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1. (12 points) Note: No partial credit for this problem.

Let ~a = 〈−1, 2, 2〉, ~b = 〈3, −2, 1〉. Compute

(a) |~a| = 3

Solution: |~a| =
√

(−1)2 + (2)2 + (2)2 = 3 .

(b) −2~a+ 3~b = 〈11,−10,−1〉

Solution: −2~a+ 3~b = −2〈−1, 2, 2〉+ 3〈3, −2, 1〉 = 〈2 + 9, −4− 6, −4 + 3〉
= 〈11,−10,−1〉 .

(c) ~a ·~b = −5

Solution: ~a ·~b = 〈−1, 2, 2〉 · 〈3, −2, 1〉
= (−1)(3) + (2)(−2) + (2)(1) = −5 .

(d) ~a×~b = 〈6, 7,−4〉

Solution: ~a×~b =

∣∣∣∣∣∣∣
~i ~j ~k

−1 2 2

3 −2 1

∣∣∣∣∣∣∣
=~i

∣∣∣∣∣ 2 2

−2 1

∣∣∣∣∣−~j
∣∣∣∣∣−1 2

3 1

∣∣∣∣∣+ ~k

∣∣∣∣∣−1 2

3 −2

∣∣∣∣∣
= (2 + 4)~i− (−1− 6)~j + (2− 6)~k

= 6~i+ 7~j − 4~k = 〈6, 7,−4〉
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2. (9 points) Let ∇× ~F = 〈3x, 3y,−6z〉 and let C1 and C2 be the circles of radius two centered

on the z-axis at z = 0 and z = 5, respectively. Calculate∮
C1

~F · d~r +

∮
C2

~F · d~r

C1 is oriented counter-clockwise, and C2 is oriented clockwise viewed from the positive z-axis.

Solution: Choose the surface S1 : z = 5, oriented downward, with C1 as its boundary. S1

is the disk with radius 2 on the plane z = 5. S1 can be parametrized as ~r(x, y) = 〈x, y, 5〉.
Then ~rx × ~ry = 〈0, 0, 1〉.

curl~F = 〈3x, 3y,−6z〉 = 〈3x, 3y,−30〉

curl~F · ~rx × ~ry = (3x)(0) + (3x)(0) + (−30)(1) = −30

The projection of S1 onto xy-plane is Dxy =
{
(x, y)

∣∣x2 + y2 ≤ 4
}

. Use the Stokes Theo-

rem, and then we have (the 3rd component of ~rx×~ry is postive, and S1 is oriented downward,

so negative sign is used in the Theorem),∮
C1

~F · d~r =

∫∫
S1

curl~F · d~S = −
∫∫

Dxy

curl~F · ~rx × ~ry dA

= −
∫∫

Dxy

−30 dA = 30

∫∫
Dxy

dA = 30 · π(2)2 = 120π

For the 2nd line integral, we choose the surface S2 : z = 0, oriented upward, with C2 as

its boundary. S2 is the disk with radius 2 on the plane z = 0. S2 can be parametrized as

~r(x, y) = 〈x, y, 0〉. Then ~rx × ~ry = 〈0, 0, 1〉.

curl~F = 〈3x, 3y,−6z〉 = 〈3x, 3y, 0〉

curl~F · ~rx × ~ry = (3x)(0) + (3x)(0) + (0)(1) = 0

So the second line integral is zero. So we get∮
C1

~F · d~r +

∮
C2

~F · d~r = 120π + 0 = 120π
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Solution 2: Vertical cut the surface (see the figure), and then we can apply the Stokes Theorem

directly. Denote S the cylinder oriented outward. Parametrize S and we have

~r(θ, z) = 〈2 cos θ, 2 sin θ, z〉, Dθz =
{
(θ, z)

∣∣0 ≤ θ ≤ 2π, 0 ≤ z ≤ 5
}

.

