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English sentences.
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ln(3)/2 as is.

• When done, give your exam to your instructor, who will mark your name off on a photo roster.

• We hope you show us your best work!



1. (8 points) Note: No partial credit for this problem.

Let f(x, y, z) = x2y + e2z. Compute the following:

(a)
∂f

∂x
= 2xy.

(b)
∂2f

∂z2
= 4e2z.

(c)
∂2f

∂x∂y
− ∂2f

∂y∂x
= 0.

(d) ∇f(1,−1, 0) = 〈−2, 1, 2〉.
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2. (5 points) Circle the answer that best describes each statement.

(a) If f is defined at (0, 0) and lim
(x,y)→(0,0)

f(x, y) = 0, then f is continuous at (0, 0).

(A) Always true

(B) Sometimes true

(C) Never true

(b) If f(x, y)→ L as (x, y)→ (0, 0) along every straight line through (0, 0), then

lim
(x,y)→(0,0)

f(x, y) = L.

(A) Always true

(B) Sometimes true

(C) Never true

(c) If z = f(x, y) is a function of two variables and ∇f(a, b) = 〈0, 0〉, then f has a local

maximum or minimum at (a, b)

(A) Always true

(B) Sometimes true

(C) Never true

(d) If fx(x, y) = 0 and fy(x, y) = 0 for all (x, y), then f is constant.

(A) Always true

(B) Sometimes true

(C) Never true

(e) If f(x, y) is a differentiable function and ~u is a unit vector, then the directional derivative

D~uf(a, b) is parallel to ~u.

(A) Always true

(B) Sometimes true

(C) Never true
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3. (5 points) Let f(x, y) =
ln(x− y)√
4− x2 − y2

.

Its domain =
{
(x, y)

∣∣x− y > 0, 4− x2 − y2 > 0
}
=
{
(x, y)

∣∣y < x, x2 + y2 < 4
}
.

Which one of the following shaded regions is the domain of f? (B).

(A)

(B)

(C)

(D)

(E)

(F)

(G)

(H)
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4. (10 points) Match each 3D surface with one of the contour plots, and one of the equations.

(a) (4), (E)

(b) (5), (B)

(c) (2), (A)

(d) (3), (D)

(e) (1), (C)

(1)

(2)

(3)

(4)

(5)

(A) z = sin(x) sin(y)

(B) z = sin(x− y)

(C) z =
x2 − x+ y2 + 2y

x2 + 1

(D) z = y2

(E) z = y2 − 9xy
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5. (8 points) Let S be the surface given by z = xy, and let R be the rectangle [0, 6]× [0, 4].

(a) Taking the sample points to be the upper right corners, use a Riemann sum with

m = 2 and n = 2 to estimate the volume of the solid that lies below S and above R.

Solution: Let f(x, y) = xy. Since m = 2, n = 2, ∆x =
6− 0

2
= 3, ∆y =

4− 0

2
= 2,

∆A = (∆x)(∆y) = (3)(2) = 6.

The sample points are the upper right corners.

(x∗i , y
∗
j ) (x∗1, y

∗
1) (x∗1, y

∗
2) (x∗2, y

∗
1) (x∗2, y

∗
2)

sample pt (3, 2) (3, 4) (6, 2) (6, 4)

volume ≈
m∑
i=1

n∑
j=1

f(x∗i , y
∗
j )∆A = ∆A

2∑
i=1

2∑
j=1

f(x∗i , y
∗
j )

= ∆A [f (3, 2) + f (3, 4) + f (6, 2) + f (6, 4)]

= ∆A [(3)(2) + (3)(4) + (6)(2) + (6)(4)]

= (6) [6 + 12 + 12 + 24] = 324

(b) Calculate the exact volume of the solid that lies below S and above R.

