Math 2400, Midterm 2

March 11, 2019

PRINT Your NAME:

PRINT INSTRUCTOR'S NAME:

\qquad
Mark your section/instructor:

\square	Section 001	Kevin Berg	8:00-8:50 AM
\square	Section 002	Harrison Stalvey	8:00-8:50 AM
\square	Section 003	Daniel Martin	9:00-9:50 AM
\square	Section 004	Albert Bronstein	9:00-9:50 AM
\square	Section 005	Xingzhou Yang	10:00-10:50 AM
\square	Section 006	Mark Pullins	10:00-10:50 AM
\square	Section 007	János Englander	10:00-10:50 AM
\square	Section 008	John Willis	12:00-12:50 PM
\square	Section 009	Taylor Klotz	$1: 00-1: 50 \mathrm{PM}$
\square	Section 010	János Englander	$2: 00-2: 50 \mathrm{PM}$
\square	Section 011	Harrison Stalvey	$2: 00-2: 50 \mathrm{PM}$
\square	Section 012	Xingzhou Yang	$3: 00-3: 50 \mathrm{PM}$
\square	Section 013	Trevor Jack	$4: 00-4: 50 \mathrm{PM}$

Question	Points	Score
1	8	
2	5	
3	5	
4	10	
5	8	
6	8	
7	8	
8	8	
9	8	
10	8	
11	8	
12	8	
13	8	
Total:	100	

Honor Code
 On my honor, as a University of Colorado at Boulder student, I have neither given nor received unauthorized assistance on this work.

- No calculators or cell phones or other electronic devices allowed at any time.
- Show all your reasoning and work for full credit, except where otherwise indicated. Use full mathematical or English sentences.
- You have 95 minutes and the exam is 100 points.
- You do not need to simplify numerical expressions. For example leave fractions like $100 / 7$ or expressions like $\ln (3) / 2$ as is.
- When done, give your exam to your instructor, who will mark your name off on a photo roster.
- We hope you show us your best work!

1. (8 points) Note: No partial credit for this problem.

Let $f(x, y, z)=x^{2} y+e^{2 z}$. Compute the following:
(a) $\frac{\partial f}{\partial x}=$
(b) $\frac{\partial^{2} f}{\partial z^{2}}=$ \qquad .
(c) $\frac{\partial^{2} f}{\partial x \partial y}-\frac{\partial^{2} f}{\partial y \partial x}=$
(d) $\nabla f(1,-1,0)=$
2. (5 points) Circle the answer that best describes each statement.
(a) If f is defined at $(0,0)$ and $\lim _{(x, y) \rightarrow(0,0)} f(x, y)=0$, then f is continuous at $(0,0)$.
(A) Always true
(B) Sometimes true
(C) Never true
(b) If $f(x, y) \rightarrow L$ as $(x, y) \rightarrow(0,0)$ along every straight line through $(0,0)$, then $\lim _{(x, y) \rightarrow(0,0)} f(x, y)=L$.
(A) Always true
(B) Sometimes true
(C) Never true
(c) If $z=f(x, y)$ is a function of two variables and $\nabla f(a, b)=\langle 0,0\rangle$, then f has a local maximum or minimum at (a, b)
(A) Always true
(B) Sometimes true
(C) Never true
(d) If $f_{x}(x, y)=0$ and $f_{y}(x, y)=0$ for all (x, y), then f is constant.
(A) Always true
(B) Sometimes true
(C) Never true
(e) If $f(x, y)$ is a differentiable function and \vec{u} is a unit vector, then the directional derivative $D_{\vec{u}} f(a, b)$ is parallel to \vec{u}.
(A) Always true
(B) Sometimes true
(C) Never true
3. (5 points) Let $f(x, y)=\frac{\ln (x-y)}{\sqrt{4-x^{2}-y^{2}}}$.

Which one of the following shaded regions is the domain of f ? \qquad .
(A)

(E)

(B)

(F)

(C)

(D)

(G)

(H)

4. (10 points) Match each 3D surface with one of the contour plots, and one of the equations.
(a)

(1)

(A) $z=\sin (x) \sin (y)$
(B) $z=\sin (x-y)$
(C) $z=\frac{x^{2}-x+y^{2}+2 y}{x^{2}+1}$
(b) \qquad
(2)

(D) $z=y^{2}$
(E) $z=y^{2}-9 x y$
(c) \qquad
(3)

(d) \qquad (4)

(e) \qquad

(5)

5. (8 points) Let S be the surface given by $z=x y$, and let R be the rectangle $[0,6] \times[0,4]$.
(a) Taking the sample points to be the upper right corners, use a Riemann sum with $m=2$ and $n=2$ to estimate the volume of the solid that lies below S and above R.
(b) Calculate the exact volume of the solid that lies below S and above R.
6. (8 points) Let f be a differentiable function, $g(x, y)=f(u, v)$, where $u=x^{2}-y^{2}, v=y^{2}-x^{3}$.

$$
\begin{array}{|l|l|l|l|}
\hline g(1,2)=11 & g(-3,3)=7 & f(1,2)=20 & f(-3,3)=11 \\
\hline f_{u}(1,2)=4 & f_{v}(1,2)=5 & f_{u}(-3,3)=2 & f_{v}(-3,3)=-1 \\
\hline
\end{array}
$$

Evaluate $g_{x}(1,2)$ based on the values in the above table.
7. (8 points) A surface is represented by $z=f(x, y)$ with f differentiable. Let $\vec{u}=\left\langle\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right\rangle$. Suppose that $f_{x}(2,1)=5$ and $D_{\vec{u}} f(2,1)=3 \sqrt{2}$.
(a) Find $f_{y}(2,1)$.
(b) Assume $f(2,1)=3$. Use the result in (a) to find a vector in the $x y$-plane that is tangent to the level curve $f(x, y)=3$ at the point $(2,1)$.
8. (8 points) Find all critical points of the function

$$
f(x, y)=\frac{2}{3} x^{3}+2 x^{2}+y^{2}-2 x y
$$

and classify each as a local maximum, local minimum, saddle point, or not enough information.
9. (8 points) Find $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}-3 x^{2} y+y^{2}}{4 x^{2}+4 y^{2}}$ if it exists, and then prove it. Otherwise, explain why it does not exist.
10. (8 points) Find the absolute maximum and absolute minimum values of the function

$$
f(x, y)=4 x+4 y-x^{2}-y^{2}
$$

subject to the constraint $x^{2}+y^{2}=2$.
11. (8 points) Let S be a surface given by

$$
\vec{r}(u, v)=\left\langle u \cos (v), u \sin (v), \ln \left(9+u^{2}\right)\right\rangle
$$

where $(u, v) \in[0,2] \times[0,2 \pi)$. Find an equation of the tangent plane to S at the point $(0,1, \ln (10))$.
12. (8 points) Evaluate the integral $\iint_{D} 6 x^{2} y^{2} d A$, where D is the region bounded by $x=y^{2}$ and $y=x^{3}$ in the first quadrant.
13. (8 points) Evaluate the iterated integral by reversing the order of integration

$$
\int_{0}^{1} \int_{x^{1 / 3}}^{1} \frac{1}{y^{4}+1} d y d x
$$

