Math 2400, Midterm 3

April 15, 2019

PRINT YOUR NAME:

PRINT INSTRUCTOR'S NAME:

\qquad
Mark your section/instructor:

\square	Section 001	Kevin Berg	8:00-8:50 AM
\square	Section 002	Harrison Stalvey	8:00-8:50 AM
\square	Section 003	Daniel Martin	$9: 00-9: 50 \mathrm{AM}$
\square	Section 004	Albert Bronstein	$9: 00-9: 50 \mathrm{AM}$
\square	Section 005	Xingzhou Yang	$10: 00-10: 50 \mathrm{AM}$
\square	Section 006	Mark Pullins	$10: 00-10: 50 \mathrm{AM}$
\square	Section 007	János Englander	$10: 00-10: 50 \mathrm{AM}$
\square	Section 008	John Willis	$12: 00-12: 50 \mathrm{PM}$
\square	Section 009	Taylor Klotz	$1: 00-1: 50 \mathrm{PM}$
\square	Section 010	János Englander	$2: 00-2: 50 \mathrm{PM}$
\square	Section 011	Harrison Stalvey	$2: 00-2: 50 \mathrm{PM}$
\square	Section 012	Xingzhou Yang	$3: 00-3: 50 \mathrm{PM}$
\square	Section 013	Trevor Jack	$4: 00-4: 50 \mathrm{PM}$

Question	Points	Score
1	12	
2	4	
3	15	
4	15	
5	14	
6	12	
7	15	
8	5	
9	4	
10	4	
Total:	100	

Honor Code

On my honor, as a University of Colorado at Boulder student, I have neither
given nor received unauthorized assistance on this work.

- No calculators or cell phones or other electronic devices allowed at any time.
- Show all your reasoning and work for full credit, except where otherwise indicated. Use full mathematical or English sentences.
- You have 95 minutes and the exam is 100 points.
- You do not need to simplify numerical expressions. For example leave fractions like $100 / 7$ or expressions like $\ln (3) / 2$ as is.
- When done, give your exam to your instructor, who will mark your name off on a photo roster.
- We hope you show us your best work!

1. (12 points) Match the vector fields $\overrightarrow{\boldsymbol{F}}$ with the plots below.
(1) $\overrightarrow{\boldsymbol{F}}=\langle y, x\rangle$
(2) $\overrightarrow{\boldsymbol{F}}=\langle x,-y\rangle$
(3) $\overrightarrow{\boldsymbol{F}}=\langle y,-x\rangle$

(B)

(C)

(4) $\overrightarrow{\boldsymbol{F}}=\left\langle\frac{x}{\sqrt{x^{2}+y^{2}}},-\frac{y}{\sqrt{x^{2}+y^{2}}}\right\rangle$
(5) $\overrightarrow{\boldsymbol{F}}=\langle 2, x-y\rangle$
(6) $\overrightarrow{\boldsymbol{F}}=\langle-y,-x\rangle$
(D)

(E)

(F)

2. (4 points) No partial credit for this problem.

Which of the following is the center of mass of the region R bounded by $y=\sqrt{1-x^{2}}$ and $y=0$ with density function $\rho(x, y)=x^{2} y$? Suppose m is the mass of R.
(A) $(\bar{x}, \bar{y})=\left(0, \frac{1}{m} \int_{0}^{\frac{\pi}{2}} \int_{0}^{1} r^{3} \cos ^{2} \theta \sin \theta \mathrm{~d} r \mathrm{~d} \theta\right)$
(B) $(\bar{x}, \bar{y})=\left(0, \frac{1}{m} \int_{0}^{\frac{\pi}{2}} \int_{0}^{1} r^{4} \cos ^{2} \theta \sin \theta \mathrm{~d} r \mathrm{~d} \theta\right)$
(C) $(\bar{x}, \bar{y})=\left(0, \frac{1}{m} \int_{0}^{\frac{\pi}{2}} \int_{0}^{1} r^{5} \cos ^{2} \theta \sin ^{2} \theta \mathrm{~d} r \mathrm{~d} \theta\right)$
(D) $(\bar{x}, \bar{y})=\left(0, \frac{1}{m} \int_{0}^{\pi} \int_{0}^{1} r^{3} \cos ^{2} \theta \sin \theta \mathrm{~d} r \mathrm{~d} \theta\right)$
(E) $(\bar{x}, \bar{y})=\left(0, \frac{1}{m} \int_{0}^{\pi} \int_{0}^{1} r^{4} \cos ^{2} \theta \sin ^{2} \theta \mathrm{~d} r \mathrm{~d} \theta\right)$
(F) $(\bar{x}, \bar{y})=\left(0, \frac{1}{m} \int_{0}^{\pi} \int_{0}^{1} r^{5} \cos ^{2} \theta \sin ^{2} \theta \mathrm{~d} r \mathrm{~d} \theta\right)$
3. (15 points) Let

