1. Multiple Choice: For the following multiple choice questions, no partial credit is given. Fill in your answer on the bubble sheet.
(1) (3 points) Fill in your answer on the bubble sheet.

Suppose $f(x, y, z)=x+y^{2}+z^{2}$, and let S be the level surface $f(x, y, z)=8$. Find the equation of the tangent plane to S at the point $(-2,1,3)$.
$(\mathrm{A})(x+2)+2(y-1)+6(z-3)=0$

$$
f_{x}=1 \quad f_{y}=2 y \quad f_{z}=2 z
$$

(B) $(x+2)+2(y-1)+2(z-3)=0$

$$
\vec{n}=\langle 1,2(1), 2(3)\rangle
$$

(C) $(x-2)+2(y+1)+6(z+3)=0$
$=\langle 1,2,6\rangle$
(D) $(x-2)+2(y+1)+6(z+3)=8$
(E) $(x-2)+2(y+1)+6(z+8)=0$

$$
(x+2)+2(y-1)+6(y-3)=0
$$

(F) $(x+2)+2(y-1)+6(z-3)=8$
(2) (3 points) Fill in your answer on the bubble sheet.

Find the parametrization of the part of the elliptic paraboloid $y=4 x^{2}+z^{2}-4$ that lies inside the cylinder $x^{2}+z^{2}=4$.

(B) $\left\langle x, x^{2}+z^{2}, z\right\rangle$ for $\quad-2 \leq x \leq 2$ and $0 \leq z \leq 4$
(C) $\left\langle x, 4-x^{2}-z^{2}, z\right\rangle \quad$ for $\quad-2 \leq x \leq 2$ and $-\sqrt{4-x^{2}} \leq z \leq \sqrt{4-x^{2}}\left(r \sin (9)^{2}-y\right.$
(D) $\left.r \cos \theta, r^{2}+3 r^{2} \cos ^{2} \theta-4, r \sin \theta\right\rangle$ for $0 \leq r \leq 2$ and $0 \leq \theta \leq 2 \pi=4 r^{2} \cos ^{2} \theta$ $\operatorname{tr}^{2} \sin ^{2} \theta-4$
(E) $\left\langle r \cos \theta, r^{2}-4,2 r \sin \theta\right\rangle \quad$ for $\quad 0 \leq r \leq 2$ and $0 \leq \theta \leq 2 \pi$
(F) $\left\langle\frac{1}{2} r \cos \theta, r^{2}-4, r \sin \theta\right\rangle \quad$ for $\quad 0 \leq r \leq 2$ and $0 \leq \theta \leq 2 \pi$
(3) (3 points) Fill in your answer on the bubble sheet.

Suppose

$$
f(x, y)=y e^{-x}+3 x .
$$

Find the direction of the maximum rate of increase of $f(x, y)$ at $(0,1)$.
(A) 2,1\rangle
(B) $\langle-2,-1\rangle$

$$
\nabla f=\left\langle-y e^{-x}+3, e^{-x}\right\rangle
$$

(C) $\langle 3,0\rangle$

$$
\nabla f(0,1)=\left\langle-1 e^{0}+3, e^{0}\right\rangle
$$

(D) $\langle-3,0\rangle$

$$
=\langle 2,1\rangle
$$

(E) $\left\langle 2 e^{-1}, e\right\rangle$
(F) $\left\langle-2 e^{-1},-e\right\rangle$
(4) (3 points) Fill in your answer on the bubble sheet.

Find the following limit, if it exists.

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}-2 y^{2}}{x^{2}+y^{2}}
$$

(A) 0
(B) 1
(C) -1
(D) 2
(E) -2

$$
\begin{aligned}
& \text { path } x=0: \\
& \lim _{y \rightarrow 0} \frac{-2 y^{2}}{y^{2}}=-2 \\
& \text { path } y=0 ; \\
& \lim _{x \rightarrow 0} \frac{x^{2}}{x^{2}}=1
\end{aligned}
$$

(F) The limit does not exist.
(5) (3 points) Fill in your answer on the bubble sheet.

Let

$$
f(x, y)= \begin{cases}\frac{x+2}{x^{2}+y^{2}+1}, & \text { if }(x, y) \neq(0,0) \\ a & \text { if }(x, y)=(0,0)\end{cases}
$$

Find a, such that the function $f(x, y)$ is continuous at $(0,0)$.
(A) 0
$\lim _{(x, y) \rightarrow(0,0)} \frac{x+2}{x^{2}+y^{2}+1}=2=a$
(B) 1
(C) -1
(D) 2
(E) -2
(F) There is no a for which f is continuous at $(0,0)$.
(6) (3 points) Fill in your answer on the bubble sheet.