Solution: By Fubini’s Theorem, the exact volume is

volume =

∫∫
R

xy dA =

∫ 6

0

∫ 4

0

xy dy dx =

∫ 6

0

xy2

2

∣∣∣∣y=4

y=0

dx =

∫ 6

0

8x dx = 4x2
∣∣∣∣x=6

x=0

= 4
(
62 − 02

)
= 144

or
=

∫ 4

0

∫ 6

0

xy dx dy =

∫ 4

0

x2y

2

∣∣∣∣x=6

x=0

dy =

∫ 4

0

18y dy = 9y2
∣∣∣∣4
0

= 9(42 − 0) = 144

or
=

∫ 4

0

∫ 6

0

xy dx dy =

∫ 4

0

y dy

∫ 6

0

x dx =
y2

2

∣∣∣∣4
0

x2

2

∣∣∣∣6
0

=
42

2
· 62

2
= 144
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6. (8 points) Let f be a differentiable function, g(x, y) = f(u, v), where u = x2 − y2, v = y2 − x3.

g(1, 2) = 11 g(−3, 3) = 7 f(1, 2) = 20 f(−3, 3) = 11

fu(1, 2) = 4 fv(1, 2) = 5 fu(−3, 3) = 2 fv(−3, 3) = −1

Evaluate gx(1, 2) based on the values in the above table.

Solution: As x = 1, y = 2, u = (1)2 − (2)2 = 1− 4 = −3, v = (2)2 − (1)3 = 4− 1 = 3. By

the Chain Rule,

f

u

x y

v

x y

gx(x, y) = fu
∂u

∂x
+ fv

∂v

∂x
= fu(u, v)

∂

∂x

(
x2 − y2

)
+ fv(u, v)

∂

∂x

(
y2 − x3

)
= 2xfu(u, v)− 3x2fv(u, v)

gx(1, 2) = 2(1)fu(−3, 3)− 3(1)2fv(−3, 3)

= 2(2)− 3(−1) = 4 + 3 = 7
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7. (8 points) A surface is represented by z = f(x, y) with f differentiable. Let ~u =

〈
1√
2
,

1√
2

〉
.

Suppose that fx(2, 1) = 5 and D~uf(2, 1) = 3
√

2.

(a) Find fy(2, 1).

Solution: Note ~u is a unit vector. By the definition of directional derivative,

D~uf(2, 1) = ∇f(2, 1) · ~u = 〈fx(2, 1), fy(2, 1)〉 · ~u

= 〈5, fy(2, 1)〉 ·
〈

1√
2
,

1√
2

〉
=

5√
2

+
1√
2
fy(2, 1)

fy(2, 1) =
√

2D~uf(2, 1)− 5 =
√

2 · 3
√

2− 5 = 6− 5 = 1

(b) Assume f(2, 1) = 3. Use the result in (a) to find a vector in the xy-plane that is tangent

to the level curve f(x, y) = 3 at the point (2, 1).

Solution: Note the tangential vector at (2, 1), say ~v = 〈v1, v2〉, is orthogonal to the

gradient vector ∇f(2, 1) = 〈fx(2, 1), fy(2, 1)〉 = 〈5, 1〉. So we have

~v · ∇f(2, 1) = 0⇐⇒ 〈v1, v2〉 · 〈5, 1〉 = 0⇐⇒ 5v1 + v2 = 0⇐⇒ v2 = −5v1

So ~v = 〈v1, v2〉 = 〈v1,−5v1〉 = v1 〈1,−5〉 , where v1 can be any non-zero real number.
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8. (8 points) Find all critical points of the function

f(x, y) =
2

3
x3 + 2x2 + y2 − 2xy

and classify each as a local maximum, local minimum, saddle point, or not enough information.

