Solutions to Math 2400, Midterm 1
 February 11, 2019

PRINT your NAmE:

PRINT INSTRUCTOR'S NAME:

Mark your section/instructor:

\square	Section 001	Kevin Berg	8:00-8:50 AM
\square	Section 002	Harrison Stalvey	8:00-8:50 AM
\square	Section 003	Daniel Martin	9:00-9:50 AM
\square	Section 004	Albert Bronstein	9:00-9:50 AM
\square	Section 005	Xingzhou Yang	10:00-10:50 AM
\square	Section 006	Mark Pullins	10:00-10:50 AM
\square	Section 007	János Englander	10:00-10:50 AM
\square	Section 008	John Willis	12:00-12:50 PM
\square	Section 009	Taylor Klotz	1:00-1:50 PM
\square	Section 010	János Englander	$2: 00-2: 50 \mathrm{PM}$
\square	Section 011	Harrison Stalvey	$2: 00-2: 50 \mathrm{PM}$
\square	Section 012	Xingzhou Yang	3:00-3:50 PM
\square	Section 013	Trevor Jack	4:00-4:50 PM

Question	Points	Score
1	10	
2	4	
3	4	
4	12	
5	12	
6	6	
7	11	
8	10	
9	11	
10	10	
11	10	
Total:	100	

Honor Code
On my honor, as a University of Colorado at Boulder student, I have neither
given nor received unauthorized assistance on this work.

- No calculators or cell phones or other electronic devices allowed at any time.
- Show all your reasoning and work for full credit, except where otherwise indicated. Use full mathematical or English sentences.
- You have 95 minutes and the exam is 100 points.
- You do not need to simplify numerical expressions. For example leave fractions like $100 / 7$ or expressions like $\ln (3) / 2$ as is.
- When done, give your exam to your instructor, who will mark your name off on a photo roster.
- We hope you show us your best work!

1. (10 points) Note: No partial credit for this problem.

Let $\vec{a}=\langle-3,4,0\rangle, \vec{b}=\langle 1,-3,-1\rangle$. Compute
(a) $|\vec{a}|=\underline{5}$

Solution: $|\vec{a}|=\sqrt{(-3)^{2}+(4)^{2}+(0)^{2}}=\sqrt{25}=5$
(b) $3 \vec{a}-2 \vec{b}=\langle-11,18,2\rangle$

Solution:

$$
3 \vec{a}-2 \vec{b}=3\langle-3,4,0\rangle-2\langle 1,-3,-1\rangle=\langle-9,12,0\rangle+\langle-2,6,2\rangle=\langle-11,18,2\rangle
$$

(c) The angle between \vec{a} and $\left.\vec{b}=\underset{\arccos \left(-\frac{3}{\sqrt{11}}\right)}{ }\right)=\pi-\arccos \left(\frac{3}{\sqrt{11}}\right)$

Solution: $\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta$, where θ is the angle between \vec{a} and \vec{b}.

$$
\begin{aligned}
\vec{a} \cdot \vec{b} & =\langle-3,4,0\rangle \cdot\langle 1,-3,-1\rangle=(-3)(1)+(4)(-3)+(0)(-1)=-15 \\
|\vec{b}| & =\sqrt{(1)^{2}+(-3)^{2}+(-1)^{2}}=\sqrt{1+9+1}=\sqrt{11} \\
\theta & =\arccos \left(\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}\right)=\arccos \left(\frac{-15}{(5) \sqrt{11}}\right)=\arccos \left(-\frac{3}{\sqrt{11}}\right)=\pi-\arccos \left(\frac{3}{\sqrt{11}}\right)
\end{aligned}
$$

