$\int_{\Omega} \{ \mathbf{u}_t \cdot \boldsymbol{\phi} + \mathbf{u} \cdot \nabla \mathbf{u} \cdot \boldsymbol{\phi} + \nabla \mathbf{u} : \nabla \boldsymbol{\phi} - \mathbf{f} \cdot \boldsymbol{\phi} \} dx dt = 0 \quad \text{for all} \quad \boldsymbol{\phi} \in L^2(0, T; J_1(\Omega)).$

$\int_{0}^{T} \int_{\Omega} \{u_{t} \cdot \phi + u \cdot \nabla u \cdot \phi + \nabla u : \nabla \phi - f \cdot \phi\} dx dt = 0$ From classical dx dt = 0to weak derivatives for all $\phi \in L^{2}(0, T; J_{1}(\Omega)).$

Magdalena Czubak

We learn very quickly the definition of the derivative in Calculus. Then if a function is differentiable, we learn it is necessarily continuous. So we know not to ask if a function is differentiable if it is not continuous. But what if we would like to persist, and still find a way to differentiate functions that are not continuous? In this talk, we show how to define a derivative for functions that might not be differentiable in the classical sense, and give some reasons why one would like to do so.

November 30, 2016

Math Club University of Colorado Boulder