

PRINT yo	UR NAME:	Solution	
DDING are		•	
PKINT INS	STRUCTOR'S NAME	·	

Mark your section/instructor:

Section 001	Braden Balentine	8:00 - 8:50
Section 002	Xingzhou Yang	8:00 - 8:50
Section 003	Sebastian Bozlee	9:00 - 9:50
Section 004	Xingzhou Yang	9:00 - 9:50
Section 005	Mark Pullins	10:00 - 10:50
Section 006	Athena Sparks	10:00 - 10:50
Section 007	Trevor Jack	10:00 - 10:50
Section 008	Michael Wheeler	12:00 - 12:50
Section 009	Elizabeth Scott-Janda	1:00 - 1:50
Section 010	Hanson Smith	2:00 - 2:50
Section 011	Corey Lyons	2:00 - 2:50
Section 012	Sean O'Rourke	3:00 - 3:50
Section 014	Sean O'Rourke	4:00 - 4:50

Question	Points	Score
1	4	
2	5	
3	12	
4	8	
5	4	
6	4	
7	8	
8	12	
9	8	
10	13	
11	11	
12	11	
Total:	100	

Honor Code

On my honor, as a University of Colorado at Boulder student, I have neither given nor received unauthorized assistance on this work.

- No calculators or cell phones or other electronic devices allowed at any time.
- Show all your reasoning and work for full credit, except where otherwise indicated. Use full mathematical or English sentences.
- You have 90 minutes and the exam is 100 points.
- You do not need to simplify numerical expressions. For example leave fractions like 100/7 or expressions like $\ln(3)/2$ as is.
- For cylindrical coordinates use (r, θ, z) , and for spherical coordinates use (ρ, θ, ϕ) .
- When done, give your exam to your proctor, who will mark your name off on a photo roster.

- 1. (4 points) Circle ONE. The volume of the parallelepiped determined by the vectors $\langle 1, 1, 1 \rangle$, $\langle -1, 4, 2 \rangle$, and $\langle 0, 3, 0 \rangle$ is:
 - (A) 5
 - (B) 3
 - (C) -3
 - (D) $\frac{\sqrt{22}}{3}$
 - (E) 9
- 2. (5 points) Circle ONE. The normal vector to the plane that contains both the point (2,5,2) and the line $\vec{r}(t) = \langle 1, 3, 1 \rangle + t \langle 0, 1, 1 \rangle$ is:
 - (A) $\langle 3, -2, 2 \rangle$
 - (B) $\langle 1, -1, 1 \rangle$
 - (C) (3, 2, -2)
 - (D) $\langle 2, -1, 1 \rangle$
 - (E) $\langle -1, 0, 1 \rangle$

3. Note: No partial credit for this problem.

Suppose $\vec{a}, \vec{b}, \vec{c}$ are vectors in \mathbb{R}^3 such that

$$\vec{a} \times \vec{b} = \langle 4, -3, 1 \rangle$$
 $\vec{b} \times \vec{c} = \langle 3, 2, 0 \rangle$ $\vec{a} \cdot \vec{b} = 3$.

For (a) - (e), write ONE number, or ONE vector for each answer.

- (a) (2 points) $\vec{b} \cdot \vec{a} = 3$
- (b) (2 points) $\vec{c} \times \vec{b} = \langle -3, -2, 0 \rangle$
- (c) (2 points) $\vec{c} \cdot \langle 3, 2, 0 \rangle =$
- (d) (2 points) $|\vec{a} \times \vec{b}| = \sqrt{26}$
- (e) (2 points) $2(\vec{b} \times \vec{c}) (\vec{a} \times \vec{b}) = 2(2, 7, -1)$
- (f) (2 points) Circle ONE. The scalar projection (component), comp \vec{a} , of \vec{a} onto \vec{b} is
 - Positive
- (B) Negative (C) Zero
- (D) Not enough information to decide

4. (a) (4 points) Circle ONE. The best description of the solid given by the inequalities in cylindrical coordinates:

$$0 \le r \le 2$$
, $-\pi/2 \le \theta \le \pi/2$, $0 \le z \le 2$.