(d) $\vec{a} \times \vec{b}=\langle-4,-3,5\rangle$

Solution:

$$
\begin{aligned}
\vec{a} \times \vec{b} & =\left|\begin{array}{rrr}
\vec{i} & \vec{j} & \vec{k} \\
-3 & 4 & 0 \\
1 & -3 & -1
\end{array}\right|=\vec{i}\left|\begin{array}{rr}
4 & 0 \\
-3 & -1
\end{array}\right|-\vec{j}\left|\begin{array}{rr}
-3 & 0 \\
1 & -1
\end{array}\right|+\vec{k}\left|\begin{array}{rr}
-3 & 4 \\
1 & -3
\end{array}\right| \\
& =\vec{i}(-4-0)-\vec{j}(3-0)+\vec{k}(9-4)=-4 \vec{i}-3 \vec{j}+5 \vec{k}=\langle-4,-3,5\rangle
\end{aligned}
$$

(e) $\operatorname{proj}_{\vec{a}} \vec{b}=-\frac{3}{5}\langle-3,4,0\rangle=\left\langle\frac{9}{5},-\frac{12}{5}, 0\right\rangle$

Solution:

$$
\operatorname{proj}_{\vec{a}} \vec{b}=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|^{2}} \vec{a}=\frac{-15}{5^{2}}\langle-3,4,0\rangle=-\frac{3}{5}\langle-3,4,0\rangle=\left\langle\frac{9}{5},-\frac{12}{5}, 0\right\rangle
$$

2. (4 points) Note: No partial credit for this problem.

The area of the triangle with vertices $(a, 0,0),(0,2 a, 0)$ and $(0,0,3 a)$ is:

Solution: Denote the 3 vertices by $A(a, 0,0), B(0,2 a, 0)$, and $C(0,0,3 a)$,
(a) $\frac{3 a^{2}}{2}$ respectively. Then the area of the triangle is $\frac{1}{2}|\overrightarrow{A B} \times \overrightarrow{A C}|$.
(b) $5 a^{2}$
(c) $\frac{7 a^{2}}{2}$
(d) $6 a^{2}$
(e) $\frac{3 a^{3}}{2}$

$$
\begin{aligned}
\overrightarrow{A B} & =\overrightarrow{O B}-\overrightarrow{O A}=\langle 0,2 a, 0\rangle-\langle a, 0,0\rangle=\langle-a, 2 a, 0\rangle \\
\overrightarrow{A C} & =\overrightarrow{O C}-\overrightarrow{O A}=\langle 0,0,3 a\rangle-\langle a, 0,0\rangle=\langle-a, 0,3 a\rangle \\
\overrightarrow{A B} \times \overrightarrow{A C} & =\left|\begin{array}{rrr}
\vec{i} & \vec{j} & \vec{k} \\
-a & 2 a & 0 \\
-a & 0 & 3 a
\end{array}\right|=\vec{i}\left|\begin{array}{rr}
2 a & 0 \\
0 & 3 a
\end{array}\right|-\vec{j}\left|\begin{array}{rr}
-a & 0 \\
-a & 3 a
\end{array}\right|+\vec{k}\left|\begin{array}{rr}
-a & 2 a \\
-a & 0
\end{array}\right| \\
& =\vec{i}\left(6 a^{2}-0\right)-\vec{j}\left(-3 a^{2}-0\right)+\vec{k}\left(0+2 a^{2}\right)=\left\langle 6 a^{2}, 3 a^{2}, 2 a^{2}\right\rangle \\
|\overrightarrow{A B} \times \overrightarrow{A C}| & =\left|\left\langle 6 a^{2}, 3 a^{2}, 2 a^{2}\right\rangle\right|=a^{2}|\langle 6,3,2\rangle|=a^{2} \sqrt{6^{2}+3^{2}+2^{2}} \\
& =a^{2} \sqrt{36+9+4}=a^{2} \sqrt{49}=7 a^{2} \\
\text { area } & =\frac{1}{2}|\overrightarrow{A B} \times \overrightarrow{A C}|=\frac{7 a^{2}}{2}
\end{aligned}
$$

3. (4 points) Note: No partial credit for this problem.

