Math 2400, Final Exam

PRINT YOUR NAME: _____

PRINT INSTRUCTOR'S NAME: _

Mark your section/instructor:

Section 001	Kevin Berg	8:00-8:50 AM
Section 002	Harrison Stalvey	8:00-8:50 AM
Section 003	Daniel Martin	9:00-9:50 AM
Section 004	Albert Bronstein	9:00-9:50 AM
Section 005	Xingzhou Yang	10:00-10:50 AM
Section 006	Mark Pullins	10:00-10:50 AM
Section 007	János Englander	10:00-10:50 AM
Section 008	John Willis	12:00-12:50 PM
Section 009	Taylor Klotz	1:00-1:50 PM
Section 010	János Englander	2:00-2:50 PM
Section 011	Harrison Stalvey	2:00-2:50 PM
Section 012	Xingzhou Yang	3:00–3:50 PM
Section 013	Trevor Jack	4:00–4:50 PM

Question	Points	Score
1	8	
2	10	
3	3	
4	10	
5	10	
6	10	
7	10	
8	10	
9	3	
10	10	
11	10	
12	6	
Total:	100	

Honor Code

On my honor, as a University of Colorado at Boulder student, I have neither given nor received unauthorized assistance on this work.

- No calculators or cell phones or other electronic devices allowed at any time.
- Show all your reasoning and work for full credit, except where otherwise indicated. Use full mathematical or English sentences.
- You have 150 minutes and the exam is 100 points.
- You do not need to simplify numerical expressions. For example leave fractions like 100/7 or expressions like $\ln(3)/2$ as is.
- When done, give your exam to your instructor, who will mark your name off on a photo roster.
- We hope you show us your best work!

1. (8 points) Note: No partial credit for this problem.

Let $\vec{a} = \langle 2, -2, 1 \rangle$, $\vec{b} = \langle 1, -2, 3 \rangle$. Compute

(a)
$$|\vec{a}| =$$

(b)
$$2\vec{a} - 3\vec{b} =$$

(c)
$$\vec{a} \cdot \vec{b} =$$

(d)
$$\vec{a} \times \vec{b} =$$

2. (10 points) Determine if the following function is **continuous** at the origin. Explain your reasoning.

$$f(x,y) = egin{cases} rac{x-y}{x+y} & ext{if} \ (x,y)
eq (0,0) \ 1 & ext{if} \ (x,y) = (0,0) \end{cases}$$

3. (3 points) Let **D** be a region in the **xy**-plane with area **A** and boundary curve **C**. Which of the following vector fields will make $\int_C \vec{F} \cdot d\vec{r} = A$? Circle your answer.

(A)
$$\vec{F} = \langle x + y, x \rangle$$

(B)
$$\vec{F} = \frac{1}{2} \langle x, x - y \rangle$$

(C)
$$\vec{F} = \left\langle y^2 - y + \cos x^2, \ 2xy \right\rangle$$

(D)
$$\vec{F} = \langle -y, 2x \rangle$$

- 4. (10 points) Given three points A(1, -1, 1), B(1, 2, 1), C(2, 1, 2),
 - (a) Determine if the points are on the same line.

(b) Find the equation of a plane containing all three points.

5. (10 points) Let $\vec{F} = \langle -2xy, y, z \rangle$. Evaluate the line integral

$$\int_C ec{F} \cdot \mathrm{d}ec{r}$$

where C is given by $\vec{r}(t) = \langle t, \cos(2t), t + \sin(2t) \rangle$ for $0 \le t \le \pi$.

- 6. (10 points) S is the part of the paraboloid $z = x^2 + y^2$ that lies between the planes z = 1 and z = 4.
 - (a) Parametrize the surface \boldsymbol{S} . Include the bounds for the parameter(s).

