Solutions to Math 2400 Midterm 2
 March 11, 2019

PRINT your NAmE:

PRINT INSTRUCTOR'S NAME:

\qquad
Mark your section/instructor:

\square	Section 001	Kevin Berg	8:00-8:50 AM
\square	Section 002	Harrison Stalvey	8:00-8:50 AM
\square	Section 003	Daniel Martin	9:00-9:50 AM
\square	Section 004	Albert Bronstein	9:00-9:50 AM
\square	Section 005	Xingzhou Yang	10:00-10:50 AM
\square	Section 006	Mark Pullins	10:00-10:50 AM
\square	Section 007	János Englander	10:00-10:50 AM
\square	Section 008	John Willis	12:00-12:50 PM
\square	Section 009	Taylor Klotz	$1: 00-1: 50 \mathrm{PM}$
\square	Section 010	János Englander	$2: 00-2: 50 \mathrm{PM}$
\square	Section 011	Harrison Stalvey	$2: 00-2: 50 \mathrm{PM}$
\square	Section 012	Xingzhou Yang	$3: 00-3: 50 \mathrm{PM}$
\square	Section 013	Trevor Jack	$4: 00-4: 50 \mathrm{PM}$

Question	Points	Score
1	8	
2	5	
3	5	
4	10	
5	8	
6	8	
7	8	
8	8	
9	8	
10	8	
11	8	
12	8	
13	8	
Total:	100	

Honor Code
 On my honor, as a University of Colorado at Boulder student, I have neither given nor received unauthorized assistance on this work.

- No calculators or cell phones or other electronic devices allowed at any time.
- Show all your reasoning and work for full credit, except where otherwise indicated. Use full mathematical or English sentences.
- You have 95 minutes and the exam is 100 points.
- You do not need to simplify numerical expressions. For example leave fractions like $100 / 7$ or expressions like $\ln (3) / 2$ as is.
- When done, give your exam to your instructor, who will mark your name off on a photo roster.
- We hope you show us your best work!

1. (8 points) Note: No partial credit for this problem.

Let $f(x, y, z)=x^{2} y+e^{2 z}$. Compute the following:
(a) $\frac{\partial f}{\partial x}=\underline{2 x y}$.
(b) $\frac{\partial^{2} f}{\partial z^{2}}=\underline{4 e^{2 z}}$.
(c) $\frac{\partial^{2} f}{\partial x \partial y}-\frac{\partial^{2} f}{\partial y \partial x}=\underline{0}$.
(d) $\boldsymbol{\nabla} f(1,-1,0)=\underline{\langle-2,1,2\rangle}$.
2. (5 points) Circle the answer that best describes each statement.
(a) If f is defined at $(0,0)$ and $\lim _{(x, y) \rightarrow(0,0)} f(x, y)=0$, then f is continuous at $(0,0)$.
(A) Always true
(B) Sometimes true
(C) Never true
(b) If $f(x, y) \rightarrow L$ as $(x, y) \rightarrow(0,0)$ along every straight line through $(0,0)$, then $\lim _{(x, y) \rightarrow(0,0)} f(x, y)=L$.
(A) Always true
(B) Sometimes true
(C) Never true
(c) If $z=f(x, y)$ is a function of two variables and $\nabla f(a, b)=\langle 0,0\rangle$, then f has a local maximum or minimum at (a, b)
(A) Always true
(B) Sometimes true
(C) Never true
(d) If $f_{x}(x, y)=0$ and $f_{y}(x, y)=0$ for all (x, y), then f is constant.
(A) Always true
(B) Sometimes true
(C) Never true
(e) If $f(x, y)$ is a differentiable function and \vec{u} is a unit vector, then the directional derivative $D_{\vec{u}} f(a, b)$ is parallel to \vec{u}.
(A) Always true
(B) Sometimes true
(C) Never true
3. (5 points) Let $f(x, y)=\frac{\ln (x-y)}{\sqrt{4-x^{2}-y^{2}}}$.

