category of monoids. Morphisms of AMon are given by maps $f: M \rightarrow \tilde{M}$ between abelian monoids M and \tilde{M} with binary operations \oplus and $\tilde{\oplus}$, respectively, such that the following axiom holds true.
(MorMon) For all $m_{1}, m_{2} \in M$ the relation $f\left(m_{1} \oplus m_{2}\right)=f\left(m_{1}\right) \tilde{\oplus} f\left(m_{2}\right)$ holds true.

Objective

The category AGrp of abelian groups is a full subcategory of AMon. The main goal of the following considerations is to construct a left adjoint to the embedding functor ι : AGrp \hookrightarrow AMon.

Construction of the Grothendieck group

Definition 1.1. Let M be an abelian monoid. An abelian group K together with a morphism $\kappa: M \rightarrow K$ of monoids is called a Grothendieck group of M, if the following universal property is satisfied:
(Gro) For every abelian group A and every morphism of monoids $f: M \rightarrow A$ there exists a unique homomorphism of groups $f_{K}: K \rightarrow A$ such that the following diagram commutes.

Clearly, if a Grothendieck group exists for M, then it is unique up to isomorphism by the universal property. Let us show that for every ablian monoid M there exists a Grothendieck group. To this end let $\mathrm{F}(M)$ be the free abelian group generated by the elements of M, and denote for every $m \in M$ by \bar{m} the image of m in $\mathrm{F}(M)$ under the canonical injection $M \rightarrow \mathrm{~F}(M)$. Let $\mathrm{R}(M) \subset \mathrm{F}(M)$ be the (necessarily free) subgroup generated by all elements of the form $\overline{m_{1} \oplus m_{2}}-\bar{m}_{1}-\bar{m}_{2}$, where $m_{1}, m_{2} \in M$ and where - denotes subtraction within the abelian group $\mathrm{F}(M)$. Then the following holds true.

Proposition 1.2. For every abelian monoid M, the abelian group $\mathrm{K}^{\operatorname{Gro}}(M):=$ $\mathrm{F}(M) / \mathrm{R}(M)$ together with the canonical morphism of monoids $\kappa_{M}^{\text {Gro }}: M \rightarrow$ $\mathrm{K}^{\mathrm{Gro}}(A), m \mapsto \bar{m}+\mathrm{R}(M)$ is a Grothendieck group for M.

Proof. Let A be an abelian group and $M \rightarrow A$ a morphism of monoids. By the universal property of $\mathrm{F}(M)$, there exists a unique group homomorphism $f_{\mathrm{F}(M)}: F(M) \rightarrow A$ such that the diagram

commutes, where $M \rightarrow \mathrm{~F}(M)$ is the canonical embedding. Observe now that for all $m_{1}, m_{2} \in M$

$$
\begin{aligned}
f_{\mathrm{F}(M)}\left(\overline{m_{1} \oplus m_{2}}-\overline{m_{1}}-\overline{m_{2}}\right) & =f_{\mathrm{F}(M)}\left(\overline{m_{1} \oplus m_{2}}\right)-f_{\mathrm{F}(M)}\left(\overline{m_{1}}\right)-f_{\mathrm{F}(M)}\left(\overline{m_{2}}\right) \\
& =f\left(m_{1} \oplus m_{2}\right)-f\left(m_{1}\right)-f\left(m_{2}\right) \\
& =f\left(m_{1}\right)+f\left(m_{2}\right)-f\left(m_{1}\right)-f\left(m_{2}\right)=0,
\end{aligned}
$$

hence $f_{\mathrm{F}(M)}$ factorizes through the map $\mathrm{F}(M) \rightarrow \mathrm{K}^{\mathrm{Gro}}(M)$. In other words this means that there exists a homomorphism $f_{\mathrm{K}^{\operatorname{Gro}}(M)}: \mathrm{K}^{\text {Gro }}(M) \rightarrow A$ such that
the diagram

commutes. By the universal property of the free abelian group $\mathrm{F}(M)$, the homomorphism $f_{\mathrm{F}(M)}$ is uniquely determined by f. Since $\mathrm{F}(M) \rightarrow \mathrm{K}^{\text {Gro }}(M)$ is an epimorphism, $f_{\mathrm{KGro}(M)}$ is uniquely determined by $f_{\mathrm{F}(M)}$, hence uniqueness of $f_{\mathrm{KGro}}^{(M)}$, follows. This proves the claim, since the composition of the two vertical arrows in Diagram (1.3) coincides with $\kappa_{M}^{\text {Gro }}$.

From now on, we will denote by $[m]$ the equivalence class of an element $m \in M$ in the Grothendieck group $\mathrm{K}^{\mathrm{Gro}}(M)$. As we will see later, the map $M \rightarrow \mathrm{~K}^{\text {Gro }}, m \mapsto[m]$ need not be injective, in general.