Let

$$
f(x, y)=\left(x^{3}-x\right)\left(y^{2}-1\right)
$$

Find $f_{x y}(x, y)$.
(A) $\left(x^{3}-x\right)(2 y)$
$f_{x}=\left(3 x^{2}-1\right)\left(y^{2}-1\right)$
$\left(\underset{(\mathrm{B})}{ }\left(3 x^{2}-1\right)(2 y)\right.$ $f_{x y}=\left(3 x^{2}-1\right)(2 y)$
(C) $\left(3 x^{2}-1\right)\left(y^{2}-1\right)+\left(x^{3}-x\right)(2 y)$
(D) $\left(3 x^{2}-1\right)\left(y^{2}-1\right)$
(E) 0
(F) $6 x^{2} y+2 y-3 x^{2}-1$
(7) (3 points) Fill in your answer on the bubble sheet.

Let S be the surface parametrized by $\vec{r}(\theta, z)=\langle 3 \cos (\theta), 3 \sin (\theta), z\rangle$, for $0 \leq \theta \leq 2 \pi$ and $0 \leq z \leq 2$. Evaluate height 2 $\iint_{s}^{11 s 5} \quad$ cylinder radius 3
(A) π
(B) 2π
(C) 3π
(D) 9π
(E) 12π
(F) 18π
(8) (3 points) Fill in your answer on the bubble sheet.

Let

$$
\vec{F}(x, y, z)=\langle x y z, \quad x y+y z+z x, \quad x+y+z y\rangle
$$

Find curl \vec{F}.
(A) $\langle y z, \quad x+z, \quad 1\rangle$
(B) $-x-y+z$,
(C) $\langle 1+x+y, \quad x y, \quad x z\rangle$

$$
=(1+z-y-x) \hat{\imath}-(1-x z) \hat{\jmath}
$$

(D) $\langle y z+y+z+1, \quad x z+x+z+1, \quad x y+x+y+1\rangle$
(E) $\langle 1, \quad 1, \quad 1\rangle$
(F) $\langle y+z, \quad x+z, \quad x+y\rangle$
(9) (3 points) Fill in your answer on the bubble sheet.

Let

$$
\vec{F}(x, y, z)=\left\langle x^{3}+y^{2}, z e^{-y}, x^{2} \sin (z)\right\rangle
$$

Find $\operatorname{div} \vec{F}$
(A) $\left\langle 3 x^{2},-e^{-y} z, x^{2} \cos (z)\right\rangle$
$\frac{\partial}{\partial x}\left(x^{3}+y^{2}\right)+\frac{\partial}{\partial y}\left(z e^{-y}\right)+\frac{\partial}{\partial z}\left(x^{2} \sin z\right)$
(B) $\left\langle-e^{-y},-2 x \sin (z),-2 y\right\rangle$ $3 x^{2}-z e^{-y}+x^{2} \cos z$
(C) $\left\langle 3 x^{2}+2 y,-e^{-y}, 2 x \cos (z)\right\rangle$
(D) $3 x^{2}-z e^{-y}+x^{2} \cos (z)$
(E) $3 x^{2}+2 y-e^{-y}+2 x \cos (z)$
(F) $3 x^{2}+z e^{-y}-x^{2} \cos (z)$
(10) (3 points) Fill in your answer on the bubble sheet.

Let f be a scalar-valued function of three variables and \vec{F} a vector field on \mathbb{R}^{3}. Which of the following must be true for all such f and \vec{F} ? (Assume all functions and their components are polynomials.)
(A) $\operatorname{div}(\operatorname{div} f)=0$
(B) $\operatorname{div}(\operatorname{grad} f)=0$
(C) $\operatorname{curl}(\operatorname{div} f)=0$
(D) $\operatorname{div}(\operatorname{curl}(\operatorname{curl} \vec{F}))=0$
(E) $\operatorname{curl}(\operatorname{curl}(\operatorname{div} \vec{F}))=0$
(F) $\operatorname{grad}(\operatorname{curl} \vec{F})=0$
2. (7 points) Convert the following integral from rectangular coordinates to cylindrical coordinates. Fill in all $\mathbf{7}$ blanks.

