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1. (12 points) Note: No partial credit for this problem.

Let @ = (—1, 2, 2), b = (3, —2, 1). Compute

(a) l@| =

Solution: |&@| = v/(—=1)2 4 (2)2 + (2)2 =[3].

(b) —2@ + 3b = (11, —10, —1)

Solution: —2@ + 3b = —2(—1,2,2) +3(3, —2,1) = (2+ 9, -4 — 6, —4 + 3)
=|(11,—10, —1)|

(c) @-b=[—5]

Solution: @-b= (-1, 2, 2) - (3, —2, 1)
= (—1)(3) + (2)(—=2) + (2)(1) =[5}

(d) @x b=|(6,7,—4)

i ]k
Solution: @ X b = |—1 2 2
3 -2 1
- 2 2 =1 2 -|—1 2
=1 -7 + k
-2 1 31 3 -2

=(244)i—(-1—6)j+ (2 —6)k
— 61+ 7] — 4k = | (6,7, —4)
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2. (9 points) Let V x F = (3x, 3y, —62z) and let Cy and C; be the circles of radius two centered
on the z-axis at z = 0 and z = 5, respectively. Calculate
F.di+ ¢ F.d7i
Cl C2
C is oriented counter-clockwise, and C3 is oriented clockwise viewed from the positive z-axis.

‘Z

C;

Solution: Choose the surface Sy : z = 5, oriented downward, with C; as its boundary. S
is the disk with radius 2 on the plane z = 5. Sy can be parametrized as 7(z,y) = (x,y, 5).
Then 7, X 7y = (0,0, 1).
curlF = (3z, 3y, —6z) = (3z, 3y, —30)
curlF - 7, x 7, = (3z)(0) + (3z)(0) + (—30)(1) = —30
The projection of S onto xy-plane is Dy, = {(:c, y){:z:2 +9y* < 4}. Use the Stokes Theo-

rem, and then we have (the 3rd component of 7, X 7, is postive, and Sy is oriented downward,

so negative sign is used in the Theorem),

% - dr¥ = // curlF - dS = // curlF - Tz X Ty dA
C1 S1 Dyy
_—// —30dA—30// dA = 30-7(2)? = 1207
Dwy D

For the 2nd line integral, we choose the surface Ss : z = 0, oriented upward, with Cy as
its boundary. S5 is the disk with radius 2 on the plane z = 0. S5 can be parametrized as
¥(x,y) = (x,y,0). Then ¥, x ¥, = (0,0,1).
curlF = (3z, 3y, —62z) = (3x, 3y, 0)
curlF - 7, x 7, = (3x)(0) + (3z)(0) + (0)(1) =0

So the second line integral is zero. So we get

F.di+ ¢ F.dif =1207 +0 =[1207|

C 1 CZ
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Solution 2: Vertical cut the surface (see the figure), and then we can apply the Stokes Theorem
directly. Denote S the cylinder oriented outward. Parametrize S and we have

7(0,2z) = (2cos B, 2sin 6, z), Dy, = {(H,z)‘O <O<2m,0< 2< 5}.

—

79 = (—2sin6, 2cos, 0), 7, = (0,0, 1)

- - -

2 ] k
Tg X Ty, = |—2sin@ 2cosO 0
0 0 1
-|2cosf 0 -|—2sin@® 0 —2sinf@ 2cosO
=1 —
01 J 01 0 0

— 2cos0 i+ 2sinfj+0 k= (2cos @, 2sin 6, 0)
curlF = (3x,3y, —6z) = (6cos B, 6sinfh, —6z)
curlF - 7y X 7, = (2 cos 0)(6 cos 0) + (2sin 0)(6sin 0) + (0)(—6z)
= 12(cos® 0 + sin? 0) +0 =12

By the Stokes Theorem, we get (if 8 = 0, 79 X 7, = (2,0, 0), pointing outward, so positve
sign is used in the Theorem),

j{F dr—|—j{FdF—//curlF dsS = —|—// curlF - Tog X 7, dA
Cl C2 Dez
27
— 12 // dA = 12/ / dzd6 = 12(27)(5)
Do 0 0

= [1207]

. (7 points) Find the distance between the two planes.