Its domain $=\left\{(x, y) \mid x-y>0,4-x^{2}-y^{2}>0\right\}=\left\{(x, y) \mid y<x, x^{2}+y^{2}<4\right\}$. Which one of the following shaded regions is the domain of f ? $\underline{(\mathrm{B})}$.
(A)
(B)

(C)

(D)

(E)

(F)

(G)

(H)

4. (10 points) Match each 3D surface with one of the contour plots, and one of the equations.
(a) $(\mathbf{4}),(\mathbf{E})$

(1)

(A) $z=\sin (x) \sin (y)$
(B) $z=\sin (x-y)$
(C) $z=\frac{x^{2}-x+y^{2}+2 y}{x^{2}+1}$
(2)
(D) $z=y^{2}$
(b) $(5),(\mathrm{B})$

(E) $z=y^{2}-9 x y$
(c) $(\mathbf{2}),(\mathbf{A})$

(d) $\underline{(3),(\mathbf{D})}$

(e) $(\mathbf{1}),(\mathbf{C})$

(4)

(5)

5. (8 points) Let S be the surface given by $z=x y$, and let R be the rectangle $[0,6] \times[0,4]$.
(a) Taking the sample points to be the upper right corners, use a Riemann sum with $m=2$ and $n=2$ to estimate the volume of the solid that lies below S and above R.

Solution: Let $f(x, y)=x y$. Since $m=2, n=2, \Delta x=\frac{6-0}{2}=3, \Delta y=\frac{4-0}{2}=2$, $\Delta A=(\Delta x)(\Delta y)=(3)(2)=6$.

The sample points are the upper right corners.

$\left(x_{i}^{*}, y_{j}^{*}\right)$	$\left(x_{1}^{*}, y_{1}^{*}\right)$	$\left(x_{1}^{*}, y_{2}^{*}\right)$	$\left(x_{2}^{*}, y_{1}^{*}\right)$	$\left(x_{2}^{*}, y_{2}^{*}\right)$
sample pt	$(3,2)$	$(3,4)$	$(6,2)$	$(6,4)$

$$
\begin{aligned}
\text { volume } & \approx \sum_{i=1}^{m} \sum_{j=1}^{n} f\left(x_{i}^{*}, y_{j}^{*}\right) \Delta A=\Delta A \sum_{i=1}^{2} \sum_{j=1}^{2} f\left(x_{i}^{*}, y_{j}^{*}\right) \\
& =\Delta A[f(3,2)+f(3,4)+f(6,2)+f(6,4)] \\
& =\Delta A[(3)(2)+(3)(4)+(6)(2)+(6)(4)] \\
& =(6)[6+12+12+24]=\mathbf{3 2 4}
\end{aligned}
$$

(b) Calculate the exact volume of the solid that lies below S and above R.

Solution: By Fubini's Theorem, the exact volume is

$$
\begin{aligned}
\text { volume } & =\iint_{R} x y \mathrm{~d} A=\int_{0}^{6} \int_{0}^{4} x y \mathrm{~d} y \mathrm{~d} x=\left.\int_{0}^{6} \frac{x y^{2}}{2}\right|_{y=0} ^{y=4} \mathrm{~d} x=\int_{0}^{6} 8 x \mathrm{~d} x=\left.4 x^{2}\right|_{x=0} ^{x=6} \\
& =4\left(6^{2}-0^{2}\right)=\mathbf{1 4 4} \\
& \stackrel{\text { or }}{=} \int_{0}^{4} \int_{0}^{6} x y \mathrm{~d} x \mathrm{~d} y=\left.\int_{0}^{4} \frac{x^{2} y}{2}\right|_{x=0} ^{x=6} \mathrm{~d} y=\int_{0}^{4} 18 y \mathrm{~d} y=\left.9 y^{2}\right|_{0} ^{4} \\
& =9\left(4^{2}-0\right)=\mathbf{1 4 4} \\
& \stackrel{\text { or }}{=} \int_{0}^{4} \int_{0}^{6} x y \mathrm{~d} x \mathrm{~d} y=\int_{0}^{4} y \mathrm{~d} y \int_{0}^{6} x \mathrm{~d} x=\left.\left.\frac{y^{2}}{2}\right|_{0} ^{4} \frac{x^{2}}{2}\right|_{0} ^{6}=\frac{4^{2}}{2} \cdot \frac{6^{2}}{2}=\mathbf{1 4 4}
\end{aligned}
$$

6. (8 points) Let f be a differentiable function, $g(x, y)=f(u, v)$, where $u=x^{2}-y^{2}, v=y^{2}-x^{3}$.

$$
\begin{array}{|l|l|l|l|}
\hline g(1,2)=11 & g(-3,3)=7 & f(1,2)=20 & f(-3,3)=11 \\
\hline f_{u}(1,2)=4 & f_{v}(1,2)=5 & f_{u}(-3,3)=2 & f_{v}(-3,3)=-1 \\
\hline
\end{array}
$$

Evaluate $g_{x}(1,2)$ based on the values in the above table.