- (A) One quarter of a sphere with a radius of 2 in the region where $x \geq 0$ and $y \geq 0$
- (B) One quarter of a sphere with a radius of 2 in the region where $x \geq 0$ and $z \geq 0$
- (C) One quarter of a sphere with a radius of 2 in the region where $y \geq 0$ and $z \geq 0$
- (D) Half of cylinder with a radius of 2 and a height of 2 lying in the region where $x \ge 0$ and $y \ge 0$
- (E) Half of cylinder with a radius of 2 and a height of 2 lying in the region where $x \ge 0$ and $z \ge 0$
- (F) Half of cylinder with a radius of 2 and a height of 2 lying in the region where $y \ge 0$ and $z \ge 0$
- (b) (4 points) Circle ONE. The best description of the solid given by the inequalities in spherical coordinates:

$$0 \le \rho \le 2, \quad 0 \le \theta \le \pi/2, \quad 0 \le \phi \le \pi$$

- (A) One quarter of a solid sphere with a radius of 2 in the region where $x \ge 0$ and $y \ge 0$
- (B) One quarter of a solid sphere with a radius of 2 in the region where $x \ge 0$ and $z \ge 0$
- (C) One quarter of a solid sphere with a radius of 2 in the region where $y \geq 0$ and $z \geq 0$
- (D) Half of a solid cylinder with a radius of 2 and a height of 2 lying in the region where $x \ge 0$ and $y \ge 0$
- (E) Half of a solid cylinder with a radius of 2 and a height of 2 lying in the region where $x \ge 0$ and $z \ge 0$
- (F) Half of a solid cylinder with a radius of 2 and a height of 2 lying in the region where $y \ge 0$ and $z \ge 0$

5. (4 points) Sketch and label the traces in y = k of z = x(x - y) below for k = 0 and k = 2.

6. (4 points) Circle ONE. Compute the length of the helix

$$\vec{r}(t) = \langle \sin(t), t, \cos(t) \rangle$$

for t between 0 and 2π .

- (A) 2π
- (B) $\arcsin(2)$
- (C) ln(2)
- (E) $\frac{\sqrt{3}}{2}$

7. (8 points) Match each curve with one of the equations on the right side. Not all equations will be matched.

(i) **B**

(ii) **E**

- (A) $\vec{r}(t) = \langle \sin t, \cos t, t \rangle$, $0 \le t \le 6\pi$
- (B) $\vec{r}(t) = \langle -\cos t, -\sin t, \cos t \rangle,$ $0 \le t \le 6\pi$
- (C) $\vec{r}(t) = \langle \sin t, t, \cos t \rangle,$ $0 \le t \le 6\pi$
- (D) $\vec{r}(t) = \langle t \sin t, t, t \cos t \rangle,$ $0 \le t \le 6\pi$

(iii) **A**

(iv) **_C**

- (E) $\vec{r}(t) = \langle t \sin t, t \cos t, -t \rangle,$ $0 \le t \le 6\pi$
- (F) $\vec{r}(t) = \langle t \sin t, t \cos t, t \rangle,$ $0 \le t \le 6\pi$
- (G) $\vec{r}(t) = \langle t, \sin t, \cos t \rangle,$ $0 \le t \le 6\pi$

8. (12 points) Match each 3D surface with one of the equations on the right side. Not all equations will be matched.

(A)
$$x^2 - z^2 + 4 = 0$$

(B)
$$x^2 + y^2 - 4 = 0$$

(C)
$$x^2 + y^2 - z^2 = 0$$

(D)
$$x^2 + y - z^2 = 0$$

(E)
$$x^2 - y^2 + z = 0$$

(F)
$$x^2 + y^2 - z^2 - 1 = 0$$

(G)
$$x^2 + y^2 - z^2 + 1 = 0$$

(H)
$$z - \frac{1}{1+x^2+y^2} = 0$$

9. (a) (4 points) Circle ONE. At how many points does the curve with vector equation $\vec{r}(t) = \langle t \sin(t), t \cos(t), t^2 \rangle$, for $-\infty < t < \infty$,

intersect the cylinder $x^2 + y^2 = 4$?