(b) Use your parameterization from part (a) to rewrite the integral with appropriate bounds. You need not evaluate this rewritten integral.

$$\iint\limits_{S} z \,\mathrm{d} S.$$

7. (10 points) Use the **Method of Lagrange Multipliers** to find the maximum and minimum values of the function

$$f(x,y) = x + y$$

under the constraint $g(x, y) = 2x^2 + 2xy + y^2 = 4$.

8. (10 points) Let S be the part of the hemisphere $x^2 + y^2 + z^2 = 4$ above the xy-plane, with positive (outward) orientation and let

$$ec{F}=ig\langle xz\sin(yz)+x^3,\,\cos(yz),\,3zy^2+z^3-7ig
angle$$
 .

Find $\iint_{S} \vec{F} \cdot d\vec{S}$ using the **Divergence Theorem**. Hint: *S* is not a closed surface.

Warning: No credit if the Divergence Theorem is not used!

9. (3 points) Let $f(x, y, z) = x^2 + 2y^2 + 3z^2$. Find an equation of the tangent plane to the level surface $x^2 + 2y^2 + 3z^2 = 30$ at the point (1, -1, 3). Circle the correct answer:

(A)
$$2x - 4y + 18z = 0$$

(B) 2x + 4y + 18z = 0

(C)
$$2(x-1) - 4(y+1) + 18(z-3) = 0$$

(D)
$$2(x+1) - 4(y-1) + 18(z+3) = 0$$

10. (10 points) Evaluate $\oint_C \vec{F} \cdot d\vec{r}$ where

$$ec{F}(x,y,z)=\left\langle e^{x^2}+2y,\,x-\sin^2 y,\,e^x\cos y+\sin(e^z)
ight
angle$$

and C is the boundary of the surface consisting of the half cylinder given by

$$ec{r}(u,v)=\langle \cos u,\,v,\,-\sin u
angle$$

where $0 \le u \le \pi$, $0 \le v \le 4$, along with the two semi-circle caps at y = 0 and y = 4. C is oriented counter-clockwise viewed from top (the positive z direction).

11. (10 points) Let \vec{F} be a vector field on \mathbb{R}^3 and f a scalar function on \mathbb{R}^3 such that each have continuous third order derivatives.

Determine if the following are always, sometimes, or never true.

- (a) If f(x, y, z) is a scalar function then $\nabla \times (\nabla \times (\nabla f)) = \vec{0}$.
 - (A) Always true
 - (B) Sometimes true
 - (C) Never true

(b) If $\vec{F}(x, y, z)$ is any vector field then $\nabla \cdot (\nabla \times \vec{F}) = 0$.

- (A) Always true
- (B) Sometimes true
- (C) Never true
- (c) div(grad f) = 0.
 - (A) Always true
 - (B) Sometimes true
 - (C) Never true
- (d) div(curl(curl(curl \vec{F}))) = $\langle 0, 0, 0 \rangle$.
 - (A) Always true
 - (B) Sometimes true
 - (C) Never true
- (e) $\nabla \cdot (f\vec{F}) = \nabla f \cdot \vec{F} f \nabla \cdot \vec{F}$, where f and $\operatorname{div} \vec{F}$ are not zero.
 - (A) Always true
 - (B) Sometimes true
 - (C) Never true

12. (6 points) Suppose that f is a differentiable function of x and y, and

$g(u,v)=f(u^2-v^3,\ u+2v).$							
	f(x,y)	g(u,v)	$f_x(x,y)$	$f_y(x,y)$			
(3,4)	2	-1	8	6			
(2,1)	-2	2	3	1			

- (a) Use the table of values to compute $g_u(2, 1)$.
 - (A) **–6**
 - (B) **7**
 - $(C) \ \mathbf{13}$
 - (D) **14**
 - (E) **38**

(b) If $g_v(1, -1) = 5$ and $f_x(2, -1) = 1$, compute $f_y(2, -1)$.

- (A) **3**
- (B) **4**
- (C) **5**
- (D) **6**
- (E) **7**