Another representation of the Grothendieck group

Next, let us provide a second representation for $\mathrm{K}^{\text {Gro }}$. To this end consider the map

$$
\lambda: M \times M \rightarrow \mathrm{~K}^{\mathrm{Gro}}, \quad\left(m_{1}, m_{2}\right) \mapsto\left[m_{1}\right]-\left[m_{2}\right] .
$$

By construction of $\mathrm{K}^{\mathrm{Gro}}$, this map must be surjective. Note that $M \times M$ inherits the structure of a commutative monoid from M. Let us determine, when $\lambda\left(m_{1}, n_{1}\right)=\lambda\left(m_{2}, n_{2}\right)$ for $m_{1}, m_{2}, n_{1}, n_{2} \in M$. The following observation is crucial for this.
Lemma 1.3. For all $m_{1}, m_{2} \in M$ one has $\left[m_{1}\right]=\left[m_{2}\right]$ in $\mathrm{K}^{\text {Gro }}$ if and only if there is an $n \in M$ such that $m_{1} \oplus n=m_{2} \oplus n$.
Definition 1.4. Two elements m_{1}, m_{2} of an abelian monoid M are called stably equivalent, if there is an $n \in M$ such that $m_{1} \oplus n=m_{2} \oplus n$.

Proof of the Lemma. If m_{1} and m_{2} are stably equivalent, the relation $\left[m_{1}\right]=$ [m_{2}] follows immediately:

$$
\left[m_{1}\right]=\left[m_{1} \oplus n\right]-[n]=\left[m_{2} \oplus n\right]-[n]=\left[m_{2}\right] .
$$

It remains to show that $\left[m_{1}\right]=\left[m_{2}\right]$ implies the existence of an $n \in M$ such that $m_{1} \oplus n=m_{2} \oplus n$. By construction of $\mathrm{K}^{\text {Gro }}(M)$, there exist elements $a_{1}, \ldots, a_{k}, a_{1}^{\prime}, \ldots a_{k}^{\prime}, b_{1}, \ldots, b_{l}, b_{1}^{\prime}, \ldots b_{l}^{\prime} \in M$ for some $k, l \in \mathbb{N}$ such that in $\mathrm{F}(M)$ the following relation holds true:

$$
m_{1}-m_{2}=\left(\sum_{i=1}^{k}\left(a_{i} \oplus a_{i}^{\prime}\right)-a_{i}-a_{i}^{\prime}\right)-\left(\sum_{j=1}^{l}\left(b_{i} \oplus b_{i}^{\prime}\right)-b_{i}-b_{i}^{\prime}\right) .
$$

This implies that in $\mathrm{F}(M)$, the following equation holds:

$$
m_{1}+\sum_{i=1}^{k}\left(a_{i}+a_{i}^{\prime}\right)+\sum_{j=1}^{l}\left(b_{j} \oplus b_{j}^{\prime}\right)=m_{2}+\sum_{i=1}^{k}\left(a_{i} \oplus a_{i}^{\prime}\right)+\sum_{j=1}^{l}\left(b_{j}+b_{j}\right) .
$$

Since $\mathrm{F}(M)$ is free on elements of M, one concludes that the summands appearing on the left side of the equation are a permutation of the summands appearing on the right side. Hence

$$
m_{1} \oplus \bigoplus_{i=1}^{k}\left(a_{i} \oplus a_{i}^{\prime}\right) \oplus \bigoplus_{j=1}^{l}\left(b_{j} \oplus b_{j}^{\prime}\right)=m_{2} \oplus \bigoplus_{i=1}^{k}\left(a_{i} \oplus a_{i}^{\prime}\right) \oplus \bigoplus_{j=1}^{l}\left(b_{j} \oplus b_{j}\right)
$$

Putting $n:=\bigoplus_{i=1}^{k}\left(a_{i} \oplus a_{i}^{\prime}\right) \oplus \bigoplus_{j=1}^{l}\left(b_{j} \oplus b_{j}^{\prime}\right)$, one obtains $m_{1} \oplus n=m_{2} \oplus n$. This finishes the proof.

Let us come back to our original problem and assume that $\lambda\left(m_{1}, n_{1}\right)=$ $\lambda\left(m_{2}, n_{2}\right)$. Then one concludes

$$
\left[m_{1}\right]+\left[n_{2}\right]=\left[m_{2}\right]+\left[n_{1}\right],
$$

hence by the lemma there exists $n \in M$ such that

$$
\begin{equation*}
m_{1}+n_{2}+n=m_{2}+n_{1}+n . \tag{1.4}
\end{equation*}
$$

If one defines now $\left(m_{1}, n_{1}\right) \sim\left(m_{2}, n_{2}\right)$ for $m_{1}, m_{2}, n_{1}, n_{2} \in M$ if there exists $n \in M$ such that Eq. (1.4) holds true, then the lemma implies that $\lambda\left(m_{1}, n_{1}\right)=$ $\lambda\left(m_{2}, n_{2}\right)$ exactly when $\left(m_{1}, n_{1}\right) \sim\left(m_{2}, n_{2}\right)$.