3. (7 points) Convert the following integral from spherical coordinates to rectangular coordi-

$$
\begin{aligned}
& \text { nates. Fill in all } 7 \text { blanks. } \\
& \int_{0}^{\pi / 2} \int_{0}^{\pi / 4} \int_{0}^{2 \sqrt{2}} \sin \phi d \rho d \phi d \theta \\
& \frac{2}{2 / 4} / 2 \sqrt{2}
\end{aligned}
$$

4. (10 points) Evaluate the integral

$$
\int_{C}\left(x y^{2}+y\right) d x+\left(2 x^{2} y+e^{y^{2}}\right) d y
$$

where C is boundary of the rectangle in the $x y$-plane oriented clockwise with vertices $(0,0)$, $(0,3),(2,3)$, and $(2,0)$.

$$
=2 x y-1
$$

By Green's,

$$
\begin{aligned}
& -\int_{0}^{2} \int_{0}^{3}(2 x y-1) d x d y \\
& =-\left.\int_{0}^{2}\left(x^{2} y-x\right)\right|_{x=0} ^{x=3} d y
\end{aligned}
$$

$$
=-\int_{0}^{2} 9 y-3 d y
$$

$$
=-\left.\left(\frac{9 y^{2}}{2}-3 y\right)\right|_{y=0} ^{y=2}
$$

$$
=-(18-6)=-12
$$

5. (8 points) For the following function, find all local maximums, local minimums, and saddle points.

$$
f(x, y)=x^{4}-2 x^{2}+y^{3}-3 y
$$

$$
\begin{array}{lr}
\nabla f=\left\langle 4 x^{3}-4 x,\right. & \left.3 y^{2}-3\right\rangle \\
4 x^{3}-4 x=0 & 3 y^{2}-3=0 \\
4 x\left(x^{2}-1\right)=0 & y^{2}-1=0 \\
4 x(x-1)(x+1)=0 & y= \pm 1
\end{array}
$$

$$
\begin{aligned}
& f_{x x}=12 x^{2}-4 \\
& f_{y y}=6 y \\
& f_{x y}=0 \\
& D(x, y)=\left(12 x^{2}-4\right)(6 y)
\end{aligned}
$$

$D(0,1)<0 \longrightarrow(0,1)$ is a saddle point
$D(0,1)<0 \rightarrow(0,-1)$ is a local \max
$D(\pm 1,1)>0, f_{x x}(\pm 1,1)>0 \rightarrow(1,1),(-1,1)$ are local mins
$D(\pm 1,-1)<0 \rightarrow(1,-1),(-1,-1)$ are saddle points
6. (5 points) Consider the vector field \vec{F} on \mathbb{R}^{2} given by

$$
\vec{F}(x, y)=\langle\pi \cos (\pi x)+y, x+2 y\rangle
$$

Find a potential function $f(x, y)$ for $\vec{F}(x, y)$ such that $\nabla f=\vec{F}$.

$$
\begin{aligned}
& \text { want } \frac{\partial f}{\partial x}=\pi \cos (\pi x)+y \quad \frac{\partial f}{\partial y}=x+2 y \\
& f(x, y)=x y+y^{2}+g(x) \\
& f_{x}=y+g^{\prime}(x)=\pi \cos (\pi x)+y \\
& \rightarrow g^{\prime}(x)=\pi \cos (\pi x) \\
& \rightarrow g(x)=\sin (\pi x) \\
& f(x, y)=x y+y^{2}+\sin (\pi x)
\end{aligned}
$$

7. (3 points) Let $\vec{F}=\nabla g$ where $g(x, y)=e^{\cos (\pi x)}+x y$. Evaluate the integral

$$
\int_{C} \vec{F} \cdot d \vec{r},
$$

where C is the path pictured below from $\left(-\frac{1}{2},-2\right)$ to $(2,1)$.

$$
\begin{aligned}
& \text { FTLI, } \\
& \begin{aligned}
\int_{C} \vec{F} \cdot d \vec{r} & =g(2,1)-g\left(-\frac{1}{2},-2\right) \\
& =\left(e^{\cos 2 \pi}+2\right)-\left(e^{\cos \frac{\pi}{2}}+1\right)
\end{aligned}
\end{aligned}
$$

$$
=e
$$

8. (10 points) Let S be the helicoid parameterized by

$$
\vec{r}(u, v)=\langle u \sin v, 2 v, u \cos v\rangle \quad \text { for } 0 \leq u \leq 1, \quad 0 \leq v \leq \pi
$$

oriented in the direction of the positive y-axis. Let \vec{F} be a vector field given by

$$
\vec{F}=x y \vec{i}+\left(y^{2}+1\right) \vec{j}+y z \vec{k} .
$$

Evaluate $\iint_{S} \vec{F} \cdot d \vec{S}$.

