1. (3 points) Evaluate the following limit. You do not need to show any work.

$$
\lim _{(x, y) \rightarrow(1,-1)} e^{-x y} \cos (x+y)
$$

(A) 0
(D) e
(B) $\frac{1}{e}$
(E) 1
(C) $e \pi$
(F) Does not exist
2. (5 points) Consider the following integral

$$
\int_{0}^{2} \int_{x^{2}}^{2 x} f(x, y) d y d x
$$

Select the answer that is equivalent to the integral above. You do not need to show any work.
(A) $\int_{0}^{2} \int_{\frac{y}{2}}^{\sqrt{y}} f(x, y) d x d y$
(B) $\int_{0}^{4} \int_{\frac{y}{2}}^{\sqrt{y}} f(x, y) d x d y$
(C) $\int_{\frac{y}{2}}^{\sqrt{y}} \int_{0}^{2} f(x, y) d x d y$
(D) $\int_{0}^{4} \int_{\sqrt{y}}^{\frac{y}{2}} f(x, y) d x d y$
(E) $\int_{0}^{2} \int_{\sqrt{y}}^{\frac{y}{2}} f(x, y) d x d y$
3. Let $f(x, y)=x^{3}+e^{x y}$.
(i) (4 points) Evaluate $\nabla f(-1,3)$.
(ii) (4 points) What is the value of the directional derivative of f at the point $P(-1,3)$ in the direction of $\vec{v}=\langle-2,5\rangle$?
4. Suppose that g is a differentiable function of x and y, and

$$
f(u, v)=g(x, y), \text { where } x=u^{2}-2 v, y=3 u-v
$$

Suppose that the following facts are given:

	$g(x, y)$	$f(u, v)$	$g_{x}(x, y)$	$g_{y}(x, y)$
$(1,0)$	4	3	4	5
$(1,3)$	3	5	-1	2

(i) (2 points) What is the geometric meaning of the partial derivative g_{x} ?
(ii) (5 points) Find $f_{u}(1,0)$.
5. (13 points) Consider the function $f(x, y)=x^{3}+2 y^{2}-3 x-4 y$. Find all critical points and classify each as a local maximum, a local minimum, or a saddle point or say there is not enough information.
6. (12 points) Consider the parametric surface $\vec{r}(s, t)=\left\langle s+3 t, s t^{2}+s, \ln (t)\right\rangle$. Find an equation for the tangent plane at $P(1,-4,0)$.
7. (12 points) Find the limit if it exists, or show that the limit does not exist.

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y^{6}}{\left(x^{2}+y^{2}\right)^{4}}
$$

8. Consider the integral $\iint_{D} 5 x d A$, where D is the region bounded by the y-axis, the curves $y+x=2$ and $y-x^{2}=0$ in the first quadrant.
(i) (4 points) Sketch and shade the region D. Label any intersection points.

(ii) (3 points) What does $\iint_{D} 5 x d A$ represent geometrically?
(iii) (8 points) Evaluate the integral.
9. (13 points) Use the method of Lagrange multipliers to find the maximum and minimum values of the function $f(x, y)=x y$ subject to the constraint $3 x^{2}+y^{2}=6$.
10. (12 points) Match each 3D surface with one of the contour plots, and one of the equations. Not all the equations will be matched.
(i)

(1)

(A) $z=x^{2}$
(B) $z=y^{2}$
(C) $z=x^{2}+y^{2}$
(2)

(3)

(D) $z=\left(1-x^{2}\right)\left(1-y^{2}\right)$
(E) $z=y e^{-2 x^{2}-y^{2}}$
(F) $z=\frac{\sin \left(\sqrt{x^{2}+y^{2}}\right)}{\sqrt{x^{2}+y^{2}}}$
(G) $z=\sin (x y)$
(ii)

(4)

(iv)

(5)

Page 9 of 9