Solution: To find all the critical points, we solve ∇f(x, y) = 〈0, 0〉, or 〈fx, fy〉 = 〈0, 0〉. To

classify them, we need to use the Second Derivative Test.

fx =
∂

∂x

(
2

3
x3 + 2x2 + y2 − 2xy

)
= 2x2 + 4x− 2y

fy =
∂

∂y

(
2

3
x3 + 2x2 + y2 − 2xy

)
= 2y − 2x

fxx =
∂fx
∂x

=
∂

∂x

(
2x2 + 4x− 2y

)
= 4x+ 4

fxy =
∂fx
∂y

=
∂

∂y

(
2x2 + 4x− 2y

)
= −2 = fyx

fyy =
∂fy
∂y

=
∂

∂y
(2y − 2x) = 2

D =

∣∣∣∣∣fxx fxy

fyx fyy

∣∣∣∣∣ = fxxfyy − (fxy)
2 = (4x+ 4)(2)− (−2)2 = 8x+ 4

Solve

〈fx, fy〉 = 〈0, 0〉 ⇐⇒

{
fx = 2x2 + 4x− 2y = 0

fy = 2y − 2x = 0
⇐⇒

{
x2 + 2x− y = 0 1

y = x 2

By 2 , we substitue x for y in 1 , and we get

x2 + x = 0⇐⇒ x(x+ 1) = 0⇐⇒ x = 0, or x = −1

Using 2 again we get two critical points (0, 0), (−1,−1)

At (0, 0), D(0, 0) = 8(0) + 4 = 4 > 0, fxx(0, 0) = 4(0) + 4 = 4 > 0, so by the 2nd derivative

test, (0, 0) is a local minimum point .

At (−1,−1), D(−1,−1) = 8(−1) + 4 = −4 < 0, so by the 2nd derivative test,

(−1,−1) is a saddle point .
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9. (8 points) Find lim
(x,y)→(0,0)

x2 − 3x2y + y2

4x2 + 4y2
if it exists, and then prove it. Otherwise, explain why

it does not exist.

Solution: Let f(x, y) =
x2 − 3x2y + y2

4x2 + 4y2
. Use polar coordinates, x = r cos θ, y = r sin θ.

Then x2 + y2 = r2.

f(x, y) =
x2 − 3x2y + y2

4x2 + 4y2
=
x2 + y2 − 3x2y

4(x2 + y2)
=
r2 − 3r3 cos2 θ sin θ

4r2
=

1

4
− 3r cos2 θ sin θ

Since for any θ, | sin θ| ≤ 1, | cos θ| ≤ 1, we have

0 ≤
∣∣∣∣f(x, y)− 1

4

∣∣∣∣ =
∣∣−3r cos2 θ sin θ

∣∣ = 3r| cos θ|2| sin θ| ≤ 3r

As (x, y) → (0, 0), r =
√
x2 + y2 → 0, and so the lower bound and upper bound of∣∣∣∣f(x, y)− 1

4

∣∣∣∣ both approach 0 as (x, y)→ (0, 0). By the Squeeze Theorem,

lim
(x,y)→(0,0)

x2 − 3x2y + y2

4x2 + 4y2
=

1

4
. This proves the existence of the limit.

Solution 2: Let f(x, y) =
x2 − 3x2y + y2

4x2 + 4y2
. Pick a path, for example, C : y = 0. Then

f(x, y) =
x2

4x2
=

1

4
. The limit along this path is

1

4
. To show that it is the limit of the

function as (x, y)→ (0, 0), we use the Squeeze Theorem.

0 ≤
∣∣∣∣f(x, y)− 1

4

∣∣∣∣ =

∣∣∣∣x2 − 3x2y + y2

4x2 + 4y2
− 1

4

∣∣∣∣ =

∣∣∣∣(x2 − 3x2y + y2)− (x2 + y2)

4(x2 + y2)

∣∣∣∣
=

∣∣∣∣ −3x2y

4(x2 + y2)

∣∣∣∣ =
3

4
· x2

x2 + y2
|y| ≤ 3

4
|y|

Since lim
(x,y)→0

0 = 0, lim
(x,y)→0

3

4
|y| = 0, we get

lim
(x,y)→0

∣∣∣∣f(x, y)− 1

4

∣∣∣∣ = 0⇐⇒ lim
(x,y)→0

(
f(x, y)− 1

4

)
= 0⇐⇒ lim

(x,y)→0
f(x, y) =

1

4
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10. (8 points) Find the absolute maximum and absolute minimum values of the function

f(x, y) = 4x+ 4y − x2 − y2

subject to the constraint x2 + y2 = 2.

