Math 2400, Midterm 2 March 11, 2019

PRINT YOUR NAME: _____

PRINT INSTRUCTOR'S NAME: _

Mark your section/instructor:

Section 001	Kevin Berg	8:00–8:50 AM
Section 002	Harrison Stalvey	8:00-8:50 AM
Section 003	Daniel Martin	9:00-9:50 AM
Section 004	Albert Bronstein	9:00-9:50 AM
Section 005	Xingzhou Yang	10:00-10:50 AM
Section 006	Mark Pullins	10:00-10:50 AM
Section 007	János Englander	10:00-10:50 AM
Section 008	John Willis	12:00-12:50 PM
Section 009	Taylor Klotz	1:00-1:50 PM
Section 010	János Englander	2:00-2:50 PM
Section 011	Harrison Stalvey	2:00-2:50 PM
Section 012	Xingzhou Yang	3:00–3:50 PM
Section 013	Trevor Jack	4:00–4:50 PM

Question	Points	Score
1	8	
2	5	
3	5	
4	10	
5	8	
6	8	
7	8	
8	8	
9	8	
10	8	
11	8	
12	8	
13	8	
Total:	100	

Honor Code

On my honor, as a University of Colorado at Boulder student, I have neither given nor received unauthorized assistance on this work.

- No calculators or cell phones or other electronic devices allowed at any time.
- Show all your reasoning and work for full credit, except where otherwise indicated. Use full mathematical or English sentences.
- You have 95 minutes and the exam is 100 points.
- You do not need to simplify numerical expressions. For example leave fractions like 100/7 or expressions like $\ln(3)/2$ as is.
- When done, give your exam to your instructor, who will mark your name off on a photo roster.
- We hope you show us your best work!

1. (8 points) Note: No partial credit for this problem. Let $f(x, y, z) = x^2y + e^{2z}$. Compute the following:

(a)
$$\frac{\partial f}{\partial x} =$$
_____.

(b)
$$\frac{\partial^2 f}{\partial z^2} =$$
_____.

(c)
$$\frac{\partial^2 f}{\partial x \partial y} - \frac{\partial^2 f}{\partial y \partial x} =$$
_____.

(d)
$$\nabla f(1, -1, 0) =$$
 _____.

- 2. (5 points) Circle the answer that best describes each statement.
 - (a) If f is defined at (0,0) and $\lim_{(x,y)\to(0,0)} f(x,y) = 0$, then f is continuous at (0,0).
 - (A) Always true
 - (B) Sometimes true
 - (C) Never true
 - (b) If $f(x, y) \to L$ as $(x, y) \to (0, 0)$ along every straight line through (0, 0), then $\lim_{(x,y)\to(0,0)} f(x, y) = L.$
 - (A) Always true
 - (B) Sometimes true
 - (C) Never true
 - (c) If z = f(x, y) is a function of two variables and $\nabla f(a, b) = \langle 0, 0 \rangle$, then f has a local maximum or minimum at (a, b)
 - (A) Always true
 - (B) Sometimes true
 - (C) Never true
 - (d) If $f_x(x,y) = 0$ and $f_y(x,y) = 0$ for all (x,y), then f is constant.
 - (A) Always true
 - (B) Sometimes true
 - (C) Never true
 - (e) If f(x, y) is a differentiable function and \vec{u} is a unit vector, then the directional derivative $D_{\vec{u}}f(a, b)$ is parallel to \vec{u} .
 - (A) Always true
 - (B) Sometimes true
 - (C) Never true

3. (5 points) Let $f(x,y) = \frac{\ln(x-y)}{\sqrt{4-x^2-y^2}}$.

Which one of the following shaded regions is the domain of f? _____

4. (10 points) Match each 3D surface with one of the contour plots, and one of the equations.

- 5. (8 points) Let S be the surface given by z = xy, and let R be the rectangle $[0, 6] \times [0, 4]$.
 - (a) Taking the sample points to be the upper right corners, use a **Riemann sum** with m = 2 and n = 2 to estimate the volume of the solid that lies below S and above R.

(b) Calculate the **exact** volume of the solid that lies below S and above R.

6. (8 points) Let f be a differentiable function, g(x, y) = f(u, v), where $u = x^2 - y^2$, $v = y^2 - x^3$.

g(1,2) = 11	g(-3,3) = 7	f(1,2) = 20	f(-3,3) = 11
$f_u(1,2) = 4$	$f_v(1,2) = 5$	$f_u(-3,3) = 2$	$f_v(-3,3) = -1$

Evaluate $g_x(1,2)$ based on the values in the above table.

- 7. (8 points) A surface is represented by z = f(x, y) with f differentiable. Let $\vec{u} = \left\langle \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right\rangle$. Suppose that $f_x(2, 1) = 5$ and $D_{\vec{u}}f(2, 1) = 3\sqrt{2}$.
 - (a) Find $f_y(2, 1)$.

(b) Assume f(2,1) = 3. Use the result in (a) to find a vector in the *xy*-plane that is tangent to the level curve f(x,y) = 3 at the point (2,1).

8. (8 points) Find all critical points of the function

$$f(x,y) = \frac{2}{3}x^3 + 2x^2 + y^2 - 2xy$$

and classify each as a local maximum, local minimum, saddle point, or not enough information.

9. (8 points) Find $\lim_{(x,y)\to(0,0)} \frac{x^2 - 3x^2y + y^2}{4x^2 + 4y^2}$ if it exists, and then prove it. Otherwise, explain why it does not exist.

10. (8 points) Find the absolute maximum and absolute minimum values of the function

$$f(x,y) = 4x + 4y - x^2 - y^2$$

subject to the constraint $x^2 + y^2 = 2$.

11. (8 points) Let S be a surface given by

$$\vec{r}(u,v) = \left\langle u\cos(v), \, u\sin(v), \, \ln\left(9+u^2\right) \right\rangle$$

where $(u, v) \in [0, 2] \times [0, 2\pi)$. Find an equation of the tangent plane to S at the point $(0, 1, \ln(10))$.

12. (8 points) Evaluate the integral $\iint_D 6x^2y^2 dA$, where D is the region bounded by $x = y^2$ and $y = x^3$ in the first quadrant.

13. (8 points) Evaluate the iterated integral by reversing the order of integration

$$\int_0^1 \int_{x^{1/3}}^1 \frac{1}{y^4 + 1} \, dy \, dx$$