~rθ = 〈−2 sin θ, 2 cos θ, 0〉 , ~rz = 〈0, 0, 1〉

~rθ × ~rz =

∣∣∣∣∣∣∣
~i ~j ~k

−2 sin θ 2 cos θ 0

0 0 1

∣∣∣∣∣∣∣
=~i

∣∣∣∣∣2 cos θ 0

0 1

∣∣∣∣∣−~j
∣∣∣∣∣−2 sin θ 0

0 1

∣∣∣∣∣+ ~k

∣∣∣∣∣−2 sin θ 2 cos θ

0 0

∣∣∣∣∣
= 2 cos θ ~i+ 2 sin θ ~j + 0 ~k = 〈2 cos θ, 2 sin θ, 0〉

curl~F = 〈3x, 3y,−6z〉 = 〈6 cos θ, 6 sin θ, −6z〉

curl~F · ~rθ × ~rz = (2 cos θ)(6 cos θ) + (2 sin θ)(6 sin θ) + (0)(−6z)

= 12(cos2 θ + sin2 θ) + 0 = 12

By the Stokes Theorem, we get (if θ = 0, ~rθ×~rz = 〈2, 0, 0〉, pointing outward, so positve

sign is used in the Theorem),∮
C1

~F · d~r +

∮
C2

~F · d~r =

∫∫
S

curl~F · d~S = +

∫∫
Dθz

curl~F · ~rθ × ~rz dA

= 12

∫∫
Dθz

dA = 12

∫ 2π

0

∫ 5

0

dzdθ = 12(2π)(5)

= 120π

3. (7 points) Find the distance between the two planes.

2x− y + 2z = 7

2x− y + 2z = 1

Solution: The normal directions of the two planes are the same ~n = 〈2, −1, 2〉, and they

are paralle.

distance =
|7− 1|√

(2)2 + (−1)2 + (2)2
=

6
√
9
=

6

3
= 2
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4. (9 points) Let S denote the surface given by the parameterization

~r(u, v) = (u2 + v2)~i+ (u2 − v2)~j + uv~k, u is in R, and v ≥ 0.

Find an equation for the tangent plane to S at the point P (1, −1, 0).

Solution: To get the corresponding u, v to P (1, −1, 0), solve

u2 + v2 = 1, u2 − v2 = −1, uv = 0

for u and v, and we get u = 0, v = 1. The normal direction of the plane at P (1, −1, 0) is

~ru(0, 1)× ~rv(0, 1).

~ru =

〈
∂

∂u
(u2 + v2),

∂

∂u
(u2 − v2),

∂

∂u
(uv)

〉
= 〈2u, 2u, v〉

~rv =

〈
∂

∂v
(u2 + v2),

∂

∂v
(u2 − v2),

∂

∂v
(uv)

〉
= 〈2v, −2v, u〉

~n = ~ru × ~rv =

∣∣∣∣∣∣∣
~i ~j ~k

2u 2u v

2v −2v u

∣∣∣∣∣∣∣ =
〈
2u2 + 2v2, 2v2 − 2u2, −8uv

〉
At P (1, −1, 0), ~n =

〈
2(0)2 + 2(1)2, 2(1)2 − 2(0)2, −8(0)(1)

〉
= 〈2, 2, 0〉. Or to be

simpler, we may get ~ru(0, 1) = 〈0, 0, 1〉, ~rv(0, 1) = 〈2,−2, 0〉, then

~n =

∣∣∣∣∣∣∣
~i ~j ~k

0 0 1

2 −2 0

∣∣∣∣∣∣∣ =~i(0 + 2)−~j(0− 2) + ~k(0− 0) = 〈2, 2, 0〉

So the equation of the tangent plane is

2(x− 1) + 2(y + 1) + 0(z − 0) = 0 or x+ y = 0
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5. (6 points) There will be NO partial credit awarded on the following questions – so be sure to

double check your work!

(a) Suppose the amount of snow on the ground is given by the function f(x, y) = x4 + x2y2.

If you are standing at the point P (1, 3), in which direction would you walk to decrease how

much snow you are standing in in the fastest?

Solution: The max rate of change of f occurs at its gradient direction gradf(1, 3), and

min rate of change of f occurs at the negative gradient direction.

gradf = ∇ f = 〈fx, fy〉 =
〈
4x3 + 2xy2, 2x2y

〉
gradf(1, 3) =

〈
4(1)3 + 2(1)(3)2, 2(1)2(3)

〉
= 〈22, 6〉

So in the direction −〈22, 6〉 = 〈−22, −6〉 you walk to decrease fastest and the amount

of snow is

|gradf | =
√
(−22)2 + (−6)2 =

√
520 = 2

√
130

(b) Let ~F = (yexy+y2)~i+(xexy+x2)~j. Is ~F conservative? If so, find the associated potential

function.

