Math 2400, Midterm 1
 February 11, 2019

PRINT YOUR NAME: \qquad

PRINT INSTRUCTOR'S NAME: \qquad
Mark your section/instructor:

\square	Section 001	Kevin Berg	8:00-8:50 AM
\square	Section 002	Harrison Stalvey	$8: 00-8: 50 \mathrm{AM}$
\square	Section 003	Daniel Martin	$9: 00-9: 50 \mathrm{AM}$
\square	Section 004	Albert Bronstein	$9: 00-9: 50 \mathrm{AM}$
\square	Section 005	Xingzhou Yang	$10: 00-10: 50 \mathrm{AM}$
\square	Section 006	Mark Pullins	$10: 00-10: 50 \mathrm{AM}$
\square	Section 007	János Englander	$10: 00-10: 50 \mathrm{AM}$
\square	Section 008	John Willis	$12: 00-12: 50 \mathrm{PM}$
\square	Section 009	Taylor Klotz	$1: 00-1: 50 \mathrm{PM}$
\square	Section 010	János Englander	$2: 00-2: 50 \mathrm{PM}$
\square	Section 011	Harrison Stalvey	$2: 00-2: 50 \mathrm{PM}$
\square	Section 012	Xingzhou Yang	$3: 00-3: 50 \mathrm{PM}$
\square	Section 013	Trevor Jack	$4: 00-4: 50 \mathrm{PM}$

Question	Points	Score
1	10	
2	4	
3	4	
4	12	
5	12	
6	6	
7	11	
8	10	
9	11	
10	10	
11	10	
Total:	100	

Honor Code

On my honor, as a University of Colorado at Boulder student, I have neither given nor received unauthorized assistance on this work.

- No calculators or cell phones or other electronic devices allowed at any time.
- Show all your reasoning and work for full credit, except where otherwise indicated. Use full mathematical or English sentences.
- You have 95 minutes and the exam is 100 points.
- You do not need to simplify numerical expressions. For example leave fractions like $100 / 7$ or expressions like $\ln (3) / 2$ as is.
- When done, give your exam to your instructor, who will mark your name off on a photo roster.
- We hope you show us your best work!

1. (10 points) Note: No partial credit for this problem.

Let $\vec{a}=\langle-3,4,0\rangle, \vec{b}=\langle 1,-3,-1\rangle$. Compute
(a) $|\vec{a}|=$
(b) $3 \vec{a}-2 \vec{b}=$
(c) The angle between \vec{a} and $\vec{b}=$ \qquad
(d) $\vec{a} \times \vec{b}=$ \qquad
(e) $\operatorname{proj}_{\vec{a}} \vec{b}=$
2. (4 points) Note: No partial credit for this problem.

The area of the triangle with vertices $(a, 0,0),(0,2 a, 0)$ and $(0,0,3 a)$ is:
(a) $\frac{3 a^{2}}{2}$
(b) $5 a^{2}$
(c) $\frac{7 a^{2}}{2}$
(d) $6 a^{2}$
(e) $\frac{3 a^{3}}{2}$
3. (4 points) Note: No partial credit for this problem.

Let $\vec{a}=\langle-1,2,1\rangle, \vec{b}=\langle 1,-1,1\rangle$, and $\vec{c}=\langle-2,-2,1\rangle$. Compute the volume of the parallelepiped formed by \vec{a}, \vec{b}, and \vec{c}.
(a) 9
(b) 10
(c) -10
(d) 11
(e) -11
4. (12 points) Match each curve with one of the equations on the right side. Not all equations will be matched.
(i) \qquad

(iii)

(v) \qquad

(ii) \qquad

(A) $\vec{r}(t)=\langle 3 \cos t, 2 \sin t\rangle$, $0 \leq t \leq 2 \pi$
(B) $\vec{r}(t)=\langle 2 \sin t, 3 \cos t\rangle$, $0 \leq t \leq 2 \pi$
(C) $\vec{r}(t)=\langle 2-3 t, 3-6 t, 3 t-1\rangle$, $0 \leq t \leq 1$
(D) $\vec{r}(t)=\langle 2+3 t, 3+6 t, 3 t-1\rangle$, $0 \leq t \leq 1$
(E) $\vec{r}(t)=\langle\sin t, \cos t, t\rangle$, $0 \leq t \leq 6 \pi$
(F) $\vec{r}(t)=\langle\cos t,-\sin t, \sin t\rangle$, $0 \leq t \leq 2 \pi$
(G) $\vec{r}(t)=\langle t \cos t, t \sin t, t\rangle$, $0 \leq t \leq 6 \pi$
(H) $\vec{r}(t)=\langle\cos t, \sin t, 1\rangle$, $0 \leq t \leq 2 \pi$

Page 3 of 10
5. (12 points) Match each 3D surface with one of the equations on the right side. Not all equations will be matched.
(i) \qquad

(ii)

(iv) \qquad
(iii) \qquad

(v) \qquad

(vi) \qquad

(A) $x^{2}+y^{2}-z=0$
(B) $x^{2}+y^{2}-z^{2}=0$
(C) $x^{2}+y^{2}-z^{2}-1=0$
(D) $x^{2}+y^{2}-z^{2}+1=0$
(E) $x^{2}+y^{2}-\sin ^{2} z=0$
(F) $x^{2}+y^{2}-\cos ^{2} z=0$
(G) $z-y^{2}=0$
(H) $z-x^{2}=0$
6. (6 points) Use spherical coordinates to describe the solid consisting of points on and inside the sphere of radius 3 centered at the origin, but strictly outside the sphere of radius 1 centered at the origin, and in the first octant.
7. (11 points) Suppose $\vec{r}(t)$ is a differentiable vector function with

$$
\vec{r}^{\prime}(t)=\left\langle 2 t e^{t^{2}}, \frac{2 t}{1+t^{2}}, \sec ^{2}(t)\right\rangle
$$

and $\vec{r}(0)=\langle 0,0,0\rangle$. Find the formula for $\vec{r}(t)$.
8. (10 points) Compute the arc length of the path parameterized by

$$
\vec{r}(t)=\left\langle\cos (t), \sin (t), \frac{2}{3} t^{\frac{3}{2}}\right\rangle, \quad 0 \leq t \leq 3 .
$$

9. (11 points) Let π be the plane perpendicular to the plane given by the equation $-2 x-2 y+z=8$ and containing the points $(0,2,2)$ and $(4,2,4)$. Find the equation of π and express it in the form $a x+b y+c z+d=0$.
10. (10 points) Find the distance from the point $(2,-1,5)$ to the plane $x+y+z+1=0$.
11. (10 points) Find a parametric representation of the surface $z=x^{2}+4 y^{2}$ within the cylinder $x^{2}+4 y^{2}=4$. Include the bounds for the parameter(s).