20 —y+22=7
20 —y+2z=1

Solution: The normal directions of the two planes are the same 7 = (2, —1, 2), and they
are paralle.

|7 — 1| _ 6 _6_
V2 +(=1)2+ (22 V9 3

distance =
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4. (9 points) Let S denote the surface given by the parameterization

7(u,v) = (u? + v?)i + (u? — v?)] + wv k, wis in R, and v > 0.

Find an equation for the tangent plane to S at the point P(1, —1, 0).

Solution: To get the corresponding u, v to P(1, —1, 0), solve
w4+v2=1, v —v*=—-1, uwv=0
for w and v, and we get w = 0, v = 1. The normal direction of the plane at P(1, —1, 0) is
7u(0,1) X 7,(0,1).
o o o
= (g 0, o = %), () ) = (20, 20, 0)
ou ou ou

3] 3] 3]
o= (gl + 0%, (= ), o (uo) ) = (20, ~20, w)

v
i ] Kk

M=7Ty XTy =20 2u v|= <2u2 + 202, 2v% — 2u?, —8uv>
2v —2v u

At P(1, —1, 0), i = (2(0)* + 2(1)?, 2(1)® — 2(0)?, —8(0)(1)) = (2, 2, 0). Or to be
simpler, we may get 7,(0,1) = (0,0, 1), ¥, (0,1) = (2, —2,0), then

i j k
A=10 0 1/=20+2)—7(0—2)+k(0—0)=(22,0)
2 —2 0

So the equation of the tangent plane is

2(x —1)+2(y+1)+0(z—0)=0]| or

Page 4 of 12




5. (6 points) There will be NO partial credit awarded on the following questions — so be sure to
double check your work!

(a) Suppose the amount of snow on the ground is given by the function f(zx,y) = z* + z?y%.

If you are standing at the point P(1,3), in which direction would you walk to decrease how

much snow you are standing in in the fastest?

Solution: The max rate of change of f occurs at its gradient direction gradf(1,3), and
min rate of change of f occurs at the negative gradient direction.
gradf =V f = <.foc7 fy) = <4CD3 + zmy27 2(1,'2y>
gradf(1,3) = (4(1)* + 2(1)(3)2 2(1)*(3)) = (22, 6)

So in the direction | — (22, 6) = (—22, —6) |you walk to decrease fastest and the amount

of snow is

lgrad f| = 1/(—22)2 + (—6)2 = |v/520| = | 2v/130

(b) Let F = (ye™ —i—yz);—i— (xe™ —|—:n2)3". Is F conservative? If so, find the associated potential

function.

Solution: Denote P(z,y) = ye®™ + 4%, Q(z,y) = xe™¥ + x2.

0

Q. = (ze™ + x?) = zye™ + ™ + 2z
oz
3]

P, = Ou (ye™ + y?) = zye™ + ™ + 2y
Y

Q. — P, =2x — 2y

S0 Qy — Py £ 0. So Fis ’not conservative ‘

(c) Suppose that C' is a simple, smooth, positively-oriented curve which encloses the region R in

the xy-plane. If / 5x dx + 3x dy = 30, what is the area of R?
c

Solution: C is closed, so by Green’s Theorem,

| sede+3eay = [[ [—(3:1;)——533}7_//37_3//7_3A(R)

O
So the area of R is A(R) = 3 [10].
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6. (9 points) Use the Method of Lagrange Multipliers to find all extrema of
flz,y) = 2" +y* — 2z — 4y

constrained to the circle 2 4+ y® = 5.

Solution: Let g(x,y) = x? + y®. Then the constraint equation is g(x,y) = 5.

9 2 2 a9 , , 9
= 7 & — 2 —4y) = 2x — 2 = — (T — 2
fo= 5 (@ +y v) 9o = 5 (¢* +v°)
0 (.2 2 9 2
£y 8y(a:er T —4y) = 2y 9y 8y(w+y) Y
Vf= <fma fy> = <2$ — 2,2y — 4> Vg = (gmagy> = <2w9 2y>
Vf=AV
By the Method of Lagrange Multipliers, we solve ! g which is the same as
g(z,y) =5
2 — 2 =2\ 21 = AN)x =2
(2z — 2,2y — 4) = A (22, 2y) v z D ( ) @
2125 2y —4=2Ay @ <= (21 - A)y=4Q
xr Yy = w2+y2:5 @ m2+y2:5®
1
Note A # 1 since otherwise it contradicts with (D and @. From D and @), we get = T %
2 5
y:1_)\-BY®7W6haVem:5780(1—)\)221.)\:O,or2.
1 2
When A =0, 2= —— =1, y= — = 2,
1-0 1-0
£(1,2)=(1)*+(2*-2(1)—4(2) = -5
1 2
When A\ =2,z = —— =—-1,y= — = —2,
1-—2 1-—2