Solution: Denote P (x, y) = yexy + y2, Q(x, y) = xexy + x2.

Qx =
∂

∂x

(
xexy + x2

)
= xyexy + exy + 2x

Py =
∂

∂y

(
yexy + y2

)
= xyexy + exy + 2y

Qx − Py = 2x− 2y

So Qx − Py 6≡ 0. So ~F is not conservative .

(c) Suppose that C is a simple, smooth, positively-oriented curve which encloses the region R in

the xy-plane. If

∫
C

5x dx+ 3x dy = 30, what is the area of R?

Solution: C is closed, so by Green’s Theorem,∫
C

5x dx+ 3x dy =

∫∫
R

[
∂

∂x
(3x)−

∂

∂y
5x

]
7 =

∫∫
R

3 7 = 3

∫∫
R

7 = 3A(R)

So the area of R is A(R) =
30

3
= 10 .
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6. (9 points) Use the Method of Lagrange Multipliers to find all extrema of

f(x, y) = x2 + y2 − 2x− 4y

constrained to the circle x2 + y2 = 5.

Solution: Let g(x, y) = x2 + y2. Then the constraint equation is g(x, y) = 5.

fx =
∂

∂x

(
x2 + y2 − 2x− 4y

)
= 2x− 2 gx =

∂

∂x

(
x2 + y2

)
= 2x

fy =
∂

∂y

(
x2 + y2 − 2x− 4y

)
= 2y − 4 gy =

∂

∂y

(
x2 + y2

)
= 2y

∇f = 〈fx, fy〉 = 〈2x− 2, 2y − 4〉 ∇g = 〈gx, gy〉 = 〈2x, 2y〉

By the Method of Lagrange Multipliers, we solve

{
∇f = λ∇g

g(x, y) = 5
which is the same as

{
〈2x− 2, 2y − 4〉= λ 〈2x, 2y〉

x2 + y2 = 5
⇐⇒


2x− 2 = 2λx 1

2y − 4 = 2λy 2

x2 + y2 = 5 3

⇐⇒


2(1− λ)x= 2 1

2(1− λ)y = 4 2

x2 + y2 = 5 3

Note λ 6= 1 since otherwise it contradicts with 1 and 2 . From 1 and 2 , we get x =
1

1− λ
,

y =
2

1− λ
. By 3 , we have

5

(1− λ)2
= 5, so (1− λ)2 = 1. λ = 0, or 2.

When λ = 0, x =
1

1− 0
= 1, y =

2

1− 0
= 2,

f (1, 2) = (1)2 + (2)2 − 2 (1)− 4 (2) = −5

When λ = 2, x =
1

1− 2
= −1, y =

2

1− 2
= −2,

f (−1,−2) = (−1)2 + (−2)2 − 2 (−1)− 4 (−2) = 15

So we get only two points (x, y) = (−1,−2) and (x, y) = (1, 2). So the absolute

max/min values of the function are 15 and −5 , respectively.
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7. (8 points) Suppose that f is a differentiable function of x and y, and

g(s, t) = f(s2 − 3t, 4s− t).

f(x, y) g(s, t) fx(x, y) fy(x, y)

(−2, 3) 5 1 2 3

(1, 1) 4 5 6 7

(a) Use the table of values to compute gs(1, 1).

Solution: Let x = s2 − 3t, y = 4s − t. When s = 1, t = 1, x = 12 − 2(1) = −2,

y = 4(1) − (1) = 3.
∂x

∂s
=

∂

∂s
(s2 − 3t) = 2s,

∂y

∂s
=

∂

∂s
(4s − t) = 4. So

xs(1, 1) = 2(1) = 2, ys(1, 1) = 4. By the Chain Rule,

gs(1, 1) = fx(−2, 3) · xs(1, 1) + fy(−2, 3) · ys(1, 1) = (2)(2) + (3)(4) = 16

(b) If gt(0,−1) = 3 and fx(3, 1) = 2, use the table of values to compute fy(3, 1).

