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We learn very quickly the definition of the derivative in Calculus.  Then if a function is 
differentiable, we learn it is necessarily continuous.  So we know not to ask if a function is 
differentiable if it is not continuous.  But what if we would like to persist, and still find a 
way to differentiate functions that are not continuous?  In this talk, we show how to 
define a derivative for functions that might not be differentiable in the classical sense, and 
give some reasons why one would like to do so. 
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the following class of generalized solutions which includes all classical solutions that  meet 
these integrability conditions and also generalized solutions obtained by the method of 
Kiselev and Ladyzhenskaya [20]. 

Definition. We call a function u(x, t) a generalized solution of (7)-(11) in (0, T] if and 
only if: 

ueL2(0, T; J*(~)) and uteZ2(0, T; L2(~)), (20) 

either l u(x, t)] is uniformly bounded in ~ • (0, T), or ~ R n and for some 

q > n the integral ]a [u(x, t) lqdz is uniformly bounded for t in (0, T), (21) 

u(x,t)->a(x) in L~(~) as t~0 ,  (22) 

( r ( { u t . d ~ §  V u . r  fora l l  d~EL2(O,T;Jt(a)). (23) 
Jo J~ 

Further, if u is a generalized solution in (0, T'] for all 0 < T ' <  T, we call u a generalized 
solution in (0, T); here T = co is allowed. 

Here we have denoted by  L2(0, T; V), with V taken to be either L2(~) or J*(~)  or 
51(s the set of all V-valued measurable functions u(. ,  t) such that  S~ Ilu(t)]]~dt is finite. 
The proof that  every classical solution is a generalized solution is based primarily on the 
following two lemmas. Lemma 1, well known for smoothly bounded domains, can be proved 
for arbitrary open sets by potential theoretic methods, Deny and Lions [4, p. 359]; we give 
a direct and elementary proof, valid for an arbitrary open set, at the end of this section. 
Lemma 2 is well known; see [21, p. 27] and [161. 

LE~MA 1. Let ~ be an arbitrary open set of R n. Suppose that uEC(~), that u=O on ~ ,  
that u has generalized ]irst derivatives, and that the integrals ~a u~dx and ]a (Vu) ~dx are ]inite. 
Then ue  ~V~(~). 

LEI~MA 2. Let ~ be an arbitrary open set of R ~. I f  uEL~oo(~), then S ~ u . ~ d x = 0 / o r  all 
r  if and only if u - - V p / o r  some peL~oo(~) with Vp eL~oo(~). 

A function u(x, t) is called a classical solution of (7)-(11) if u is continuous in ~ • [0, T), 
if its derivatives uz~, u~x~, and u t are continuous in ~ • (0, T), and if the conditions (7)- 
(11) are satisfied for some p(x, t)ECl(g2 • (0, T)) in the senses appropriate to continuous 
functions. Now if in addition u, u~, and ut are square-summable over ~ • (0, T), it is a 
routine matter  to check that  condition (20) follows from Lemma 1 and the definition oI 
J*(~).  Condition (21) holds at least on every subinterval (0, T'] of (0, T) in virtue of condi- 
tions (10) and (11). Since u, uteL2(0, T; L~(~2)), certainly u(x, t) converges in L2(~) as t->0; 
by  (9) the limit must be a(x), and thus (22) holds. I t  is a routine matter  to show that  the 
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