$$
\overrightarrow{\boldsymbol{F}}(x, y)=\left\langle y e^{x}, e^{x}+3 y^{2}\right\rangle
$$

(a) Is $\overrightarrow{\boldsymbol{F}}(x, y)$ conservative? If so, find a potential function. If not, explain why not.
(b) Suppose C is the piecewise smooth curve given by

$$
\overrightarrow{\boldsymbol{r}}(t)= \begin{cases}\left\langle e^{t^{2}}-1, e^{t^{4}}-1\right\rangle, & 0 \leq t \leq 2 \\ \left\langle e^{2 t}-1, e^{8 t}-1\right\rangle, & 2<t \leq 3\end{cases}
$$

Calculate $\int_{C} \overrightarrow{\boldsymbol{F}} \cdot \mathrm{~d} \overrightarrow{\boldsymbol{r}}$. Justify your answer.
4. (15 points) Evaluate

$$
\iint_{D} \cos \left(x^{2}+y^{2}\right) \mathrm{d} A
$$

where D is the region bounded by the circle $x^{2}+y^{2}=\frac{\pi}{2}$ in the first quadrant.
5. (14 points) Let R be the region in the $x y$-plane (see the graph below) bounded by the curves

$$
\frac{y}{x}+x=1, \quad \frac{y}{x}+x=2, \quad \frac{y}{x}-x=-2, \quad \text { and } \frac{y}{x}-x=0 .
$$

(a) Find a transformation of the form $u=g(x, y), v=h(x, y)$ that maps R onto a rectangle S in the $u v$-plane. Sketch the rectangle S in the $u v$-plane.

(b) Use the result in (a) to find an appropriate Jacobian, and use it to evaluate the integral

$$
\iint_{R} \frac{1}{x} \sin \left(\frac{y}{x}+x\right) \mathrm{d} A
$$

6. (12 points) Evaluate the following triple integral by changing the order of integration.

$$
\int_{0}^{\sqrt{\pi}} \int_{z}^{\sqrt{\pi}} \int_{x^{2}}^{\pi} \cos \left(x^{2}+y\right) \mathrm{d} y \mathrm{~d} x \mathrm{~d} z
$$

Hint: You may have to switch the order of integration at some point.
7. (15 points) Let C be the line segment in \mathbb{R}^{3} starting from the point $(-1,-1,-2)$ and ending at the point $(2,3,0)$.
(a) Compute $\int_{C}\left(x^{2}+y\right) \mathrm{d} s$
(b) Compute $\int_{C} \overrightarrow{\boldsymbol{F}} \cdot \mathrm{~d} \overrightarrow{\boldsymbol{r}}$, where $\overrightarrow{\boldsymbol{F}}=\langle x-y, z,-y\rangle$.
8. (5 points) There exists a domain R in the 4th quadrant of area 2 in the $x y$-plane that we are too lazy to write down. Can you still compute the surface area of the part of the plane $z=2 x-2 y$ above the domain R ? If so, do so.
9. (4 points) No partial credit for this problem.