Solution: Let g(x, y) = x2 + y2. Then the constraint equation is g(x, y) = 2.

fx =
∂

∂x

(
4x+ 4y − x2 − y2

)
= 4− 2x gx =

∂

∂x

(
x2 + y2

)
= 2x

fy =
∂

∂y

(
4x+ 4y − x2 − y2

)
= 4− 2y gy =

∂

∂y

(
x2 + y2

)
= 2y

∇f = 〈fx, fy〉 = 〈4− 2x, 4− 2y〉 ∇g = 〈gx, gy〉 = 〈2x, 2y〉

By the Method of Lagrange Multipliers, we solve

{
∇f = λ∇g

g(x, y) = 2
which is the same

as {
〈4− 2x, 4− 2y〉 = λ 〈2x, 2y〉

x2 + y2 = 2
⇐⇒


4− 2x = 2λx 1

4− 2y = 2λy 2

x2 + y2 = 2 3

⇐⇒


(1 + λ)x = 2 1

(1 + λ)y = 2 2

x2 + y2 = 2 3

From 1 and 2 , we get x = y =
2

1 + λ
. By 3 , we have 2x2 = 2, so x = ±1, and hence we

get only two points (x, y) = (−1,−1) and (x, y) = (1, 1). So we have

f(−1,−1) = 4(−1) + 4(−1)− (−1)2 − (−1)2 = −10

f(1, 1) = 4(1) + 4(1)− (1)2 − (1)2 = 6

So the absolute max/min values of the function are 6 / −10 , respectively.

Solution 2: We may parametrize the constraint curve as x =
√

2 cos θ, y =
√

2 sin θ. Then

f(x, y) = 4
√

2 cos θ + 4
√

2 sin θ − 2 ≡ g(θ), where 0 ≤ θ < 2π

To find the extreme values of f , also for g, we solve the critical points of g.

g′(θ) = −4
√

2 sin θ + 4
√

2 cos θ) = 4
√

2(− sin θ + cos θ)

g′(θ) = 0⇐⇒ sin θ = cos θ ⇐⇒ tan θ = 1⇐⇒ θ =
π

4
,

5π

4

As θ =
π

4
, x =

√
2 cos

π

4
=
√

2 ·
√

2

2
= 1, y =

√
2 sin

π

4
=
√

2 ·
√

2

2
= 1, We have

f(−1,−1) = 4(−1) + 4(−1)− (−1)2 − (−1)2 = −10

As θ =
5π

4
, x =

√
2 cos

5π

4
= −
√

2 ·
√

2

2
= −1, y =

√
2 sin

5π

4
= −
√

2 ·
√

2

2
= −1. We have

f(1, 1) = 4(1) + 4(1)− (1)2 − (1)2 = 6

So the absolute max/min values of the function are 6 / −10 , respectively.
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11. (8 points) Let S be a surface given by

~r(u, v) =
〈
u cos(v), u sin(v), ln

(
9 + u2

)〉
where (u, v) ∈ [0, 2] × [0, 2π). Find an equation of the tangent plane to S at the point

(0, 1, ln(10)).

Solution: To find the corresponding u and v values of the point (0, 1, ln(10)), we solve

~r(u, v) = 〈0, 1, ln(10)〉. That is, To find all the critical points, we solve ∇f(x, y) = 〈0, 0〉,
or 〈fx, fy〉 = 〈0, 0〉. 

u cos(v) = 0 1

u sin(v) = 1 2

ln
(
9 + u2

)
= ln(10) 3

From 3 , we get 9 + u2 = 10, so u2 = 1, and we have u = ±1. Since u ∈ [0, 2], u = 1.