Lemma 1.5. The relation \sim on $M \times M$ is a congruence relation. This means in particular that for all $m_{1}, m_{2}, n_{1}, n_{2}, a, b \in M$ such that $\left(m_{1}, n_{1}\right) \sim\left(m_{2}, n_{2}\right)$ the relation

$$
\left(m_{1} \oplus a, n_{1} \oplus b\right) \sim\left(m_{2} \oplus a, n_{2} \oplus b\right)
$$

holds true.
Proof. Clearly, the relation \sim is symmetric and reflexive. let us show that it is transitive. To this end, assume $\left(m_{1}, n_{1}\right) \sim\left(m_{2}, n_{2}\right)$ and $\left(m_{2}, n_{2}\right) \sim\left(m_{3}, n_{3}\right)$. Then there exist $n, n^{\prime} \in M$ such that

$$
m_{1} \oplus n_{2} \oplus n=m_{2} \oplus n_{1} \oplus n \quad \text { and } \quad m_{2} \oplus n_{3} \oplus n^{\prime}=m_{3} \oplus n_{2} \oplus n^{\prime}
$$

Adding the two equalities, one obtains

$$
m_{1} \oplus n_{3} \oplus\left(m_{2} \oplus n_{2} \oplus n \oplus n^{\prime}\right)=m_{3} \oplus n_{1} \oplus\left(m_{2} \oplus n_{2} \oplus n \oplus n^{\prime}\right)
$$

which proves that \sim is transitive. If $m_{1} \oplus n_{2} \oplus n=m_{2} \oplus n_{1} \oplus n$, then

$$
m_{1} \oplus a \oplus n_{2} \oplus b \oplus n=m_{2} \oplus a \oplus n_{1} \oplus b \oplus n,
$$

which entails that \sim is even a congruence relation.

Proposition 1.6. For every commutative monoid M, the quotient space $M \times$ M / \sim of equivalence classes of the congruence relation \sim is an abelian group which is canonically isomorphic to $\mathrm{K}^{\mathrm{Gro}}(M)$.

Proof. Since \sim is a congruence relation, $M \times M / \sim$ inherits from $M \times M$ the structure of an abelian monoid. Moreover, since $(m, n) \oplus(n, m) \sim(0,0)$, every element of $M \times M / \sim$ has an inverse, thus $M \times M / \sim$ is an abelian group. Since $\lambda\left(m_{1}, n_{1}\right)=\lambda\left(m_{2}, n_{2}\right)$ if and only if $\left(m_{1}, n_{1}\right) \sim\left(m_{2}, n_{2}\right)$ and since λ is surjective, it follows immediately that the quotient map $\bar{\lambda}:(M \times M / \sim) \rightarrow \mathrm{K}^{\mathrm{Gro}}(M)$ is well-defined and an isomorphism.

Functorial properties

Sofar, we have defined $K^{\text {Gro }}$ only on objects of the category of abelian monoids. Let us now extend $\mathrm{K}^{\text {Gro }}$ to a functor $\mathrm{K}^{\text {Gro }}:$ AMon \rightarrow AGrp. Assume to be given two abelian monoids M, N and a morphism of monoids $f: M \rightarrow N$. By the universal property of the Grothendieck group $\mathrm{K}^{\mathrm{Gro}}(M)$ there exists a uniquely determined group homomorphism, which we denote $\mathrm{K}^{\text {Gro }}(f)$, such that the following diagram commutes.

This in particular entails that

$$
\mathrm{K}^{\mathrm{Gro}}\left(\operatorname{id}_{M}\right)=\operatorname{id}_{\mathrm{K}_{\operatorname{Gro}}(M)} \quad \text { and } \quad \mathrm{K}^{\mathrm{Gro}}\left(f_{2} \circ f_{1}\right)=\mathrm{K}^{\mathrm{Gro}}\left(f_{2}\right) \circ \mathrm{K}^{\mathrm{Gro}}\left(f_{1}\right)
$$

for abelian monoids M, M_{1}, M_{2}, M_{3} and morphisms $f_{1}: M_{1} \rightarrow M_{2}$ and f_{2} : $M_{2} \rightarrow M_{3}$. Hence $\mathrm{K}^{\text {Gro }}$ is a functor from the category of abelian monoids to the category of abelian groups, indeed. One sometimes calls this functor the Grothendieck K-functor.

Theorem 1.7. The Grothendieck-functor $\mathrm{K}^{\mathrm{Gro}}: \mathrm{AMon} \rightarrow \mathrm{AGrp}$ is left adjoint to the forgetful functor ι : AGrp \rightarrow AMon.