Given

$$
\int_{0}^{1} \int_{\sqrt{x}}^{1} \int_{0}^{1-y} f(x, y, z) \mathrm{d} z \mathrm{~d} y \mathrm{~d} x
$$

find the limits of integration when the order of integration is changed to $\mathrm{d} y \mathrm{~d} z \mathrm{~d} x$.
(A) $\int_{0}^{1} \int_{0}^{\sqrt{x}} \int_{\sqrt{x}}^{1-z} f(x, y, z) \mathrm{d} y \mathrm{~d} z \mathrm{~d} x$
(B) $\int_{0}^{1} \int_{0}^{1-\sqrt{x}} \int_{\sqrt{x}}^{1-z} f(x, y, z) \mathrm{d} y \mathrm{~d} z \mathrm{~d} x$
(C) $\int_{0}^{1} \int_{0}^{\sqrt{x}} \int_{\sqrt{x}}^{1-\sqrt{z}} f(x, y, z) \mathrm{d} y \mathrm{~d} z \mathrm{~d} x$
(D) $\int_{0}^{1} \int_{1-\sqrt{x}}^{1} \int_{\sqrt{x}}^{\sqrt{z}} f(x, y, z) \mathrm{d} y \mathrm{~d} z \mathrm{~d} x$
(E) $\int_{0}^{1} \int_{0}^{\sqrt{x}} \int_{1-z}^{\sqrt{x}} f(x, y, z) \mathrm{d} y \mathrm{~d} z \mathrm{~d} x$
(F) $\int_{0}^{1} \int_{\sqrt{x}}^{1} \int_{1-z}^{\sqrt{x}} f(x, y, z) \mathrm{d} y \mathrm{~d} z \mathrm{~d} x$
10. (4 points) No partial credit for this problem.

Use spherical coordinates to express the following sum of integrals as a single integral:

$$
\int_{-2 \sqrt{2}}^{0} \int_{0}^{\sqrt{8-x^{2}}} \int_{-\sqrt{8-x^{2}-y^{2}}}^{0} x \mathrm{~d} z \mathrm{~d} y \mathrm{~d} x+\int_{0}^{2} \int_{x}^{\sqrt{8-x^{2}}} \int_{-\sqrt{8-x^{2}-y^{2}}}^{0} x \mathrm{~d} z \mathrm{~d} y \mathrm{~d} x
$$

(A) $\int_{0}^{\frac{\pi}{4}} \int_{\frac{\pi}{4}}^{\pi} \int_{0}^{2 \sqrt{2}} \rho^{3} \sin ^{2}(\phi) \cos (\theta) \mathrm{d} \rho \mathrm{d} \theta \mathrm{d} \phi$
(B) $\int_{\frac{\pi}{2}}^{\pi} \int_{\frac{\pi}{4}}^{\pi} \int_{0}^{2 \sqrt{2}} \rho^{3} \sin ^{2} \phi \cos \theta \mathrm{~d} \rho \mathrm{~d} \theta \mathrm{~d} \phi$
(C) $\int_{0}^{\frac{\pi}{2}} \int_{\frac{\pi}{4}}^{\pi} \int_{0}^{2 \sqrt{2}} \rho^{3} \cos ^{2}(\phi) \sin (\theta) \mathrm{d} \rho \mathrm{d} \theta \mathrm{d} \phi$
(D) $\int_{\frac{\pi}{2}}^{\pi} \int_{\frac{\pi}{4}}^{\pi} \int_{0}^{2 \sqrt{2}} \rho^{3} \cos ^{2}(\phi) \sin (\theta) \mathrm{d} \rho \mathrm{d} \theta \mathrm{d} \phi$
(E) $\int_{\frac{\pi}{2}}^{\pi} \int_{\frac{\pi}{4}}^{\pi} \int_{0}^{2 \sqrt{2}} \rho^{3} \sin (\phi) \sin ^{2}(\theta) \mathrm{d} \rho \mathrm{d} \theta \mathrm{d} \phi$
(F) $\int_{\frac{\pi}{2}}^{\pi} \int_{\frac{\pi}{4}}^{\pi} \int_{0}^{2 \sqrt{2}} \rho^{3} \sin ^{3}(\phi) \cos (\theta) \mathrm{d} \rho \mathrm{d} \theta \mathrm{d} \phi$