Substitute it into equations 1 and 2 , and we get cos v = 0, and sin v = 1. Note v ∈ [0, 2π),

we get v =
π

2
. So (u, v) =

(
1,
π

2

)
.

~ru =
∂

∂u

〈
u cos(v), u sin(v), ln

(
9 + u2

)〉
=

〈
cos(v), sin(v),

2u

9 + u2

〉
~rv =

∂

∂v

〈
u cos(v), u sin(v), ln

(
9 + u2

)〉
= 〈−u sin(v), u cos(v), 0〉

~ru

(
1,
π

2

)
=

〈
cos

π

2
, sin

π

2
,

2(1)

9 + (1)2

〉
=

〈
0, 1,

1

5

〉
~rv

(
1,
π

2

)
=
〈
−(1) sin

π

2
, (1) cos

π

2
, 0
〉

= 〈−1, 0, 0〉

So the normal direction of the tangent plane is

~n = ~ru

(
1,
π

2

)
× ~rv

(
1,
π

2

)
=

∣∣∣∣∣∣∣∣
~i ~j ~k

0 1
1

5
−1 0 0

∣∣∣∣∣∣∣∣ = 0~i− 1

5
~j + ~k =

〈
0,−1

5
, 1

〉

So the equation of the tangent plane at (0, 1, ln(10)) is

(0)(x− 0)−
1

5
(y − 1) + (z − ln(10)) = 0 ⇐⇒ y − 5z − 1 + 5 ln(10) = 0
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12. (8 points) Evaluate the integral

∫∫
D

6x2y2 dA, where D is the region bounded by x = y2 and

y = x3 in the first quadrant.

Solution: Solving

{
x = y2

y = x3
gives (x, y) = (0, 0) and (x, y) = (1, 1) (point (−1,−1) is not

in the first quadrant). In the first quadrant, x = y2 ⇐⇒ y =
√
x, y = x3 ⇐⇒ x = x

1
3 . So

we may sketch the region D as follows,

So D =
{

(x, y)
∣∣0 ≤ y ≤ 1, y2 ≤ x ≤ y

1
3

}
.

∫∫
D

6x2y2 dA =

∫ 1

0

∫ y
1
3

y2
6x2y2 dx dy =

∫ 1

0

2x3y2
∣∣∣∣x=y

1
3

x=y2
dy

=

∫ 1

0

2y2
[
y − (y2)3

]
dy =

∫ 1

0

(
2y3 − 2y8

)
dy

=

(
y4

2
− 2y9

9

) ∣∣∣∣1
0

=
1

2
− 2

9
=

5

18

Solution 2: D =
{

(x, y)
∣∣0 ≤ x ≤ 1, y

1
3 ≤ x ≤

√
x
}

.

∫∫
D

6x2y2 dA =

∫ 1

0

∫ x
1
2

x3

6x2y2 dy dx =

∫ 1

0

2x2y3
∣∣∣∣y=x

1
2

y=x3

dx

=

∫ 1

0

2x2
(
x

3
2 − x9

)
dx =

∫ 1

0

2
(
x

7
2 − x11

)
dx

= 2

(
2

9
x

9
2 − x12

12

) ∣∣∣∣1
0

= 2

(
2

9
− 1

12

)
=

4

9
− 1

6
=

5

18
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13. (8 points) Evaluate the iterated integral by reversing the order of integration∫ 1

0

∫ 1

x1/3

1

y4 + 1
dy dx

Solution:∫ 1

0

∫ 1

x1/3

1

y4 + 1
dy dx =

∫ 1

0

∫ y3

0

1

y4 + 1
dx dy =

∫ 1

0

x

y4 + 1

∣∣∣∣x=y3

x=0

dy

=

∫ 1

0

y3

y4 + 1
dy =

∫ 2

1

du

4u
=

1

4
ln |u|

∣∣∣∣2
1

=
1

4
(ln 2− ln 1)

=
ln 2

4
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