PRINT YOUR NAME:

PRINT INSTRUCTOR'S NAME:

\qquad
Mark your section/instructor:

\square	Section 001	Kevin Berg	8:00-8:50 AM
\square	Section 002	Harrison Stalvey	8:00-8:50 AM
\square	Section 003	Daniel Martin	$9: 00-9: 50 \mathrm{AM}$
\square	Section 004	Albert Bronstein	$9: 00-9: 50 \mathrm{AM}$
\square	Section 005	Xingzhou Yang	$10: 00-10: 50 \mathrm{AM}$
\square	Section 006	Mark Pullins	$10: 00-10: 50 \mathrm{AM}$
\square	Section 007	János Englander	$10: 00-10: 50 \mathrm{AM}$
\square	Section 008	John Willis	$12: 00-12: 50 \mathrm{PM}$
\square	Section 009	Taylor Klotz	$1: 00-1: 50 \mathrm{PM}$
\square	Section 010	János Englander	$2: 00-2: 50 \mathrm{PM}$
\square	Section 011	Harrison Stalvey	$2: 00-2: 50 \mathrm{PM}$
\square	Section 012	Xingzhou Yang	$3: 00-3: 50 \mathrm{PM}$
\square	Section 013	Trevor Jack	$4: 00-4: 50 \mathrm{PM}$

Question	Points	Score
1	8	
2	10	
3	3	
4	10	
5	10	
6	10	
7	10	
8	10	
9	3	
10	10	
11	10	
12	6	
Total:	100	

Honor Code
 On my honor, as a University of Colorado at Boulder student, I have neither given nor received unauthorized assistance on this work.

- No calculators or cell phones or other electronic devices allowed at any time.
- Show all your reasoning and work for full credit, except where otherwise indicated. Use full mathematical or English sentences.
- You have 150 minutes and the exam is 100 points.
- You do not need to simplify numerical expressions. For example leave fractions like $\mathbf{1 0 0 / 7}$ or expressions like $\ln (3) / 2$ as is.
- When done, give your exam to your instructor, who will mark your name off on a photo roster.
- We hope you show us your best work!

1. (8 points) Note: No partial credit for this problem.

Let $\vec{a}=\langle 2,-2,1\rangle, \vec{b}=\langle 1,-2,3\rangle$. Compute
(a) $|\overrightarrow{\boldsymbol{a}}|=$ \qquad
(b) $2 \vec{a}-3 \vec{b}=$
(c) $\overrightarrow{\boldsymbol{a}} \cdot \overrightarrow{\boldsymbol{b}}=$
(d) $\overrightarrow{\boldsymbol{a}} \times \overrightarrow{\boldsymbol{b}}=$
2. (10 points) Determine if the following function is continuous at the origin. Explain your reasoning.

$$
f(x, y)= \begin{cases}\frac{x-y}{x+y} & \text { if }(x, y) \neq(0,0) \\ 1 & \text { if }(x, y)=(0,0)\end{cases}
$$

3. (3 points) Let \boldsymbol{D} be a region in the $\boldsymbol{x} \boldsymbol{y}$-plane with area \boldsymbol{A} and boundary curve \boldsymbol{C}.

Which of the following vector fields will make $\int_{C} \overrightarrow{\boldsymbol{F}} \cdot \mathrm{~d} \overrightarrow{\boldsymbol{r}}=\boldsymbol{A}$? Circle your answer.
(A) $\overrightarrow{\boldsymbol{F}}=\langle\boldsymbol{x}+\boldsymbol{y}, \boldsymbol{x}\rangle$
(B) $\overrightarrow{\boldsymbol{F}}=\frac{1}{2}\langle\boldsymbol{x}, \boldsymbol{x}-\boldsymbol{y}\rangle$
(C) $\overrightarrow{\boldsymbol{F}}=\left\langle\boldsymbol{y}^{2}-\boldsymbol{y}+\cos \boldsymbol{x}^{2}, \boldsymbol{2} \boldsymbol{x} \boldsymbol{y}\right\rangle$
(D) $\overrightarrow{\boldsymbol{F}}=\langle-\boldsymbol{y}, \boldsymbol{2} \boldsymbol{x}\rangle$
4. (10 points) Given three points $\boldsymbol{A}(\mathbf{1},-\mathbf{1}, \mathbf{1}), \boldsymbol{B}(\mathbf{1}, \mathbf{2}, \mathbf{1}), \boldsymbol{C}(\mathbf{2}, \mathbf{1}, \mathbf{2})$,
(a) Determine if the points are on the same line.
(b) Find the equation of a plane containing all three points.
5. (10 points) Let $\overrightarrow{\boldsymbol{F}}=\langle-\mathbf{2 x y}, \boldsymbol{y}, \boldsymbol{z}\rangle$. Evaluate the line integral

$$
\int_{C} \overrightarrow{\boldsymbol{F}} \cdot \mathrm{~d} \overrightarrow{\boldsymbol{r}}
$$

where \boldsymbol{C} is given by $\vec{r}(t)=\langle t, \cos (2 t), t+\sin (2 t)\rangle$ for $0 \leq t \leq \pi$.
6. (10 points) \boldsymbol{S} is the part of the paraboloid $\boldsymbol{z}=\boldsymbol{x}^{2}+\boldsymbol{y}^{\mathbf{2}}$ that lies between the planes $z=1$ and $z=4$.
(a) Parametrize the surface \boldsymbol{S}. Include the bounds for the parameter(s).
(b) Use your parameterization from part (a) to rewrite the integral with appropriate bounds. You need not evaluate this rewritten integral.