Proof. Let M be an abelian monoid, A an abelian group, and consider the map

$$
\left(\kappa_{M}^{\mathrm{Gro}}\right)^{*}: \operatorname{AGrp}\left(\mathrm{K}^{\mathrm{Gro}}(M), A\right) \rightarrow \operatorname{AMon}(M, \iota(A)), \quad f \mapsto f \circ \kappa_{M}^{\mathrm{Gro}} .
$$

By Diagram (1.5), this map is natural in M. Naturality in A is obvious by definition. Moreover, since $K^{\text {Gro }}$ satisfies the universal property (Gro) in Definition 1.1, $\left(\kappa_{M}^{\text {Gro }}\right)^{*}$ is even bijective. The claim follows.

Basic examples

Remark 1.8. Sometimes it happens that a set M carries two binary operations \oplus and \otimes which both induce on M the structure of an abelian monoid. To distinguish the corresponding two, possibly different, Grothendieck groups we denote them in such a situation by $\mathrm{K}^{\mathrm{Gro}}(M, \oplus)$ and $\mathrm{K}^{\mathrm{Gro}}(M, \otimes)$, respectively.

Example 1.9. 1. Consider the abelian monoid of natural numbers $(\mathbb{N},+)$ with addition as binary operation. Then $\mathrm{K}^{\operatorname{Gro}}(\mathbb{N},+)=(\mathbb{Z},+)$. On the other hand, one has $\mathrm{K}^{\operatorname{Gro}}(\mathbb{N}, \cdot)=\{0\}$, but $\mathrm{K}^{\text {Gro }}\left(\mathbb{N}^{*}, \cdot\right)=(\mathbb{Q}>0, \cdot)$.
2. If A is an abelian group, then by the universal property of the Grothendieck group one immediately obtains $\mathrm{K}^{\operatorname{Gro}}(A)=A$.
3. Consider the set of non-zero integres \mathbb{Z}^{*} with multiplication as binary operation. Then $K^{\text {Gro }}\left(\mathbb{Z}^{*}, \cdot\right)=(\mathbb{Q}, \cdot)$.
4. Let X be a compact topological space, and $\operatorname{Vec}_{\mathbb{C}}(X)$ the category of complex vector bundles over X. Since every complex vector bundle over X is isomorphic to a subbundle of some trivial bundle $X \times \mathbb{C}^{n}$, the category of isomorphism classes of complex vector budnles over X is small. Denote by Iso $\left(\operatorname{Vec}_{\mathbb{C}}(X)\right)$ its set of objects. Then the direct sum of vector bundles over X induces the structure of an abelian monoid on $\operatorname{Iso}\left(\operatorname{Vec}_{\mathbb{C}}(X)\right)$. The isomorphism class of the trivial vector bundle $X \times\{0\}$ of fiber dimension 0 serves as the zero element in $\operatorname{Iso}\left(\operatorname{Vec}_{\mathbb{C}}(X)\right)$. The K-theory of the space X (in degree 0) is now defined as the Grothendieck-group of $\operatorname{Iso}\left(\operatorname{Vec}_{\mathbb{C}}(X)\right)$ that means as the abelian group

$$
\mathrm{K}^{0}(X):=\mathrm{K}^{\mathrm{Gro}}\left(\operatorname{Iso}\left(\operatorname{Vec}_{\mathbb{C}}(X)\right)\right)
$$

For further reading on the K-theory of compact topological spaces see [Ati89, Kar08].

2 The functor K_{0} for a unital ring

Definition and fundamental properties

Let R be a unital (but possibly noncommutative) ring, and $R-\operatorname{Mod}_{\mathrm{fp}}$ the category of finitely generated projective left modules over R.

Proposition 2.1. The category of isomorphism classes of finitely generated projective left R-modules is small. Denote by $\operatorname{Iso}\left(R-\operatorname{Mod}_{\mathrm{fp}}\right)$ the set of isomorphism classes of finitely generated projective left R-modules. Then the direct sum in the abelian category $R-\mathrm{Mod}$ induces on $\mathrm{Iso}\left(R-\operatorname{Mod}_{\mathrm{fp}}\right)$ the structure of an abelian monoid.