$$
\begin{aligned}
& \vec{r}_{u} \times \vec{r}_{v}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
\sin v & 0 & \cos v \\
u \cos v & 2 & -u \sin v
\end{array}\right|=\langle-2 \cos v, u, 2 \sin v\rangle \\
& \vec{F}(\vec{r}(u, v))=\left\langle 2 u v \sin v, 4 v^{2}+1,2 u v \cos v\right\rangle \\
& \vec{F}(\vec{r}(u, v))=\left\langle\vec{r}_{u} \times \vec{r}_{v}\right\rangle=-4 u v \sin v \cos v+\left(4 v^{2}+1\right) u \\
& 4 u v \sin v \cos v \\
&=\left(\int_{0}^{1} u_{0} u d u\right)\left(\int_{0}^{\pi} 4 v^{2}+1 d v\right) \\
&=\left(\frac{u^{2}}{2} l_{0}^{1}\right)\left(\frac{4 v^{3}}{3}+\left.v\right|_{0} ^{\pi}\right) \\
&=\frac{1}{2}\left(\frac{4 \pi^{3}}{3}+\pi\right)
\end{aligned}
$$

9. (10 points) Let \vec{F} be a vector field on \mathbb{R}^{3} given by

$$
\vec{F}=(\cos x+y) \vec{i}+\left(e^{y}+x z^{2}\right) \vec{j}+\left(2 z^{2}+y x\right) \vec{k}
$$

Let C be a circle of radius 1 centered at $(0,0,2)$ lying on the plane $z=2$, which is oriented counterclockwise when viewed from above. Evaluate $\int_{C} \vec{F} \cdot d \vec{r}$.
Stoke's Theorem

$$
\begin{aligned}
& \text { oe's Theorem } \begin{aligned}
\text { curl } & =\left|\begin{array}{ccc}
\uparrow & \hat{\jmath} & \hat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\cos x+y & e^{y}+x z^{2} & 2 z^{2}+y x
\end{array}\right| \\
& =\left\langle x-2 x z,-y,-y z^{2}-1\right\rangle
\end{aligned}
\end{aligned}
$$

disk with boundary C :

$$
\begin{aligned}
& x^{2}+y^{2} \leqslant 1 \quad z=2 \\
& x=r \cos \theta \quad 0 \leqslant r \leqslant 1 \\
& y=r \sin \theta \quad 0 \leqslant \theta \leqslant 2 \pi \\
& z=2
\end{aligned}
$$

$$
\begin{aligned}
& \int_{0}^{2 \pi} \int_{0}^{1}\langle r \cos \theta-4 r \cos \theta,-r \sin \theta, 3\rangle \cdot\langle 0,0, r\rangle d r d \theta \\
& \int_{0}^{2 \pi} \int_{0}^{1} 3 r d r d \theta=\left.2 \pi\left(\frac{3 r^{2}}{2}\right)\right|_{0} ^{1} \\
& =3 \pi
\end{aligned}
$$

10. (10 points) Let

$$
\vec{F}(x, y, z)=\left(x^{3}+e^{y^{2}+z^{2}}\right) \vec{i}+\left(\cos \left(x^{4}\right)+y^{3}\right) \vec{j}+\left(\ln \left(x^{2}+4\right)+z^{3}\right) \vec{k}
$$

be a vector field on \mathbb{R}^{3}, region E be the part of the solid sphere $x^{2}+y^{2}+z^{2} \leq 4$ in the first octant, and S be the boundary of E oriented outward. Find the total flux of \vec{F} through S :

$$
\iint_{S} \vec{F} \cdot d \vec{S}
$$

Divergence Theorem region E in spherical. $x=\rho \sin \varphi \cos \theta$
$0 \leq \rho \leq 2$
$y=\rho \sin \varphi \sin \theta$
$0 \leq \varphi \leq \pi / 2$

$$
z=\rho \cos \varphi
$$

$0 \leq \theta \leq \pi / 2$

$$
\operatorname{div} \vec{F}=3 x^{2}+3 y^{2}+3 z^{2}=3 \rho^{2}
$$

$$
\iint_{S} \vec{F} \cdot d s=\int_{0}^{\pi / 2} \int_{0}^{\pi / 2} \int_{0}^{2}\left(3 \rho^{2}\right)
$$

$$
=\frac{\pi}{2}\left(\left.\int_{0}^{\pi / 2} \frac{3 \rho^{5}}{5} \sin \varphi\right|_{0} ^{2} d \varphi\right)
$$

$$
=\frac{48 \pi}{5} \int_{0}^{\pi / 2} \sin \varphi d \varphi
$$

$$
=\left.\frac{48 \pi}{5}(-\cos \varphi)\right|_{0} ^{\pi / 2}
$$

$$
=\frac{48 \pi}{5}
$$

Page 12 of 12