$$
\iint_{S} z \mathrm{~d} S
$$

7. (10 points) Use the Method of Lagrange Multipliers to find the maximum and minimum values of the function

$$
\begin{aligned}
& \qquad f(x, y)=x+y \\
& \text { under the constraint } g(x, y)=2 x^{2}+2 x y+y^{2}=4
\end{aligned}
$$

8. (10 points) Let \boldsymbol{S} be the part of the hemisphere $\boldsymbol{x}^{2}+\boldsymbol{y}^{2}+\boldsymbol{z}^{2}=4$ above the $\boldsymbol{x} \boldsymbol{y}$-plane, with positive (outward) orientation and let

$$
\vec{F}=\left\langle x z \sin (y z)+x^{3}, \cos (y z), 3 z y^{2}+z^{3}-7\right\rangle .
$$

Find $\iint_{\boldsymbol{S}} \overrightarrow{\boldsymbol{F}} \cdot \mathrm{d} \overrightarrow{\boldsymbol{S}}$ using the Divergence Theorem. Hint: \boldsymbol{S} is not a closed surface.
Warning: No credit if the Divergence Theorem is not used!
9. (3 points) Let $\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})=\boldsymbol{x}^{\mathbf{2}}+\mathbf{2 ~}^{\mathbf{2}}+\boldsymbol{3}^{\mathbf{2}}$. Find an equation of the tangent plane to the level surface $x^{2}+2 y^{2}+3 z^{2}=\mathbf{3 0}$ at the point $(1,-1,3)$. Circle the correct answer:
(A) $2 x-4 y+18 z=0$
(B) $2 x+4 y+18 z=0$
(C) $2(x-1)-4(y+1)+18(z-3)=0$
(D) $2(x+1)-4(y-1)+18(z+3)=0$
10. (10 points) Evaluate $\oint_{\boldsymbol{C}} \overrightarrow{\boldsymbol{F}} \cdot \mathrm{d} \overrightarrow{\boldsymbol{r}}$ where

$$
\vec{F}(x, y, z)=\left\langle e^{x^{2}}+2 y, x-\sin ^{2} y, e^{x} \cos y+\sin \left(e^{z}\right)\right\rangle
$$

and \boldsymbol{C} is the boundary of the surface consisting of the half cylinder given by

$$
\vec{r}(u, v)=\langle\cos u, v,-\sin u\rangle
$$

where $\mathbf{0} \leq \boldsymbol{u} \leq \boldsymbol{\pi}, \boldsymbol{0} \leq \boldsymbol{v} \leq 4$, along with the two semi-circle caps at $\boldsymbol{y}=\mathbf{0}$ and $\boldsymbol{y}=4 . \boldsymbol{C}$ is oriented counter-clockwise viewed from top (the positive \boldsymbol{z} direction).

11. (10 points) Let $\overrightarrow{\boldsymbol{F}}$ be a vector field on $\mathbb{R}^{\mathbf{3}}$ and \boldsymbol{f} a scalar function on $\mathbb{R}^{\mathbf{3}}$ such that each have continuous third order derivatives.
Determine if the following are always, sometimes, or never true.
(a) If $\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})$ is a scalar function then $\boldsymbol{\nabla} \times(\boldsymbol{\nabla} \times(\boldsymbol{\nabla}))=\overrightarrow{\mathbf{0}}$.
(A) Always true
(B) Sometimes true
(C) Never true
(b) If $\overrightarrow{\boldsymbol{F}}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})$ is any vector field then $\boldsymbol{\nabla} \cdot(\boldsymbol{\nabla} \times \overrightarrow{\boldsymbol{F}})=\mathbf{0}$.
(A) Always true
(B) Sometimes true
(C) Never true
(c) $\operatorname{div}(\operatorname{grad} \boldsymbol{f})=\mathbf{0}$.
(A) Always true
(B) Sometimes true
(C) Never true
(d) $\operatorname{div}(\operatorname{curl}(\operatorname{curl}(\operatorname{curl} \overrightarrow{\boldsymbol{F}})))=\langle\mathbf{0}, \mathbf{0}, \mathbf{0}\rangle$.
(A) Always true
(B) Sometimes true
(C) Never true
(e) $\boldsymbol{\nabla} \cdot(\boldsymbol{f} \overrightarrow{\boldsymbol{F}})=\boldsymbol{\nabla} \boldsymbol{f} \cdot \overrightarrow{\boldsymbol{F}}-\boldsymbol{f} \boldsymbol{\nabla} \cdot \overrightarrow{\boldsymbol{F}}$, where \boldsymbol{f} and $\operatorname{div} \overrightarrow{\boldsymbol{F}}$ are not zero.
(A) Always true
(B) Sometimes true
(C) Never true
12. (6 points) Suppose that \boldsymbol{f} is a differentiable function of \boldsymbol{x} and \boldsymbol{y}, and
$g(u, v)=f\left(u^{2}-v^{3}, u+2 v\right)$.

	$f(x, y)$	$g(u, v)$	$f_{x}(x, y)$	$f_{y}(x, y)$
$(3,4)$	2	-1	8	6
$(2,1)$	-2	2	3	1

(a) Use the table of values to compute $\boldsymbol{g}_{\boldsymbol{u}}(\mathbf{2}, \mathbf{1})$.
(A) -6
(B) 7
(C) 13
(D) 14
(E) 38
(b) If $g_{v}(1,-1)=5$ and $f_{x}(2,-1)=1$, compute $f_{y}(2,-1)$.
(A) 3
(B) 4
(C) 5
(D) 6
(E) 7