Solution: As $x=1, y=2, u=(1)^{2}-(2)^{2}=1-4=-3, v=(2)^{2}-(1)^{3}=4-1=3$. By the Chain Rule,

$$
\begin{aligned}
g_{x}(x, y) & =f_{u} \frac{\partial u}{\partial x}+f_{v} \frac{\partial v}{\partial x}=f_{u}(u, v) \frac{\partial}{\partial x}\left(x^{2}-y^{2}\right)+f_{v}(u, v) \frac{\partial}{\partial x}\left(y^{2}-x^{3}\right) \\
& =2 x f_{u}(u, v)-3 x^{2} f_{v}(u, v) \\
g_{x}(1,2) & =2(1) f_{u}(-3,3)-3(1)^{2} f_{v}(-3,3) \\
& =2(2)-3(-1)=4+3=7
\end{aligned}
$$

7. (8 points) A surface is represented by $z=f(x, y)$ with f differentiable. Let $\vec{u}=\left\langle\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right\rangle$. Suppose that $f_{x}(2,1)=5$ and $D_{\vec{u}} f(2,1)=3 \sqrt{2}$.
(a) Find $f_{y}(2,1)$.

Solution: Note \vec{u} is a unit vector. By the definition of directional derivative,

$$
\begin{aligned}
D_{\vec{u}} f(2,1) & =\nabla f(2,1) \cdot \vec{u}=\left\langle f_{x}(2,1), f_{y}(2,1)\right\rangle \cdot \vec{u} \\
& =\left\langle 5, f_{y}(2,1)\right\rangle \cdot\left\langle\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right\rangle=\frac{5}{\sqrt{2}}+\frac{1}{\sqrt{2}} f_{y}(2,1) \\
f_{y}(2,1) & =\sqrt{2} D_{\vec{u}} f(2,1)-5=\sqrt{2} \cdot 3 \sqrt{2}-5=6-5=\mathbf{1}
\end{aligned}
$$

(b) Assume $f(2,1)=3$. Use the result in (a) to find a vector in the $x y$-plane that is tangent to the level curve $f(x, y)=3$ at the point $(2,1)$.

Solution: Note the tangential vector at $(2,1)$, say $\vec{v}=\left\langle v_{1}, v_{2}\right\rangle$, is orthogonal to the gradient vector $\nabla f(2,1)=\left\langle f_{x}(2,1), f_{y}(2,1)\right\rangle=\langle 5,1\rangle$. So we have

$$
\vec{v} \cdot \nabla f(2,1)=0 \Longleftrightarrow\left\langle v_{1}, v_{2}\right\rangle \cdot\langle 5,1\rangle=0 \Longleftrightarrow 5 v_{1}+v_{2}=0 \Longleftrightarrow v_{2}=-5 v_{1}
$$

So $\vec{v}=\left\langle v_{1}, v_{2}\right\rangle=\left\langle v_{1},-5 v_{1}\right\rangle=\boldsymbol{v}_{\mathbf{1}}\langle\mathbf{1},-5\rangle$, where v_{1} can be any non-zero real number.
8. (8 points) Find all critical points of the function

$$
f(x, y)=\frac{2}{3} x^{3}+2 x^{2}+y^{2}-2 x y
$$

and classify each as a local maximum, local minimum, saddle point, or not enough information.

Solution: To find all the critical points, we solve $\nabla f(x, y)=\langle 0,0\rangle$, or $\left\langle f_{x}, f_{y}\right\rangle=\langle 0,0\rangle$. To classify them, we need to use the Second Derivative Test.