Let $\vec{a}=\langle-1,2,1\rangle, \vec{b}=\langle 1,-1,1\rangle$, and $\vec{c}=\langle-2,-2,1\rangle$. Compute the volume of the parallelepiped formed by \vec{a}, \vec{b}, and \vec{c}.
(a) 9
(b) 10
(c) -10
(d) 11
(e) -11
(c) -10

Solution: The volume of the parallelipiped determined by \vec{a}, \vec{b} and \vec{c} is

$$
\begin{aligned}
\text { Volume } & =|\vec{a} \cdot(\vec{b} \times \vec{c})| \text { or } \mid(\vec{a} \times b) \cdot \vec{c})|\stackrel{\text { or }}{=}|(\vec{c} \times a) \cdot \vec{b}) \mid \\
\vec{b} \times \vec{c} & =\left|\begin{array}{rrr}
r & -1 & 1 \\
-2 & -2 & 1
\end{array}\right|=\vec{i}\left|\begin{array}{rr}
-1 & 1 \\
-2 & 1
\end{array}\right|-\vec{j}\left|\begin{array}{rr}
1 & 1 \\
-2 & 1
\end{array}\right|+\vec{k}\left|\begin{array}{rr}
1 & -1 \\
-2 & -2
\end{array}\right| \\
& =\vec{i}(-1+2)-\vec{j}(1+2)+\vec{k}(-2-2)=\vec{i}-3 \vec{j}-4 \vec{k} \\
& =\langle 1,-3,-4\rangle \\
\vec{a} \cdot(\vec{b} \times \vec{c}) & =\langle-1,2,1\rangle \cdot\langle 1,-3,-4\rangle=(-1)(1)+(2)(-3)+(1)(-4)=-11 \\
\text { volume } & =|\vec{a} \cdot(\vec{b} \times \vec{c})|=11
\end{aligned}
$$

Note: $\vec{a} \times \vec{b}=\langle 3,2,-1\rangle, \vec{a} \times \vec{c}=\langle 4,-1,6\rangle .|(\vec{a} \times \vec{b}) \cdot \vec{c}|=|(\vec{a} \times \vec{c}) \cdot \vec{b}|=11$.
4. (12 points) Match each curve with one of the equations on the right side. Not all equations will be matched.

5. (12 points) Match each 3D surface with one of the equations on the right side. Not all equations will be matched.
(i) $\underline{(G)}$

(A) $x^{2}+y^{2}-z=0$
(B) $x^{2}+y^{2}-z^{2}=0$
(C) $x^{2}+y^{2}-z^{2}-1=0$
(D) $x^{2}+y^{2}-z^{2}+1=0$
(E) $x^{2}+y^{2}-\sin ^{2} z=0$
(F) $x^{2}+y^{2}-\cos ^{2} z=0$
(G) $z-y^{2}=0$
(H) $z-x^{2}=0$

(vi) (D)

6. (6 points) Use spherical coordinates to describe the solid consisting of points on and inside the sphere of radius 3 centered at the origin, but strictly outside the sphere of radius 1 centered at the origin, and in the first octant.

Solution: The solid $E=\left\{(\rho, \theta, \phi) \mid 1<\rho \leq 3,0<\theta<\frac{\pi}{2}, 0<\phi<\frac{\pi}{2}\right\}$
7. (11 points) Suppose $\vec{r}(t)$ is a differentiable vector function with

$$
\vec{r}^{\prime}(t)=\left\langle 2 t e^{t^{2}}, \frac{2 t}{1+t^{2}}, \sec ^{2}(t)\right\rangle
$$

and $\vec{r}(0)=\langle 0,0,0\rangle$. Find the formula for $\vec{r}(t)$.