Solution: When s = 0, t = −1, x = (0)2 − 3(−1) = 3, y = 4(0)− (−1) = 1. By

the Chain Rule,

∂

∂t
g(s, t) = gt(s, t) =

∂

∂t
f(x, y) = fx(x, y)

∂x

∂t
+ fy(x, y)

∂y

∂t

= fx(s
2 − 3t, 4s− t)(−3) + fy(s

2 − 3t, 4s− t)(−1)

gt(0,−1) = −3fx(3, 1)− fy(3, 1)

3 = −3(2)− fy(3, 1) [solve it for fy(3, 1)]

fy(3, 1) = −6− 3 = −9
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8. (8 points) Consider the function

f(x, y) =


xy√
x2 + y2

if (x, y) 6= (0, 0)

2 if (x, y) = (0, 0)

(a) Determine if the limit lim
(x,y)→(0,0)

f(x, y) exists. Justify.

Solution: Let f(x, y) =
xy√
x2 + y2

. Use polar coordinates, x = r cos θ, y = r sin θ.

Then x2 + y2 = r2.

f(x, y) =
xy√
x2 + y2

=
r cos θ r sin θ
√
r2

= r cos θ sin θ

Since for any θ, | sin θ| ≤ 1, | cos θ| ≤ 1, we have

0 ≤ |f(x, y)− 0| = |r cos θ sin θ| ≤ r

As (x, y) → (0, 0), r =
√
x2 + y2 → 0, and so the lower bound and upper bound of

|f(x, y)| both approach 0 as (x, y)→ (0, 0). By the Squeeze Theorem,

lim
(x,y)→(0,0)

xy√
x2 + y2

= 0 . This also proves the existence of the limit.

Solution 2: Let f(x, y) =
xy√
x2 + y2

. Pick a path, for example, C : y = 0. Then

f(x, y) =
x2

√
x2
→ 0, as (x, y)→ (0, 0). To show that 0 is the limit of the function as

(x, y)→ (0, 0), we use the Squeeze Theorem.

0 ≤ |f(x, y)| =

∣∣∣∣∣ xy√
x2 + y2

∣∣∣∣∣ = 1

2

2|x| · |y|√
x2 + y2

≤
1

2

|x|2 + |y|2√
x2 + y2

=
1

2

√
x2 + y2

Since lim
(x,y)→0

0 = 0, and lim
(x,y)→0

1

2

√
x2 + y2 = 0, by the Squeeze Theorem, we get

lim
(x,y)→0

|f(x, y)| = 0⇐⇒ lim
(x,y)→0

f(x, y) = 0

(b) Determine if f is continuous at (0, 0). Justify.

Solution: The function value at (0, 0) is f(0, 0) = 2, which is not equal to

lim
(x,y)→0

f(x, y) = 0, so f is not continuous .
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9. (8 points) Suppose the surface S of a small island with lizards is given by

z = 3e−x
2−y2

with x2 + y2 ≤ 100 and with all distances measured in miles. The population density of the

lizards at a point (x, y, z) on the island is given by

ρ(x, y, z) =
50

1 + x2 + y2

lizards per square mile. Set up but do not evaluate an integral giving the total population of

the lizards on the island.

∫ ∫
d d

Solution: Let f(x, y) = 3e−x
2−y2 . We may parametrize the surface as

~r(x, y) = 〈x, y, f(x, y)〉 =
〈
x, y, 3e−x

2−y2
〉
.

Then

~rx × ~ry = 〈−fx, −fy, 1〉 =
〈
6xe−x

2−y2, 6ye−x
2−y2, 1

〉
|~rx × ~ry| =

√
(6xe−x2−y2)

2
+ (6ye−x2−y2)

2
+ 12

=
√
36(x2 + y2)e−2(x2+y2) + 1

The total popluation is

total population =

∫∫
S

ρ(x, y, z)dS =

∫∫
S

50

1 + x2 + y2
dS

=

∫∫
Dxy

50

1 + x2 + y2
|~rx × ~ry| dA

=

∫∫
Dxy

50
√
36(x2 + y2)e−2(x2+y2) + 1

1 + x2 + y2
dA

=

∫ 10

−10

∫ √100−x2

−
√

100−x2

50
√

36(x2 + y2)e−2(x2+y2) + 1

1 + x2 + y2
dy dx

or
=

∫ 2π

0

∫ 10

0

50r
√
36r2e−2r2 + 1

1 + r2
dr dθ
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10. (8 points) Let S1 be the part of the paraboloid x = 1− y2 − z2, oriented outward with

x ≥ 0, and E be the solid enclosed by S1 and the yz-plane.