$$
\begin{aligned}
f_{x} & =\frac{\partial}{\partial x}\left(\frac{2}{3} x^{3}+2 x^{2}+y^{2}-2 x y\right)=2 x^{2}+4 x-2 y \\
f_{y} & =\frac{\partial}{\partial y}\left(\frac{2}{3} x^{3}+2 x^{2}+y^{2}-2 x y\right)=2 y-2 x \\
f_{x x} & =\frac{\partial f_{x}}{\partial x}=\frac{\partial}{\partial x}\left(2 x^{2}+4 x-2 y\right)=4 x+4 \\
f_{x y} & =\frac{\partial f_{x}}{\partial y}=\frac{\partial}{\partial y}\left(2 x^{2}+4 x-2 y\right)=-2=f_{y x} \\
f_{y y} & =\frac{\partial f_{y}}{\partial y}=\frac{\partial}{\partial y}(2 y-2 x)=2 \\
D & =\left|\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right|=f_{x x} f_{y y}-\left(f_{x y}\right)^{2}=(4 x+4)(2)-(-2)^{2}=8 x+4
\end{aligned}
$$

Solve

$$
\left\langle f_{x}, f_{y}\right\rangle=\langle 0,0\rangle \Longleftrightarrow\left\{\begin{array} { l }
{ f _ { x } = 2 x ^ { 2 } + 4 x - 2 y = 0 } \\
{ f _ { y } = 2 y - 2 x = 0 }
\end{array} \Longleftrightarrow \left\{\begin{array}{r}
x^{2}+2 x-y=0 \text { (1) } \\
y=x(2)
\end{array}\right.\right.
$$

By (2), we substitue x for y in (1), and we get

$$
x^{2}+x=0 \Longleftrightarrow x(x+1)=0 \Longleftrightarrow x=0, \text { or } x=-1
$$

Using (2) again we get two critical points $(0,0),(-1,-1)$
At $(0,0), D(0,0)=8(0)+4=4>0, f_{x x}(0,0)=4(0)+4=4>0$, so by the 2 nd derivative test, $(0,0)$ is a local minimum point .

At $(-1,-1), D(-1,-1)=8(-1)+4=-4<0$, so by the 2 nd derivative test,
$(-1,-1)$ is a saddle point.
9. (8 points) Find $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}-3 x^{2} y+y^{2}}{4 x^{2}+4 y^{2}}$ if it exists, and then prove it. Otherwise, explain why it does not exist.

Solution: Let $f(x, y)=\frac{x^{2}-3 x^{2} y+y^{2}}{4 x^{2}+4 y^{2}}$. Use polar coordinates, $x=r \cos \theta, y=r \sin \theta$. Then $x^{2}+y^{2}=r^{2}$.

$$
f(x, y)=\frac{x^{2}-3 x^{2} y+y^{2}}{4 x^{2}+4 y^{2}}=\frac{x^{2}+y^{2}-3 x^{2} y}{4\left(x^{2}+y^{2}\right)}=\frac{r^{2}-3 r^{3} \cos ^{2} \theta \sin \theta}{4 r^{2}}=\frac{1}{4}-3 r \cos ^{2} \theta \sin \theta
$$

Since for any $\theta,|\sin \theta| \leq 1,|\cos \theta| \leq 1$, we have

$$
0 \leq\left|f(x, y)-\frac{1}{4}\right|=\left|-3 r \cos ^{2} \theta \sin \theta\right|=3 r|\cos \theta|^{2}|\sin \theta| \leq 3 r
$$

As $(x, y) \rightarrow(0,0), r=\sqrt{x^{2}+y^{2}} \rightarrow 0$, and so the lower bound and upper bound of $\left|f(x, y)-\frac{1}{4}\right|$ both approach 0 as $(x, y) \rightarrow(0,0)$. By the Squeeze Theorem,
$\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}-3 x^{2} y+y^{2}}{4 x^{2}+4 y^{2}}=\frac{1}{4}$. This proves the existence of the limit.
Solution 2: Let $f(x, y)=\frac{x^{2}-3 x^{2} y+y^{2}}{4 x^{2}+4 y^{2}}$. Pick a path, for example, $C: y=0$. Then $f(x, y)=\frac{x^{2}}{4 x^{2}}=\frac{1}{4}$. The limit along this path is $\frac{1}{4}$. To show that it is the limit of the function as $(x, y) \rightarrow(0,0)$, we use the Squeeze Theorem.

$$
\begin{aligned}
0 \leq\left|f(x, y)-\frac{1}{4}\right| & =\left|\frac{x^{2}-3 x^{2} y+y^{2}}{4 x^{2}+4 y^{2}}-\frac{1}{4}\right|=\left|\frac{\left(x^{2}-3 x^{2} y+y^{2}\right)-\left(x^{2}+y^{2}\right)}{4\left(x^{2}+y^{2}\right)}\right| \\
& =\left|\frac{-3 x^{2} y}{4\left(x^{2}+y^{2}\right)}\right|=\frac{3}{4} \cdot \frac{x^{2}}{x^{2}+y^{2}}|y| \leq \frac{3}{4}|y|
\end{aligned}
$$

