$\begin{array}{c} \textbf{Math 2400, Midterm 2} \\ \textbf{\tiny March 12, 2018} \end{array}$

PRINT YOUR NAME:								
PRINT INSTRUCTOR'S NAME:								
Mark your section/instructor:								
		Section 001	Kevin Berg	8:00-8:50				
		Section 002	Xingzhou Yang	8:00-8:50		Question	Points	Score
		Section 003	Albert Bronstein	9:00-9:50		1	12	
		Section 004	Cliff Blakestad	10:00-10:50		2	16	
		Section 005	Albert Bronstein	10:00-10:50		3	13	
		Section 006	Mark Pullins	11:00-11:50		4	14	
		Section 009	Taylor Klotz	11:00-11:50		5	8	
		Section 007	Albert Bronstein	12:00-12:50		6	14	
		Section 008	Martin Walter	1:00-1:50		7	14	
		Section 010	Braden Balentine	2:00-2:50		8	9	
		Section 011	Pedro Berrizbeitia	3:00-3:50		Total:	100	
		Section 012	Pedro Berrizbeitia	4:00-4:50				

Honor Code

On my honor, as a University of Colorado at Boulder student, I have neither given nor received unauthorized assistance on this work.

- No calculators or cell phones or other electronic devices allowed at any time.
- Show all your reasoning and work for full credit, except where otherwise indicated. Use full mathematical or English sentences.
- You have 90 minutes and the exam is 100 points.
- ullet You do not need to simplify numerical expressions. For example leave fractions like 100/7 or expressions like ln(3)/2 as is.
- When done, give your exam to your instructor, who will mark your name off on a photo roster.
- We hope you show us your best work!

1. (12 points) Determine whether the following function is continuous at (0,0). Explain why or why not.

$$f(x,y) = egin{cases} rac{xy^2}{\sqrt{x^4+y^8}} & ext{if } (x,y)
eq (0,0) \ 0 & ext{if } (x,y) = (0,0) \end{cases}$$

2. (a) (8 points) Evaluate the double integral
$$\iint\limits_R \left[x+\sin\left(y\right)\right]\,dA$$
, where R is a rectangle $R=\left[0,\,3\right]\times\left[0,\,3\pi\right]$.

(b) (8 points) Compute the following double integral by changing the order of integration.

$$\int_0^4 \int_{\sqrt{x}}^2 y \cos \left(y^4\right) \; dy \, dx$$

3. (13 points) Find an equation of the tangent plane to the surface given by

$$ec{r}(u,v) = \left\langle u+v,\, u-v,\, u^2-v^3
ight
angle$$

at the point (2,0,0).

- 4. Given function $z = f(x, y) = x^3 5x + y^2 + 3$,
 - (a) (7 points) Find the gradient of f at (-1,1).

(b) (7 points) Find the directional derivative of f at (-1,1) in the direction of $\vec{v}=\langle 4,\,-3\rangle=4\vec{i}-3\vec{j}$.

- 5. (8 points) Let $z = f(x, y) = x^2 + 2y^2 + xy^2$. How many critical points does f have?
 - A. 0
 - B. 1
 - C. **2**
 - D. **3**
 - E. **4**

6. (14 points) Use the method of Lagrange multipliers to find the maximum and minimum values of $f(x,y) = x^2 + 2y^2 + xy^2$ subject to the constraint $g(x,y) = 2x + y^2 = 1$.

7. Suppose that z = F(x, y) and that x = X(u, w) and y = Y(u, w), where F, X and Y all have continuous partial derivatives at all points.

Caution: one can view z as a function of x and y, and one can view z as a function of u and w.

Suppose that the following facts are given:

$$\frac{\partial z}{\partial x}(3,4) = q \quad \frac{\partial z}{\partial x}(a,b) = 10 \quad \frac{\partial z}{\partial y}(3,4) = 5 \quad \frac{\partial z}{\partial y}(a,b) = 14$$

$$\frac{\partial x}{\partial u}(a,b) = 10 \quad \frac{\partial x}{\partial w}(a,b) = 8 \quad \frac{\partial y}{\partial u}(a,b) = p \quad \frac{\partial z}{\partial w}(a,b) = 0$$

$$X(p,q) = -2 \quad Y(p,q) = -75 \quad X(a,b) = 3 \quad Y(a,b) = 4$$

(a) (7 points) Use the Chain Rule to find $\frac{\partial z}{\partial u}$ when u=a and w=b.

(Your answer may depend on a, b, p, and/or q.)

(b) (7 points) Use the Chain Rule to find $\frac{\partial y}{\partial w}$ when u = a and w = b.

(Your answer may depend on a, b, p, and/or q.)

8. (9 points) Match each 3D surface with one of the contour plots.