- (A) 0 points (i.e., the curve and cylinder do not intersect)
- (B) 1 point
- (C) 2 points
- (D) 3 points
- (E) infinitely many points
- (b) (4 points) Circle ONE. At how many points does the curve with vector equation $\vec{r}(t) = \langle t \sin(t), t \cos(t), t^2 \rangle$, for $t \geq 0$,

intersect the elliptic paraboloid $z = x^2 + y^2$?

- (A) 0 points (i.e., the curve and elliptic paraboloid do not intersect)
- (B) 1 point
- (C) 2 points
- (D) 3 points
- (E) infinitely many points

10. Consider

Plane A: 3(x+2) + 3y - 21z = 51, and Plane B: x + y = 7z.

(a) (4 points) Show that the two planes are parallel.

Plane A: 3(x+2)+3y-2|z=5| has normal vector $\vec{n}_1=\langle 3,3,-2|\rangle$ Plane B: $x+y=7z \Leftrightarrow x+y-7z=0$ has normal vector $\vec{n}_2=\langle 1,1,-7\rangle$ Since $3\langle 1,1,-7\rangle=\langle 3,3,-2i\rangle$, that is $3\vec{n}_2=\vec{n}_1$, \vec{n}_1 and \vec{n}_2 are in the same direction, so plane A and plane B are parallel.

(b) (9 points) Find the distance between the two planes.

The projection of \overline{QP} onto $\overline{R_2}$ has length the distance between the two planes.

P(15,0,0) is on plane A, since $3(15+2)+3\cdot0*21\cdot0=51$

Q₽(0,0,0) is on plane B, since 0+0=7.0.

$$50 \overrightarrow{QP} = \langle 15, 0, 0 \rangle$$

$$proj_{n_{2}} = \frac{\langle 1, 1, -7 \rangle \cdot \langle 15, 0, 0 \rangle}{\left(\sqrt{1^{2} + 1^{2} + (-7)^{2}}\right)^{2}} \langle 1, 1, -7 \rangle = \frac{15}{51} \langle 1, 1, -7 \rangle$$

11. Consider the space curves

$$\vec{r}_1(t) = \langle \sin(t), 1 - \cos(t), t^3 \rangle$$
 and $\vec{r}_2(s) = \langle 0, 2s, 4s \rangle$.

(a) (4 points) Find the derivative of $\vec{r}_1(t)$.

$$\vec{F}_{i}'(t) = \langle \cos(t), \sin(t), 3t^{2} \rangle$$

(b) (7 points) Find the angle of intersection (angle between tangent lines) of $\vec{r}_1(t)$ and $\vec{r}_2(s)$ at the point (0,0,0).

When
$$t=0$$
, $\vec{r_1}(0)=\langle\sin(0),\omega|-\cos(0),0^3\rangle=\langle0,0,0\rangle$
 $S=0$, $\vec{r_2}(0)=\langle0,2\cdot0,4\cdot0\rangle=\langle0,0,0\rangle$,
So $\vec{r_1}(t)$ and $\vec{r_2}(t)$ intersect when $S=t=0$.

When
$$S=0$$
, $\vec{r_2}'(5) = \langle 0, 2, 4 \rangle$, so $\vec{r_2}(0) = \langle 0, 2, 4 \rangle$
 $t=0$, $\vec{r_1}(t) = \langle \cos(t), \sin(t), 3t^2 \rangle$
 ≤ 0 $\vec{r_1}(0) = \langle 1, 0, 0 \rangle$

Since
$$\vec{r_1}(0) \cdot \vec{r_2}(0) = \langle 1,0,0 \rangle \cdot \langle 0,2,4 \rangle = 0$$
,
 $\vec{r_1}(0)$ and $\vec{r_2}'(0)$ are orthogonal, that is
the angle of intersection is 90° (or $\frac{17}{2}$).

12. (11 points) Find a parametric representation for the part of the plane z - x = 3 that lies inside the cylinder $x^2 + y^2 = 1$. You must specify the bounds for the parameter(s).

$$\begin{cases} x = \infty \\ y = y \\ Z = 3 + \infty \end{cases}$$
 with $x^2 + y^2 \le 1$

OR