Since $\lim _{(x, y) \rightarrow 0} 0=0, \lim _{(x, y) \rightarrow 0} \frac{3}{4}|y|=0$, we get

$$
\lim _{(x, y) \rightarrow 0}\left|f(x, y)-\frac{1}{4}\right|=0 \Longleftrightarrow \lim _{(x, y) \rightarrow 0}\left(f(x, y)-\frac{1}{4}\right)=0 \Longleftrightarrow \lim _{(x, y) \rightarrow 0} f(x, y)=\frac{1}{4}
$$

10. (8 points) Find the absolute maximum and absolute minimum values of the function

$$
f(x, y)=4 x+4 y-x^{2}-y^{2}
$$

subject to the constraint $x^{2}+y^{2}=2$.

Solution: Let $g(x, y)=x^{2}+y^{2}$. Then the constraint equation is $g(x, y)=2$.

$$
\begin{aligned}
f_{x} & =\frac{\partial}{\partial x}\left(4 x+4 y-x^{2}-y^{2}\right)=4-2 x & g_{x} & =\frac{\partial}{\partial x}\left(x^{2}+y^{2}\right)=2 x \\
f_{y} & =\frac{\partial}{\partial y}\left(4 x+4 y-x^{2}-y^{2}\right)=4-2 y & g_{y} & =\frac{\partial}{\partial y}\left(x^{2}+y^{2}\right)=2 y \\
\nabla f & =\left\langle f_{x}, f_{y}\right\rangle=\langle 4-2 x, 4-2 y\rangle & \nabla g & =\left\langle g_{x}, g_{y}\right\rangle=\langle 2 x, 2 y\rangle
\end{aligned}
$$

By the Method of Lagrange Multipliers, we solve $\left\{\begin{array}{c}\nabla f=\lambda \nabla g \\ g(x, y)=2\end{array}\right.$ which is the same as

$$
\left\{\begin{array} { c }
{ \langle 4 - 2 x , 4 - 2 y \rangle = \lambda \langle 2 x , 2 y \rangle } \\
{ x ^ { 2 } + y ^ { 2 } = 2 }
\end{array} \Longleftrightarrow \left\{\begin{array} { l }
{ 4 - 2 x = 2 \lambda x (1) } \\
{ 4 - 2 y = 2 \lambda y (2) } \\
{ x ^ { 2 } + y ^ { 2 } = 2 }
\end{array} \Longleftrightarrow \left\{\begin{array}{c}
(1+\lambda) x=2(1) \\
(1+\lambda) y=2(2) \\
x^{2}+y^{2}=2(3)
\end{array}\right.\right.\right.
$$

From (1) and (2), we get $x=y=\frac{2}{1+\lambda}$. By (3), we have $2 x^{2}=2$, so $x= \pm 1$, and hence we get only two points $(x, y)=(-1,-1)$ and $(x, y)=(1,1)$. So we have

$$
\begin{aligned}
f(-1,-1) & =4(-1)+4(-1)-(-1)^{2}-(-1)^{2}=-10 \\
f(1,1) & =4(1)+4(1)-(1)^{2}-(1)^{2}=6
\end{aligned}
$$

So the absolute max $/ \mathrm{min}$ values of the function are $6 /-\mathbf{1 0}$, respectively.
Solution 2: We may parametrize the constraint curve as $x=\sqrt{2} \cos \theta, y=\sqrt{2} \sin \theta$. Then

$$
f(x, y)=4 \sqrt{2} \cos \theta+4 \sqrt{2} \sin \theta-2 \equiv g(\theta), \text { where } 0 \leq \theta<2 \pi
$$

To find the extreme values of f, also for g, we solve the critical points of g.

$$
\begin{gathered}
\left.g^{\prime}(\theta)=-4 \sqrt{2} \sin \theta+4 \sqrt{2} \cos \theta\right)=4 \sqrt{2}(-\sin \theta+\cos \theta) \\
g^{\prime}(\theta)=0 \Longleftrightarrow \sin \theta=\cos \theta \Longleftrightarrow \tan \theta=1 \Longleftrightarrow \theta=\frac{\pi}{4}, \frac{5 \pi}{4}
\end{gathered}
$$