f(=1,-2)= (-1 4+ (-2)>—2(-1) —4(-2) =15

So we get only two points (z,y) = (—1,—2) and (x,y) = (1,2). So the absolute
max/min values of the function are and , respectively.
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7. (8 points) Suppose that f is a differentiable function of  and y, and

g(s,t) = f(s* — 3t,4s — t).

f(@,y) | g9(s,t) | fo(msy) | Fu(T, )
(-2,3)| 5 1 2 3
(1,1) 4 5 6 7
(a) Use the table of values to compute gs(1,1).
Solution: Letm:s2—3t,y—4s—t Whens =1, t=1z =1 —2(1) = —2,
0 9 0
y = 4(1) — (1) = w:—(s _ 3t) = 2, y:a—(4s—t):4. So
S s
:133(1 1) =2(1) = 2, ys(l 1) = 4. By the Chain Rule,
9s(1,1) = f2(=2,3) - s(1,1) + f,(—2,3) - y5(1,1) = (2)(2) + (3)(4) =
(b) If g+(0, —1) = 3 and f,(3,1) = 2, use the table of values to compute fy(3,1).
Solution: When s = 0,¢t = —1, x = (0)> — 3(—1) = 3, y = 4(0) — (—1) = 1. By
the Chain Rule,
0 0 0
ag(sat) = gi(s,t) = af(wa y) = .fm(wvy) + fy(z 7y)a
= fo(s® — 3t, 45 — t)(—3) + f,(s* — 3t, 45 — t)(—1)
g+(0,—1) = —3f.(3,1) — fy(3,1)
3=-3(2) — f,(3,1) [solve it for f,(3,1)]
$4(5,1) = 6 — 5 =[=9)
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8. (8 points) Consider the function
ry

—  if (=, 0,0
2 if (z,y) = (0,0)

(a) Determine if the limit ~ lim  f(x,y) exists. Justify.
(=,y)—(0,0)

Solution: Let f(x,y) = . Use polar coordinates, * = rcos @, y = rsin 6.

Yy
/m2 _|_ y2
Then 22 + y2 = r2,

Ty rcos@ rsinf .
flx,y) = = = rcosfsinf

Vattyr o Vi

Since for any 0, |sin@| < 1, | cos 8] < 1, we have

0<|f(x,y) — 0| =|rcosfsinf| <r

As (z,y) — (0,0), » = /x2 + y? — 0, and so the lower bound and upper bound of
| f(x,y)| both approach 0 as (x,y) — (0,0). By the Squeeze Theorem,
Ty

lim ——=—— =|[0] This also proves the existence of the limit.
(z,y)—(0,0) /a2 4 Y2

Solution 2: Let f(x,y) = i

Va? +y?

— 0, as (z,y) — (0,0). To show that 0 is the limit of the function as

Pick a path, for example, C : y = 0. Then

2

f(x,y) = >
x
(z,y) — (0,0), we use the Squeeze Theorem.

Yy

Var+y?|

1
Since lim 0 =0, and lim —+/x2 4 y2? = 0, by the Squeeze Theorem, we get

(z,y)—0 (z,y)—0 2

lim |f(z,y)| =0<= lim f(z,y)=[0]

(z,y)—0 (z,y)—

1 2|x|- 1 |x|? 2 1
L elelyl PP 1
2. /a2ty 2 ./x2 + y? 2

0< If(a:,y)| = ‘

(b) Determine if f is continuous at (0, 0). Justify.

