Math 2400, Midterm 1 February 12, 2018

PRINT YOUR NAME: _____

PRINT INSTRUCTOR'S NAME:

Mark your section/instructor:				
	Section 001	Kevin Berg	8:00-8:50	
	Section 002	Xingzhou Yang	8:00 - 8:50	
	Section 003	Albert Bronstein	9:00 - 9:50	
	Section 004	Cliff Blakestad	10:00-10:50	
	Section 005	Albert Bronstein	10:00-10:50	
	Section 006	Mark Pullins	11:00-11:50	
	Section 009	Taylor Klotz	11:00-11:50	
	Section 007	Albert Bronstein	12:00-12:50	
	Section 008	Martin Walter	1:00-1:50	
	Section 010	Braden Balentine	2:00-2:50	
	Section 011	Pedro Berrizbeitia	3:00 - 3:50	
	Section 012	Pedro Berrizbeitia	4:00-4:50	

Question	Points	Score
1	14	
2	14	
3	15	
4	15	
5	15	
6	15	
7	12	
Total:	100	

- No calculators or cell phones or other electronic devices allowed at any time.
- Show all your reasoning and work for full credit, except where otherwise indicated. Use full mathematical or English sentences.
- You have 90 minutes and the exam is 100 points.
- You do not need to simplify numerical expressions. For example leave fractions like 100/7 or expressions like $\ln(3)/2$ as is.
- When done, give your exam to your instructor, who will mark your name off on a photo roster.
- We hope you show us your best work!

1. (14 points) Find an equation of the plane that contains the points (-2, 3, 1), (1, 0, 2), and (1, 2, -1).

2. (14 points) Find the volume of the parallelipiped determined by the following three vectors: $\vec{a} = \langle 3, 3, 3 \rangle$, $\vec{b} = \langle 2, 3, 0 \rangle$, and $\vec{c} = \langle 0, 1, 1 \rangle$.

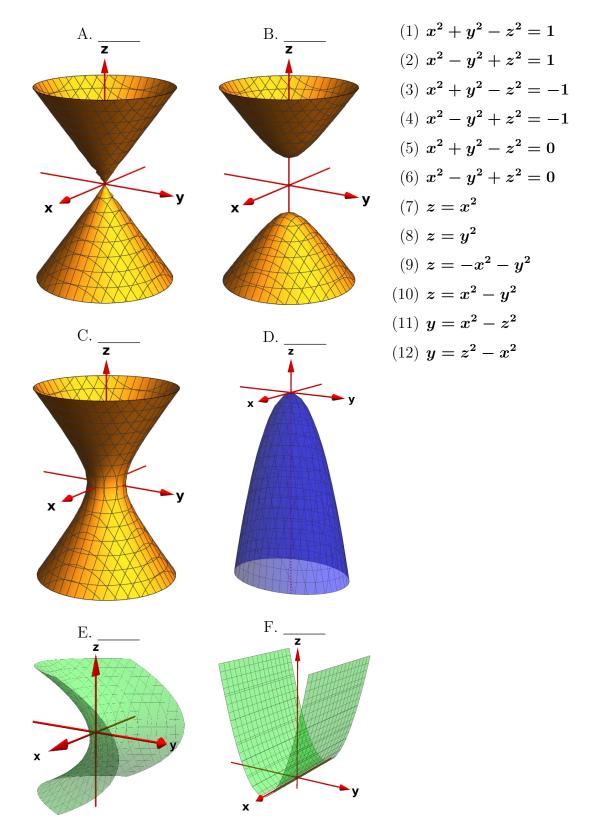
- 3. Consider the curve in space described by $\vec{r}(t) = \langle t, 2 \sin(t), 2 \cos(t) \rangle$.
 - (a) (8 points) Find the equation of the line tangent to this curve when $t = \pi$.

(b) (7 points) Find the length of the arc of this curve between the points (0, 0, 2)and $(\pi, 0, -2)$

4. Assume that the lines

are skew.

(a) (5 points) Find a vector \vec{n} normal to both L_1 and L_2 .


(b) (5 points) Find an equation of the plane that contains L_2 and normal to \vec{n} .

(c) (5 points) Find the distance between L_1 and L_2 .

5. (15 points) Find a parametric representation for the cone $y^2 = 2x^2 + 2z^2$ between the planes y = 0 and y = 3. 6. (15 points) Find a rectangular equation for the surface whose spherical equation is

 $ho=2\sin\phi\cos heta$

.

 (12 points) Match each 3D surface with one of the equations on the right side. Not all equations will be matched.