As $\theta=\frac{\pi}{4}, x=\sqrt{2} \cos \frac{\pi}{4}=\sqrt{2} \cdot \frac{\sqrt{2}}{2}=1, y=\sqrt{2} \sin \frac{\pi}{4}=\sqrt{2} \cdot \frac{\sqrt{2}}{2}=1$, We have

$$
f(-1,-1)=4(-1)+4(-1)-(-1)^{2}-(-1)^{2}=-10
$$

As $\theta=\frac{5 \pi}{4}, x=\sqrt{2} \cos \frac{5 \pi}{4}=-\sqrt{2} \cdot \frac{\sqrt{2}}{2}=-1, y=\sqrt{2} \sin \frac{5 \pi}{4}=-\sqrt{2} \cdot \frac{\sqrt{2}}{2}=-1$. We have $f(1,1)=4(1)+4(1)-(1)^{2}-(1)^{2}=6$
So the absolute max $/ \mathrm{min}$ values of the function are $6 / \boxed{-10}$, respectively.
11. (8 points) Let S be a surface given by

$$
\vec{r}(u, v)=\left\langle u \cos (v), u \sin (v), \ln \left(9+u^{2}\right)\right\rangle
$$

where $(u, v) \in[0,2] \times[0,2 \pi)$. Find an equation of the tangent plane to S at the point $(0,1, \ln (10))$.

Solution: To find the corresponding u and v values of the point $(0,1, \ln (10))$, we solve $\vec{r}(u, v)=\langle 0,1, \ln (10)\rangle$. That is, To find all the critical points, we solve $\nabla f(x, y)=\langle 0,0\rangle$, or $\left\langle f_{x}, f_{y}\right\rangle=\langle 0,0\rangle$.

$$
\left\{\begin{aligned}
u \cos (v) & =0 \\
u \sin (v) & =1 \\
\ln \left(9+u^{2}\right) & =\ln (10)
\end{aligned}\right.
$$

From (3), we get $9+u^{2}=10$, so $u^{2}=1$, and we have $u= \pm 1$. Since $u \in[0,2], u=1$. Substitute it into equations (1) and (2), and we get $\cos v=0$, and $\sin v=1$. Note $v \in[0,2 \pi)$, we get $v=\frac{\pi}{2}$. So $(u, v)=\left(1, \frac{\pi}{2}\right)$.

$$
\begin{aligned}
\vec{r}_{u} & =\frac{\partial}{\partial u}\left\langle u \cos (v), u \sin (v), \ln \left(9+u^{2}\right)\right\rangle=\left\langle\cos (v), \sin (v), \frac{2 u}{9+u^{2}}\right\rangle \\
\vec{r}_{v} & =\frac{\partial}{\partial v}\left\langle u \cos (v), u \sin (v), \ln \left(9+u^{2}\right)\right\rangle=\langle-u \sin (v), u \cos (v), 0\rangle \\
\vec{r}_{u}\left(1, \frac{\pi}{2}\right) & =\left\langle\cos \frac{\pi}{2}, \sin \frac{\pi}{2}, \frac{2(1)}{9+(1)^{2}}\right\rangle=\left\langle 0,1, \frac{1}{5}\right\rangle \\
\vec{r}_{v}\left(1, \frac{\pi}{2}\right) & =\left\langle-(1) \sin \frac{\pi}{2},(1) \cos \frac{\pi}{2}, 0\right\rangle=\langle-1,0,0\rangle
\end{aligned}
$$

So the normal direction of the tangent plane is

$$
\vec{n}=\vec{r}_{u}\left(1, \frac{\pi}{2}\right) \times \vec{r}_{v}\left(1, \frac{\pi}{2}\right)=\left|\begin{array}{rrr}
\vec{i} & \vec{j} & \vec{k} \\
0 & 1 & \frac{1}{5} \\
-1 & 0 & 0
\end{array}\right|=0 \vec{i}-\frac{1}{5} \vec{j}+\vec{k}=\left\langle 0,-\frac{1}{5}, 1\right\rangle
$$

So the equation of the tangent plane at $(0,1, \ln (10))$ is

$$
(0)(x-0)-\frac{1}{5}(y-1)+(z-\ln (10))=0 \Longleftrightarrow y-5 z-1+5 \ln (10)=0
$$

12. (8 points) Evaluate the integral $\iint_{D} 6 x^{2} y^{2} \mathrm{~d} A$, where D is the region bounded by $x=y^{2}$ and $y=x^{3}$ in the first quadrant.