Solution:

$$
\begin{aligned}
\vec{r}(t) & =\int \vec{r}^{\prime}(t) \mathrm{d} t=\int\left\langle 2 t e^{t^{2}}, \frac{2 t}{1+t^{2}}, \sec ^{2}(t)\right\rangle \mathrm{d} t \\
& =\left\langle\int 2 t e^{t^{2}} \mathrm{~d} t, \int \frac{2 t}{1+t^{2}} \mathrm{~d} t, \int \sec ^{2}(t) \mathrm{d} t\right\rangle \\
& =\left\langle e^{t^{2}}, \ln \left(1+t^{2}\right), \tan t\right\rangle+\vec{C}
\end{aligned}
$$

where \vec{C} is a constant vector.
Since $\vec{r}(0)=\langle 0,0,0\rangle$,

$$
\begin{aligned}
\vec{r}(0)=\left.\left\langle e^{t^{2}}, \ln \left(1+t^{2}\right), \tan t\right\rangle\right|_{t=0}+\vec{C} & =\langle 0,0,0\rangle \\
\langle 1,0,0\rangle+\vec{C} & =\langle 0,0,0\rangle \\
\vec{C}=\langle 0,0,0\rangle-\langle 1,0,0\rangle & =\langle-1,0,0\rangle
\end{aligned}
$$

So we get

$$
\vec{r}(t)=\left\langle e^{t^{2}}-1, \ln \left(1+t^{2}\right), \tan t\right\rangle
$$

8. (10 points) Compute the arc length of the path parameterized by

$$
\vec{r}(t)=\left\langle\cos (t), \sin (t), \frac{2}{3} t^{\frac{3}{2}}\right\rangle, \quad 0 \leq t \leq 3 .
$$

Solution:

$$
\begin{aligned}
\vec{r}^{\prime}(t) & =\frac{\mathrm{d}}{\mathrm{~d} t}\left\langle\cos (t), \sin (t), \frac{2}{3} t^{\frac{3}{2}}\right\rangle=\left\langle-\sin (t), \cos (t), t^{\frac{1}{2}}\right\rangle \\
\left|\vec{r}^{\prime}(t)\right| & =\sqrt{[-\sin (t)]^{2}+[\cos (t)]^{2}+\left[t^{\frac{1}{2}}\right]^{2}}=\sqrt{1+t} \\
L & =\int_{0}^{3}\left|\vec{r}^{\prime}(t)\right| \mathrm{d} t=\int_{0}^{3} \sqrt{1+t} \mathrm{~d} t \quad\left[\text { let } u=\sqrt{1+t} \Rightarrow u^{2}=1+t \Rightarrow 2 u \mathrm{~d} u=\mathrm{d} t\right] \\
& =\int_{1}^{2} u \cdot 2 u \mathrm{~d} u=2 \int_{1}^{2} u^{2} \mathrm{~d} u=\left.\frac{2}{3} u^{3}\right|_{1} ^{2}=\frac{2}{3}(8-1)=\frac{14}{3}
\end{aligned}
$$

9. (11 points) Let π be the plane perpendicular to the plane given by the equation $-2 x-2 y+z=8$ and containing the points $(0,2,2)$ and $(4,2,4)$. Find the equation of π and express it in the form $a x+b y+c z+d=0$.

Solution: Denote the two points by $A(0,2,2), B(4,2,4)$, and the normal vector of the plane $-2 x-2 y+z=8$ by $\vec{v}=\langle-2,-2,1\rangle$. Then the plane π is parallel to \vec{v}, and also to $\overrightarrow{A B}$. So the normal vector of the plane π is parallel to $\vec{n}=\overrightarrow{A B} \times \vec{v}$.

$$
\begin{aligned}
\overrightarrow{A B} & =\overrightarrow{O B}-\overrightarrow{O A}=\langle 4,2,4\rangle-\langle 0,2,2\rangle=\langle 4,0,2\rangle \\
\vec{n} & =\overrightarrow{A B} \times \vec{v}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
4 & 0 & 2 \\
-2 & -2 & 1
\end{array}\right|=\vec{i}(0+4)-\vec{j}(4+4)+\vec{k}(-8-0) \\
& =4 \vec{i}-8 \vec{j}-8 \vec{k}=\langle 4,-8,-8\rangle
\end{aligned}
$$