Let S be the boundary (closed surface) of E, and

~F =
〈
2 + x

(
y2 + z2

)
, x3 + y3, sin(x2) + z3

〉
.

(a) Use the Divergence Theorem to evaluate the flux

through the surface S, oriented outward.∫∫
S

~F · d~S

Solution: S is a closed surface with positive orientation.

div ~F =
∂

∂x

(
2 + x

(
y2 + z2

))
+

∂

∂y

(
x3 + y3

)
+

∂

∂z

(
sin(x2) + z3

)
= y2 + z2 + 3y2 + 3z2 = 4(y2 + z2)

By the Divergence Theorem,∫∫
S

~F · d~S = +

∫∫∫
E

4(y2 + z2) dV

(
By cylindrical coordinates

x = x, y = r cos θ, z = r sin θ

)

= 4

∫ 2π

0

∫ 1

0

∫ 1−r2

0

r2 · r dx dr dθ = 4

∫ 2π

0

∫ 1

0

r3x

∣∣∣∣x=1−r2

x=0

dr dθ

= 8π

∫ 1

0

r3(1− r2)dr = 8π

∫ 1

0

(r3 − r5)dr = 8π

(
r4

4
−
r6

6

) ∣∣∣∣1
0

= 8π

(
1

4
−

1

6

)
=

2π

3

(b) Evaluate the flux

∫∫
S1

F · d~S.

Hint: S1 is NOT a closed surface, and you may use the result in (a).

Solution: Let S2 be the surface, oriented right, which makes S1 + S2 = S. Then its

equation is x = 0, and it can be parametrized as ~r(y, z) = 〈0, y, z〉, where y2+z2 ≤ 1.

So ~F =
〈
2, y3, z3

〉
, and ~ry × ~rz = 〈1, 0, 0〉, pointing to the positive x-axis. So∫∫

S2

~F · d~S = −
∫∫

D

~F · (~ry × ~rz) dA = −
∫∫

D

2 dA = −2π(1)2 = −2π

So the flux is∫∫
S1

~F · d~S =

∫∫
S

~F · d~S −
∫∫

S2

~F · d~S =
2π

3
− (−2π) =

8π

3
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11. (8 points) Find the volume of the solid bounded by

x2 + y2 + z2 = 4,

x2 + y2 + z2 = 1, and

z =
√
3
√
x2 + y2.

Solution: The volume of the solid is

∫∫∫
E

dV , and it can be solved by spherical coordinates

x = ρ sinφ cos θ, y = ρ sinφ sin θ, z = ρ cosφ.

Volume =

∫∫∫
E

dV =

∫ π
6

0

∫ 2π

0

∫ 2

1

ρ2 sinφ dρ dθ dφ

=

∫ π
6

0

sinφdφ

∫ 2π

0

dθ

∫ 2

1

ρ2

= − cosφ

∣∣∣∣π6
0

(2π) ·
ρ3

3

∣∣∣∣ ∫ 2

1

=

(
1−
√
3

2

)
(2π)

1

3
(8− 1)

=
7

3

(
2−
√
3
)
π
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12. (8 points) Below are a series of statements concerning gradient, curl and divergence. Assume that

f , P , Q, R are scalar functions, ~F is a vector field in R3. If all of the second order partial

derivatives exist and are continuous, circle the answer that best describes each statement.

(a) curl(grad f) = ~0.

(A) Always true

(B) Sometimes true

(C) Never true

(b) div(curl ~F ) = 0.

(A) Always true

(B) Sometimes true

(C) Never true

(c) ∇ · (∇f) = 0.

(A) Always true

(B) Sometimes true

(C) Never true

(d) If ~F (x, y, z) = 〈P (x, y), Q(y), R(x, z)〉, then curl ~F is orthogonal to the x-axis.

(A) Always true

(B) Sometimes true

(C) Never true
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