Solution: Solving $\left\{\begin{array}{l}x=y^{2} \\ y=x^{3}\end{array}\right.$ gives $(x, y)=(0,0)$ and $(x, y)=(1,1)$ (point $(-1,-1)$ is not in the first quadrant). In the first quadrant, $x=y^{2} \Longleftrightarrow y=\sqrt{x}, y=x^{3} \Longleftrightarrow x=x^{\frac{1}{3}}$. So we may sketch the region D as follows,

So $D=\left\{(x, y) \mid 0 \leq y \leq 1, y^{2} \leq x \leq y^{\frac{1}{3}}\right\}$.

$$
\begin{aligned}
\iint_{D} 6 x^{2} y^{2} \mathrm{~d} A & =\int_{0}^{1} \int_{y^{2}}^{y^{\frac{1}{3}}} 6 x^{2} y^{2} \mathrm{~d} x \mathrm{~d} y=\left.\int_{0}^{1} 2 x^{3} y^{2}\right|_{x=y^{2}} ^{x=y^{\frac{1}{3}}} \mathrm{~d} y \\
& =\int_{0}^{1} 2 y^{2}\left[y-\left(y^{2}\right)^{3}\right] \mathrm{d} y=\int_{0}^{1}\left(2 y^{3}-2 y^{8}\right) \mathrm{d} y \\
& =\left.\left(\frac{y^{4}}{2}-\frac{2 y^{9}}{9}\right)\right|_{0} ^{1}=\frac{1}{2}-\frac{2}{9}=\frac{\mathbf{5}}{\mathbf{1 8}}
\end{aligned}
$$

Solution 2: $D=\left\{(x, y) \mid 0 \leq x \leq 1, y^{\frac{1}{3}} \leq x \leq \sqrt{x}\right\}$.

$$
\begin{aligned}
\iint_{D} 6 x^{2} y^{2} \mathrm{~d} A & =\int_{0}^{1} \int_{x^{3}}^{x^{\frac{1}{2}}} 6 x^{2} y^{2} \mathrm{~d} y \mathrm{~d} x=\left.\int_{0}^{1} 2 x^{2} y^{3}\right|_{y=x^{3}} ^{y=x^{\frac{1}{2}}} \mathrm{~d} x \\
& =\int_{0}^{1} 2 x^{2}\left(x^{\frac{3}{2}}-x^{9}\right) \mathrm{d} x=\int_{0}^{1} 2\left(x^{\frac{7}{2}}-x^{11}\right) \mathrm{d} x \\
& =\left.2\left(\frac{2}{9} x^{\frac{9}{2}}-\frac{x^{12}}{12}\right)\right|_{0} ^{1}=2\left(\frac{2}{9}-\frac{1}{12}\right)=\frac{4}{9}-\frac{1}{6}=\frac{\mathbf{5}}{\mathbf{1 8}}
\end{aligned}
$$

13. (8 points) Evaluate the iterated integral by reversing the order of integration

$$
\int_{0}^{1} \int_{x^{1 / 3}}^{1} \frac{1}{y^{4}+1} d y d x
$$

Solution:

$$
\begin{aligned}
\int_{0}^{1} \int_{x^{1 / 3}}^{1} \frac{1}{y^{4}+1} \mathrm{~d} y \mathrm{~d} x & =\int_{0}^{1} \int_{0}^{y^{3}} \frac{1}{y^{4}+1} \mathrm{~d} x \mathrm{~d} y=\left.\int_{0}^{1} \frac{x}{y^{4}+1}\right|_{x=0} ^{x=y^{3}} \mathrm{~d} y \\
& =\int_{0}^{1} \frac{y^{3}}{y^{4}+1} \mathrm{~d} y=\int_{1}^{2} \frac{\mathrm{~d} u}{4 u}=\left.\frac{1}{4} \ln |u|\right|_{1} ^{2}=\frac{1}{4}(\ln 2-\ln 1) \\
& =\frac{\ln 2}{4}
\end{aligned}
$$