Proof. Every finitely generated projective left R-module is isomorphic to a direct summand of some $R^{n}, n \in \mathbb{N}$, and the finitely generated projective left R modules are characterized by this property. From this, it follows immediately
that $\operatorname{Iso}\left(R-\operatorname{Mod}_{\mathrm{fp}}\right)$ is small. To check the second claim, let $f: M_{1} \rightarrow M_{2}$ and $g: N_{1} \rightarrow N_{2}$ be two isomorphisms in $R-\operatorname{Mod}_{\mathrm{fp}}$. Then $(f, g): M_{1} \oplus N_{1} \rightarrow$ $M_{2} \oplus N_{2}$ is an isomorphism as well, hence \oplus descends to a binary operation on Iso $\left(R-\operatorname{Mod}_{\mathrm{fp}}\right)$ which we will denote by the same symbol:

$$
\oplus: \operatorname{Iso}\left(R-\operatorname{Mod}_{\mathrm{fp}}\right) \times
$$

Iso $\left(\mathrm{R}-\operatorname{Mod}_{f p}\right) \rightarrow \mathrm{Iso}\left(R-\operatorname{Mod}_{\mathrm{fp}}\right)$.It is immediate to prove that \oplus is associative and commutative on $\operatorname{Iso}\left(R-\operatorname{Mod}_{\mathrm{fp}}\right)$, and that the equivalence class of the zero module serves as neutral element. This proves the proposition.

Definition 2.2. For every unital ring R one defines $\mathrm{K}_{0}(R)$, the K-theory of order 0 of R, by

$$
\mathrm{K}_{0}(R):=\mathrm{K}^{\mathrm{Gro}}\left(\operatorname{Iso}\left(R-\operatorname{Mod}_{\mathrm{fp}}\right)\right) .
$$

Proposition 2.3. Two finitely generated projective left R-modules M and N represent the same element in $\mathrm{K}_{0}(R)$ if and only if $M \oplus R^{n} \cong N \oplus R^{n}$ for some $n \in \mathbb{N}$.

Proof. Clearly, if $M \oplus R^{n} \cong N \oplus R^{n}$ and $[M],[N]$ denote the equivalence classes of M respectively N in $\mathrm{K}_{0}(R)$, then the equation

$$
[M]=\left[M \oplus R^{n}\right]-\left[R^{n}\right]=\left[N \oplus R^{n}\right]-\left[R^{n}\right]=[N]
$$

follows immediately. It remains to show the converse. Assume that $[M]=[N]$. Then, by definition of $\mathrm{K}^{\mathrm{Gro}}\left(\operatorname{Iso}\left(R-\operatorname{Mod}_{\mathrm{fp}}\right)\right)$ there exist finitely generated projective left R-modules $A_{i}, A_{i}^{\prime}, B_{i}, B_{i}^{\prime}, i=1, \ldots, k$ such that in $\mathrm{F}\left(\operatorname{Iso}\left(R-\operatorname{Mod}_{\mathrm{fp}}\right)\right)$, the free abelian group over the set of isomorphism classes of finitely generated projective left R-modules, the equality

$$
\bar{M}-\bar{N}=\sum_{i=1}^{k}\left(\overline{A_{i} \oplus A_{i}^{\prime}}-\overline{A_{i}}-\overline{A_{i}^{\prime}}\right)-\sum_{i=1}^{k}\left(\overline{B_{i} \oplus B_{i}^{\prime}}-\overline{B_{i}}-\overline{B_{i}^{\prime}}\right)
$$

holds true, where we have denoted by \bar{M} the image of M in $\mathrm{F}\left(\operatorname{Iso}\left(R-\operatorname{Mod}_{\mathrm{fp}}\right)\right)$ and likewise for the other left R-modules. This implies that

$$
\bar{M}+\sum_{i=1}^{k}\left(\overline{B_{i} \oplus B_{i}^{\prime}}\right)+\sum_{i=1}^{k}\left(\overline{A_{i}}+\overline{A_{i}^{\prime}}\right)=\bar{N}+\sum_{i=1}^{k}\left(\overline{A_{i} \oplus A_{i}^{\prime}}\right)+\sum_{i=1}^{k}\left(\overline{B_{i}}+\overline{B_{i}^{\prime}}\right)
$$

which means that the R-modules appearing as summands on the left hand side are permutations of the summands appearing on the right hand side. Thus, in Iso $\left(R-\operatorname{Mod}_{\mathrm{fp}}\right)$, the following equality holds true.

$$
M \oplus \bigoplus_{i=1}^{k}\left(B_{i} \oplus B_{i}^{\prime}\right) \oplus \bigoplus_{i=1}^{k}\left(A_{i} \oplus A_{i}^{\prime}\right)=N \oplus \bigoplus_{i=1}^{k}\left(A_{i} \oplus A_{i}^{\prime}\right) \oplus \bigoplus_{i=1}^{k}\left(B_{i} \oplus B_{i}^{\prime}\right)
$$

Hence we obtain $M \oplus P \cong N \oplus P$ for

$$
P:=\bigoplus_{i=1}^{k}\left(A_{i} \oplus A_{i}^{\prime}\right) \oplus \bigoplus_{i=1}^{k}\left(B_{i} \oplus B_{i}^{\prime}\right)
$$