Solution: The function value at (0,0) is f(0,0) = 2, which is not equal to

lim f(xz,y) =0, so f is |not continuous]|.
(z,y)—0
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9. (8 points) Suppose the surface S of a small island with lizards is given by
z=23e %Y

with 2 + y? < 100 and with all distances measured in miles. The population density of the

lizards at a point (x,y, 2) on the island is given by
50

1+ x2+y?

lizards per square mile. Set up but do not evaluate an integral giving the total population of

p(z,y,z) =

the lizards on the island.

Solution: Let f(z,y) = 3e %Y We may parametrize the surface as

F(w’y) = <w’ Yy, f(wv y)> = <wa Yy, 3e_w2_y2> .
Then

To X Ty = (—fzy, —fy, 1) = <6we_‘”2_y2, 6ye_$2_y2, 1>

T X Ty| = \/(6:1:6—9’2—92)2 + (6ye—=*-v*)? 4 12
= \/36(:1:2 + y?)e2=*+y?) 41

The total popluation is

50
total population = // p(z,y,z)dS = //S I

_//D 1—|—a:2 |rm><ry|dA

_ // 50\/36(:1;2 T y?)e 2@+ 1 Loy
~ JJp., 1+ x2 + y?

dydx

B / /\/W 50\/36(&72 + y2)e—2($2+y2) +1
—10 J—4/100—22 14 x2 + y?

dr do

o /% /10 50r/36r2e—2r* + 1
0

14 r2
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10. (8 points) Let S be the part of the paraboloid & = 1 — y? — 22, oriented outward with

x > 0, and E be the solid enclosed by S; and the yz-plane.
Let S be the boundary (closed surface) of E, and

F = <2 +x (y2 + zz) , 3+ 13, sin(a:z) + z3> .

(a) Use the Divergence Theorem to evaluate the flux

through the surface S, oriented outward.

/ F.dS
S

Solution: S is a closed surface with positive orientation.
divF = 3 (2 +x (y2 + zz)) + 3 (:c3 + y3) + 3 (sin(:cz) + z3)
ox Oy 0z

By the Divergence Theorem,

// F.od§— 4+ /// Ay + 27) AV By cylindrical coordinates .
s r=x, y=7rcosf, z=r1rsinf

27 27
—4/ // rdmdrd0—4/ /rm

=0
4 6
= 871'/ r3(1 — r?)dr = 87r/ (r® — r®)dr = 8=« ( —)
0

1 1 27
=8r(-—=)=|"—
(4 6) 3

dr dée

(b) Evaluate the flux / F.dS.
S1

Hint: S; is NOT a closed surface, and you may use the result in (a).

Solution: Let Sy be the surface, oriented right, which makes S; + S = S. Then its
equation is = 0, and it can be parametrized as ¥(y, z) = (0, y, 2), where y*4+22 < 1.
So F = <2, y3, z3>, and 7, X 7, = (1,0, 0), pointing to the positive x-axis. So

//s §:_//F (Fy X 7>) dA = — //2dA__27,(1)2_

So the flux is

//SF dS_//F ds — //SF d§_——( 27) = 8?”
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11.

(8 points) Find the volume of the solid bounded by

2?4+ y? 4 22 = 4,
w2+y2+z2=1, and

z =3z + y2.

Solution: The volume of the solid is / / / dV | and it can be solved by spherical coordinates
E
x = psingcosO, y = psin¢psinf, z = pcos ¢.

& 27 2
Volume:/// dV:/ / / p’singpdpdfde
E o Jo J1
5 27 2
:/ sin d)d(l)/ dO/ P>
0 0 1
2

3 \/5 1
/1 = (1 - 7) (2m)-(8 1)

P

%
= —cos¢| (2mw) - —
0 3

Wl

(2-v3)x
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12. (8 points) Below are a series of statements concerning gradient, curl and divergence. Assume that
f, P, Q, R are scalar functions, F is a vector field in R3. If all of the second order partial

derivatives exist and are continuous, circle the answer that best describes each statement.

(a) curl(grad f) = 0.

)

(B) Sometimes true

(C) Never true

(b) div(curl F) = 0.

)

(B) Sometimes true

(C) Never true

() V-(Vf)=0.

(A) Always true

(B) |Sometimes true |

(C) Never true

(d) If F(z,y,2) = (P(z,y), Q(y), R(x,2)), then curl F is orthogonal to the -axis.

)

(B) Sometimes true

(C) Never true
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