Math 2400, Midterm 3 April 16, 2018

PRINT YOUR NAME: _____

PRINT INSTRUCTOR'S NAME: _____

Mark your section/instructor:

		Section 001	Kevin Berg	8:00-8:50			
		Section 002	Xingzhou Yang	8:00-8:50		Question	Poir
		Section 003	Albert Bronstein	9:00 - 9:50		1	12
		Section 004	Cliff Blakestad	10:00-10:50		2	12
		Section 005	Albert Bronstein	10:00-10:50		3	8
		Section 006	Mark Pullins	11:00-11:50		4	12
		Section 009	Taylor Klotz	11:00-11:50		5	16
		Section 007	Albert Bronstein	12:00-12:50		6	12
		Section 008	Martin Walter	1:00-1:50		7	12
		Section 010	Braden Balentine	2:00-2:50		8	16
		Section 011	Pedro Berrizbeitia	3:00-3:50		Total:	10
		Section 012	Pedro Berrizbeitia	4:00-4:50			

Question	Points	Score
1	12	
2	12	
3	8	
4	12	
5	16	
6	12	
7	12	
8	16	
Total:	100	

Honor Code

On my honor, as a University of Colorado at Boulder student, I have neither given nor received unauthorized assistance on this work.

- No calculators or cell phones or other electronic devices allowed at any time.
- Show all your reasoning and work for full credit, except where otherwise indicated. Use full mathematical or English sentences.
- You have 90 minutes and the exam is 100 points.
- You do not need to simplify numerical expressions. For example leave fractions like 100/7 or expressions like $\ln(3)/2$ as is.
- When done, give your exam to your instructor, who will mark your name off on a photo roster.
- We hope you show us your best work!

Midterm 3

1. (12 points) Match the vector fields \vec{F} with the plots below.

(4) $\vec{F} = \langle x, -y \rangle$ (1) $\vec{F} = \langle y, x \rangle$ (5) $\vec{F} = \langle x^2, y^2 \rangle$ (2) $\vec{F} = \langle x, y \rangle$ _____ (6) $\vec{F} = \langle 2 - x, 1 - y \rangle$ _____ (3) $\vec{F} = \langle y, -x \rangle$ (A)(D) (B) (E)(C) (\mathbf{F})

- 2. Consider the transformation $T^{-1}: R \to S$ given by $T^{-1}(x, y) = (y, y x^2)$, where R is the region in the first quadrant of the xy-plane bounded by y = 0, $y = 16, y = x^2$, and $y = x^2 - 9$.
 - (a) (4 points) If u = y and $v = y x^2$, find the transformation T(u, v) from S to R.

(b) (4 points) Calculate the Jacobian, $\frac{\partial(x, y)}{\partial(u, v)}$, of the transformation T.

(c) (4 points) Use transformation T to evaluate $\iint_R x \, dA$.

3. (8 points) Select the integral that is ALWAYS equivalent to the integral given. No work is required.

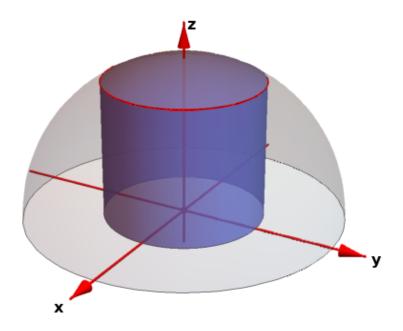
(1)
$$\int_{0}^{1} \int_{y^{2}+2}^{\sqrt{y}+2} \int_{0}^{x+y} f(x, y, z) dz dx dy$$

(A) $\int_{0}^{1} \int_{y^{2}+2}^{\sqrt{y}+2} \int_{0}^{x+y} f(x, y, z) dz dy dx$
(B) $\int_{0}^{1} \int_{\sqrt{x-2}}^{(x-2)^{2}} \int_{0}^{x+y} f(x, y, z) dz dy dx$
(C) $\int_{2}^{3} \int_{\sqrt{x-2}}^{(x-2)^{2}} \int_{0}^{x+y} f(x, y, z) dz dy dx$
(D) $\int_{2}^{3} \int_{(x-2)^{2}}^{\sqrt{x-2}} \int_{0}^{x+y} f(x, y, z) dz dy dx$

(2)
$$\int_{0}^{1} \int_{0}^{x} \int_{0}^{y} f(x, y, z) dz dy dx$$

(A) $\int_{0}^{1} \int_{1}^{z} \int_{1}^{x} f(x, y, z) dy dx dz$
(B) $\int_{0}^{1} \int_{z}^{1} \int_{x}^{1} f(x, y, z) dy dx dz$
(C) $\int_{0}^{1} \int_{0}^{1} \int_{z}^{z} f(x, y, z) dy dx dz$
(D) $\int_{0}^{1} \int_{z}^{1} \int_{z}^{x} f(x, y, z) dy dx dz$

4. The solid E is inside the cylinder $x^2 + y^2 = 1$, below the sphere $x^2 + y^2 + z^2 = 4$, and above the plane z = 0. The density of the solid is $\rho(x, y, z) = \sqrt{x^2 + y^2}$.



(a) (6 points) Set up, but do **not** evaluate, the integral for the mass of the solid.

(b) (6 points) If $(\bar{x}, \bar{y}, \bar{z})$ is the center of mass of the solid, set up, but do **not** evaluate, the integral for \bar{z} .

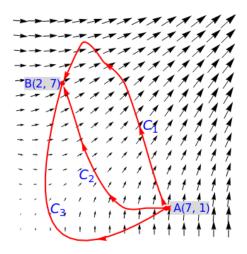
5. Let S be the parametric surface $\vec{r}(u, v) = \langle u \cos(v), u \sin(v), v \rangle$ for $0 \le u \le \sqrt{2}$ and $0 \le v \le u$.

(a) (8 points) Compute $\vec{r}_u \times \vec{r}_v$.

(b) (8 points) Determine the surface area of S.

6. (12 points) Evaluate
$$\int_C (x^2 + y^2 + z^2) ds$$
 where
 $C: x = \sqrt{8}t, y = \cos t, z = \sin t, 0 \le t \le 1.$

7. (12 points) Let $\vec{F}(x, y, z) = \langle y, x + e^z, ye^z + 1 \rangle$. Calculate the integral $\int_C \vec{F} \cdot d\vec{r}$ where C is given by $\vec{r}(t) = \langle t^2, t^3, \sin(\pi t) \rangle$ for $0 \le t \le 2$. 8. The figure below shows the vector field $\vec{F}(x, y) = \langle y, x + \cos y \rangle$, and 3 curves C_1, C_2, C_3 start at A(7, 1) and end at B(2, 7).



(a) (4 points) Determine if \vec{F} is conservative. Justify.

(b) (4 points) Explain why $\int_{C} \vec{F} \cdot d\vec{r}$ has the same value for all three paths.

(c) (8 points) Evaluate
$$\int_C \vec{F} \cdot d\vec{r}$$
.