Since P is a finitely generated projective left R-module, there exists a left R module Q such that $P \oplus Q \cong R^{n}$ for some $n \in \mathbb{N}$. This entails

$$
M \oplus R^{n} \cong M \oplus P \oplus Q \cong N \oplus P \oplus Q \cong N \oplus R^{n},
$$

and the claim follows.
Remark 2.4. 1. Note that since a finitely projective R-module is a direct sum of some R^{n}, the relation $M \oplus R^{n} \cong N \oplus R^{n}$ holds true, if and only if M and N are stably equivalent in the sense of Definition 1.4. This observation also shows that Proposition 2.3 is a direct consequence of Lemma 1.3.
2. Sometimes, one writes $\mathrm{K}_{0}^{\text {alg }}(R)$ instead of $\mathrm{K}_{0}(R)$ to emphasize that one considers the algebraic K-theory of the ring R and not a topological version of K-theory. Note, however, that for a Banach-algebra A the topological K-theory of A in degree 0 coincides with its algebraic K-theory as defined above. This means in particular, that in this case the not so precise notation $\mathrm{K}_{0}(A)$ will not lead to any confusion.

Basic examples

Example 2.5. 1. Let \mathbb{k} be a field. A finitely generated projective module over \mathbb{k} is a \mathbb{k}-vector space of finite dimension. The isomorphism classes of finitely generated projective \mathbb{k}-modules are therefore uniquely determined by dimension. Moreover, under this characterization, the isomorphism class of the direct sum of two finitely generated projective \mathbb{k}-modules corresponds to the sum of the dimensions of the two modules. Hence, by Example 1.9.1 it follows that

$$
\mathrm{K}_{0}(\mathbb{k}) \cong \mathrm{K}^{\mathrm{Gro}}(\mathbb{N})=\mathbb{Z}
$$

2. Let X be a compact topological space. Recall that by the Serre-Swan Theorem the category $\operatorname{Vec}_{\mathbb{C}}(X)$ of complex vector bundles over X is equivalent to the category of finitely generated projective modules over the algebra $\mathcal{C}(X)$ of continuous functions on X, hence one has a natural isomorphism of monoids

$$
\operatorname{Iso}\left(\operatorname{Vec}_{\mathbb{C}}(X)\right) \cong \operatorname{Iso}\left(\mathcal{C}(X)-\operatorname{Mod}_{\mathrm{fp}}\right)
$$

By Example 1.9.4 the K-theory of $\mathcal{C}(X)$ then has to coincide with the K-theory of the space X (in degree 0):

$$
\mathrm{K}_{0}(\mathcal{C}(X)) \cong \mathrm{K}^{0}(X)
$$

Note that, if X is a smooth manifold, one even has

$$
\mathrm{K}_{0}\left(\mathcal{C}^{\infty}(X)\right) \cong \mathrm{K}^{0}(X)
$$

where $\mathcal{C}^{\infty}(X)$ denotes the algebra of smooth functions on X.

3 The functor $K_{1}^{\text {alg }}$ for a unital ring

Prerequisites

Groups of invertible infinite matrices. Let R be a unital ring, and $n \in$ \mathbb{N}^{*}. Recall that by $\mathrm{GL}_{n}(R) \subset \mathfrak{M}_{n \times n}(R)$ one denotes the group of invertible $n \times n$-matrices with entries in R. For natural $n \geq m>0$ one has a natural embedding $\iota_{n m}: \mathrm{GL}_{m}(R) \rightarrow \mathrm{GL}_{n}$ which is defined by the requirement that $r=\left(r_{i j}\right)_{1 \leq i, j \leq m} \in \mathrm{GL}_{m}(R)$ is mapped to the matrix $\iota_{n m}(r) \in \mathrm{GL}_{n}(R)$ with entries

$$
\left(\iota_{n m}(r)\right)_{i j}:= \begin{cases}r_{i j}, & \text { if } 1 \leq i, j \leq m, \\ 1, & \text { if } i=j \text { and } m<i \leq n, \\ 0, & \text { if } i \neq j \text { and } i>m \text { or } j>m\end{cases}
$$

By definition, $\left(\left(\operatorname{GL}_{n}(R)\right)_{n \in \mathbb{N}^{*}},\left(\iota_{n m}\right)_{m \leq n}\right)$ then forms a direct system of groups. It has a direct limit which is denoted by $\mathrm{GL}_{\infty}(R)$ and which can be represented as the set of all matrices $r=\left(r_{i j}\right)_{i, j \in \mathbb{N}}$ with entries $r_{i j} \in R$ for which there is an $n \in \mathbb{N}$ such that
(3.1) $\left(r_{i j}\right)_{1 \leq i, j \leq n} \in \mathrm{GL}_{n}(R) \quad$ and $\quad r_{i j}= \begin{cases}1, & \text { if } i, j>n \text { and } i=j, \\ 0, & \text { if } i>n \text { or } j>n \text { and } i \neq j .\end{cases}$