So the equation of the plane π is

$$
4(x-0)-8(y-2)-8(z-2)=0 \Longleftrightarrow(x-0)-2(y-2)-2(z-2)=0
$$

Simplify it and we get

$$
4 x-8 y-8 z+32=0 \Longleftrightarrow x-2 y-2 z+8=0
$$

10. (10 points) Find the distance from the point $(2,-1,5)$ to the plane $x+y+z+1=0$.

Solution: By the distance formula between a point $P\left(x_{0}, y_{0}, z_{0}\right)$ and the plane π : $a x+b y+$ $c z+d=0, \operatorname{dist}(P, \pi)=\frac{\left|a x_{0}+b y_{0}+c z_{0}+d\right|}{\sqrt{a^{2}+b^{2}+c^{2}}}$.

$$
\text { distance }=\frac{|(2)+(-1)+(5)+1|}{\sqrt{(1)^{2}+(1)^{2}+(1)^{2}}}=\frac{7}{\sqrt{3}}=\frac{7 \sqrt{3}}{3}
$$

Solution 2: Denote the given point by $P_{1}(2,-1,5)$, and the normal vector of the plane by $\vec{n}=\langle 1,1,1\rangle$. We choose a point on the plane, for example, we let $x=y=0$, and plug them into the plane equation, and we get $z=-1$. We denote the point by $P_{0}(0,0,-1)$. Let $\vec{b}=\overrightarrow{P_{0} P_{1}}=\overrightarrow{O P_{1}}-\overrightarrow{O P_{1}}=\langle 2,-1,5\rangle-\langle 0,0,-1\rangle=\langle 2,-1,6\rangle$.

$$
\begin{aligned}
\operatorname{distance} & =\operatorname{dist}\left(P_{1}, \pi\right)=\left|\operatorname{comp}_{\vec{n}} \vec{b}\right|=\left|\operatorname{proj}_{\vec{n}} \vec{b}\right|=\frac{|\vec{n} \cdot \vec{b}|}{|\vec{n}|} \\
& =\frac{|\langle 1,1,1\rangle \cdot\langle 2,-1,6\rangle|}{\sqrt{(1)^{2}+(1)^{2}+(1)^{2}}}=\frac{|(1)(2)+(1)(-1)+(1)(6)|}{\sqrt{3}} \\
& =\frac{7}{\sqrt{3}}=\frac{7 \sqrt{3}}{3}
\end{aligned}
$$

11. (10 points) Find a parametric representation of the surface $z=x^{2}+4 y^{2}$ within the cylinder $x^{2}+4 y^{2}=4$. Include the bounds for the parameter(s).

Solution:

$$
\left\{\begin{array}{l}
x=x \\
y=y \\
z=x^{2}+4 y^{2}
\end{array}\right.
$$

The bounds for x and y are $\left\{(x, y) \mid x^{2}+4 y^{2} \leq 4\right\}$.
Solution 2: Use cylindrical coordinates, $x=2 r \cos \theta, y=r \sin \theta, z=z$. Then $x^{2}+4 y^{2}=$ $(2 r \cos \theta)^{2}+4(r \sin \theta)^{2}=4 r^{2}$. The equation of the surface is $z=x^{2}+4 y^{2}$ and the cylinder $x^{2}+4 y^{2}=4$ become $z=4 r^{2}$ and $4 r^{2}=4$ or $r=1$, respectively. So the parametrization of the surface is

$$
\left\{\begin{array}{l}
x=2 r \cos \theta \\
y=r \sin \theta \\
z=4 r^{2}
\end{array}\right.
$$

The bounds for the parameters are $\{(r, \theta) \mid 0 \leq \theta \leq 2 \pi, 0 \leq r \leq 1\}$