The product of two elements $r, \tilde{r} \in \mathrm{GL}_{\infty}(R)$ is given by

$$
r \cdot \tilde{r}:=s, \quad \text { where } \quad s_{i j}:=\sum_{k \in \mathbb{N}} r_{i l} \cdot \tilde{r}_{k j} .
$$

It is immediate to check that $r \cdot \tilde{r}$ is an element of $\mathrm{GL}_{\infty}(R)$. The unit element in $\mathrm{GL}_{\infty}(R)$ is given by the matrix e with components

$$
e_{i j}:= \begin{cases}1, & \text { if } i=j \\ 0, & \text { if } i \neq j\end{cases}
$$

The set $\mathrm{GL}_{\infty}(R)$ of matrices $\left(r_{i j}\right)_{i, j \in \mathbb{N}}$ satisfying (3.1) together with the product • froms a group indeed. Moreover, for every $n \in \mathbb{N}^{*}$ there is a natural embedding $\iota_{n}: \mathrm{GL}_{n}(R) \rightarrow \mathrm{GL}_{\infty}(R)$ which is defined by the requirement that $r=\left(r_{i j}\right)_{1 \leq i, j \leq n} \in \mathrm{GL}_{n}(R)$ is mapped to the matrix $\iota_{n}(r) \in \mathrm{GL}_{\infty}(R)$ with entries

$$
\left(\iota_{n}(r)\right)_{i j}:= \begin{cases}r_{i j}, & \text { if } 1 \leq i, j \leq n \\ 1, & \text { if } i=j \text { and } n<i, \\ 0, & \text { if } i \neq j \text { and } i>n \text { or } j>n\end{cases}
$$

It is straightforward to prove that $\left(\operatorname{GL}_{\infty}(R),\left(\iota_{n}\right)_{n \in \mathbb{N}^{*}}\right)$ is the direct limit of $\left(\left(\mathrm{GL}_{n}(R)\right)_{n \in \mathbb{N}^{*}},\left(\iota_{n m}\right)_{m \leq n}\right)$ indeed. Sometimes, one calls $\mathrm{GL}_{\infty}(R)$ the group of invertible infinite matrices over R.

Groups of elementary matrics. Let us now recall the definition and basic properties of the group of elementary matrices. To this denote for $\lambda \in R$, $n \in \mathbb{N}^{*} \cup\{\infty\}$ and all integers $i \neq j$ with $1 \leq i, j<n+1$ by $e_{i j}^{n}(\lambda)$ the matrix in $\mathrm{GL}_{n}(R)$ having entry λ at the i-th row and j-th column, entry 1 at all diagonal elements, and 0 at all other places. In other words, this means

$$
\left(e_{i j}^{n}(\lambda)\right)_{k l}:= \begin{cases}1, & \text { if } k=l \text { and } 1 \leq k<n+1, \\ \lambda, & \text { if } k=i \text { and } l=j, \\ 0, & \text { if } k \neq l,(k, l) \neq(i, j), \text { and } 1 \leq k, l<n+1\end{cases}
$$

A matrix of the form $e_{i j}^{n}(\lambda)$ is called an elementary matrix over R of order n. The subgroup of $\mathrm{GL}_{n}(R)$ generated by all elementary matrices over R of order n is called the group of elementary matrix over R of order n and is denoted by $\mathrm{E}_{n}(R)$. By slight abuse of language one sometimes calls $\mathrm{E}_{\infty}(R)$ the group of elementary matrices over R.

It is immediate to check that under the group homomorphism $\iota_{n m}$ from above with $0<m \leq n<\infty$, the group $\mathrm{E}_{m}(R)$ is mapped into $\mathrm{E}_{n}(R)$, and that $\left(\left(\mathrm{E}_{n}(R)\right)_{n \in \mathbb{N}^{*}},\left(\iota_{n m}\right)_{m \leq n}\right)$ is a direct system of groups. The direct limit of this direct systems is $\mathrm{E}_{\infty}(\bar{R})$ as one easily checks.

Recall that for two elements g, h of a group G one denotes by $[g, h]$ the commutator $g h g^{-1} h^{-1}$. With this notation, the following holds true.

Proposition 3.1. The elementary matrics $e_{i j}^{\infty}(\lambda), e_{i j}^{\infty}(\mu)$ satisfy for all $\lambda, \mu \in R$ the following relations.
(i) $e_{i j}^{\infty}(\lambda) \cdot e_{i j}^{\infty}(\mu)=e_{i j}^{\infty}(\lambda+\mu)$, if $i \neq j$,
(ii) $\left[e_{i j}^{\infty}(\lambda), e_{k l}^{\infty}(\mu)\right]=1$, if $i \neq j, k \neq l, j \neq k$, and $i \neq l$,
(iii) $\left[e_{i j}^{\infty}(\lambda), e_{j l}^{\infty}(\mu)\right]=e_{i l}^{\infty}(\lambda \cdot \mu)$, if $i \neq j, i \neq l$, and $j \neq l$,
(iv) $\left[e_{i j}^{\infty}(\lambda), e_{k i}^{\infty}(\mu)\right]=e_{k j}^{\infty}(-\mu \cdot \lambda)$, if $i \neq j, i \neq k$, and $j \neq k$.

The essential tool for the proof of the proposition is the following result.
Lemma 3.2. For $1 \leq i, j, k, l \leq n$ with $i \neq j, k \neq l$ and $i \neq l$ or $j \neq k$ one has

$$
\begin{aligned}
e_{i j}^{n}(\lambda) \cdot e_{k l}^{n}(\mu)= & \left(1-\delta_{i l}\right) e_{i l}^{n}\left(\lambda \mu \delta_{j k}+\lambda \delta_{j l}+\mu \delta_{i k}\right)+ \\
& +\left(1-\delta_{j k}\right) \delta_{i l} 1+ \\
& +\left(1-\delta_{i k}\right)\left(e_{k l}^{n}(\mu)-1\right)+\left(1-\delta_{j l}\right)\left(e_{i j}^{n}(\lambda)-1\right)
\end{aligned}
$$

where $\delta_{r s}$ denotes the Kronecker symbol, i.e. $\delta_{r s}=1$ for $r=s$ and $\delta_{r s}=0$ for $r \neq s$.

Proof of the Lemma. Let us compute the components of the matrix $e_{i j}^{n}(\lambda) e_{k l}^{n}(\mu)$.

$$
\begin{aligned}
& \left(e_{i j}^{n}(\lambda) e_{k l}^{n}(\mu)\right)_{r s}=\sum_{t}\left(e_{i j}^{n}(\lambda)\right)_{r t}\left(e_{k l}^{n}(\mu)\right)_{t s}
\end{aligned}=\left\{\begin{array}{ll}
\sum_{t} \delta_{r t} \delta_{t s}=\delta_{r s}, & \text { for } r \neq i, s \neq l, \\
\sum_{t} \delta_{r t} \delta_{t s}+\lambda \delta_{j s}=\delta_{i s}, & \text { for } r=i, s \neq l, j=l, \\
\sum_{t} \delta_{r t} \delta_{t s}+\lambda \delta_{j s}=\delta_{i s}+\lambda \delta_{j s}, & \text { for } r=i, s \neq l, j \neq l, \\
\sum_{t} \delta_{r t} \delta_{t s}+\mu \delta_{r k}=\delta_{r l}, & \text { for } r \neq i, s=l, j=k, \\
\sum_{t} \delta_{r t} \delta_{t s}+\mu \delta_{r k}=\delta_{r l}+\mu \delta_{r k}, & \text { for } r \neq i, s=l, j \neq k, \\
\lambda \mu \delta_{j k}+\lambda \delta_{j l}+\mu \delta_{i k}, & \text { for } r=i, s=l, i \neq l, \\
1, & \text { for } r=i, s=l, i=l, j \neq k
\end{array} .\right.
$$

The claim follows.
Proof of the Proposition.

Definition and fundamental properties of $\mathrm{K}_{1}^{\text {alg }}$

Definition 3.3. Let R be a unital ring. Then $\mathrm{K}_{1}^{\text {alg }}(R)$, the algebraic K-theory of degree 1 of R, is defined as the abelian group

$$
\mathrm{K}_{1}^{\mathrm{alg}}(R):=\mathrm{GL}_{\infty}(R) /\left[\mathrm{GL}_{\infty}(R), \mathrm{GL}_{\infty}(R)\right]
$$

Proposition 3.4. For every unital ring R the following equality holds true.

$$
\mathrm{K}_{1}^{\mathrm{alg}}(R)=\mathrm{GL}_{\infty}^{\mathrm{ab}}(R)=\mathrm{GL}_{\infty}(R) /\left[\mathrm{E}_{\infty}(R), \mathrm{E}_{\infty}(R)\right]=\mathrm{GL}_{\infty}(R) / \mathrm{E}_{\infty}(R)
$$

Proof. The claim is immediate by definition of $\mathrm{K}_{1}^{\text {alg }}(R)$ and results from elementary matrix theory as stated in the prerequisites.

References

[Ati89] Michael F. Atiyah, K-Theory, second ed., Advanced Book Classics, Addison-Wesley Publishing Company Advanced Book Program, Redwood City, CA, 1989, notes by D. W. Anderson. MR 1043170 (90m:18011)
[Kar08] Max Karoubi, K-Theory, Classics in Mathematics, Springer-Verlag, Berlin, 2008, An introduction, Reprint of the 1978 edition, With a new postface by the author and a list of errata. MR 2458205 (2009i:19001)

