Math 2400, Final Exam

PRINT YOUR NAME: _____

PRINT INSTRUCTOR'S NAME: _____

Marl	k your section,	/instructor:	
	Section 001	Kevin Berg	8:00-8:50
	Section 002	Philip Kopel	8:00-8:50
	Section 003	Daniel Martin	8:00 - 8:50
	Section 004	Albert Bronstein	9:00 - 9:50
	Section 005	Mark Pullins	9:00 - 9:50
	Section 006	Xingzhou Yang	9:00 - 9:50
	Section 007	Martin Walter	10:00-10:50
	Section 008	Kevin Manley	10:00-10:50
	Section 009	Albert Bronstein	1:00-1:50
	Section 010	Martin Walter	1:00-1:50
	Section 011	Xingzhou Yang	2:00-2:50
	Section 012	Taylor Klotz	2:00-2:50
	Section 013	Xingzhou Yang	3:00 - 3:50
	Section 014	Braden Balentine	4:00-4:50
	Section 015	Caroline Matson	4:00-4:50

Honor Code

On my honor, as a University of Colorado at Boulder student, I have neither given nor received unauthorized assistance on this work.

- No calculators or cell phones or other electronic devices allowed at any time.
- Show all your reasoning and work for full credit, except where otherwise indicated. Use full mathematical or English sentences.
- You have 150 minutes and the exam is 100 points.
- You do not need to simplify numerical expressions. For example leave fractions like 100/7 or expressions like $\ln(3)/2$ as is.
- When done, give your exam to your instructor, who will mark your name off on a photo roster.
- We hope you show us your best work!

1. (12 points) Note: No partial credit for this problem.

Let $\vec{a} = \langle -1, 2, 2 \rangle$, $\vec{b} = \langle 3, -2, 1 \rangle$. Compute

(a)
$$|\vec{a}| =$$

(b)
$$-2\vec{a} + 3\vec{b} =$$

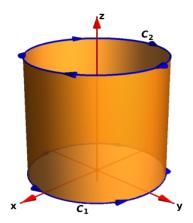
(c)
$$\vec{a} \cdot \vec{b} =$$

(d)
$$\vec{a} \times \vec{b} =$$

2. (9 points) Let $\nabla \times \vec{F} = \langle 3x, 3y, -6z \rangle$ and let C_1 and C_2 be the circles of radius two centered on the *z*-axis at z = 0 and z = 5, respectively. Calculate

$$\oint_{C_1} ec{F} \cdot dec{r} + \oint_{C_2} ec{F} \cdot dec{r}$$

 C_1 is oriented counter-clockwise, and C_2 is oriented clockwise viewed from the positive z-axis.



3. (7 points) Find the distance between the two planes.

$$2x - y + 2z = 7$$

 $2x - y + 2z = 1$

4. (9 points) Let \boldsymbol{S} denote the surface given by the parameterization

$$ec{r}(u,v)=(u^2+v^2)ec{i}+(u^2-v^2)ec{j}+uv\,ec{k},\qquad u ext{ is in }\mathbb{R} ext{, and }v\geq 0.$$

Find an equation for the tangent plane to S at the point P(1, -1, 0).

- 5. (6 points) There will be **NO partial credit** awarded on the following questions so be sure to double check your work!
 - (a) Suppose the amount of snow on the ground is given by the function $f(x, y) = x^4 + x^2 y^2$. If you are standing at the point P(1,3), in which direction would you walk to decrease how much snow you are standing in the fastest?

(b) Let $\vec{F} = (ye^{xy} + y^2)\vec{i} + (xe^{xy} + x^2)\vec{j}$. Is \vec{F} conservative? If so, find the associated potential function.

(c) Suppose that C is a simple, smooth, positively-oriented curve which encloses the region R in the xy-plane. If $\int_C 5x \, dx + 3x \, dy = 30$, what is the area of R?

6. (9 points) Use the **Method of Lagrange Multipliers** to find all extrema of

$$f(x,y) = x^2 + y^2 - 2x - 4y$$

constrained to the circle $x^2 + y^2 = 5$.

7. (8 points) Suppose that \boldsymbol{f} is a differentiable function of \boldsymbol{x} and \boldsymbol{y} , and

$g(s,t) = f(s^2 - 3t, 4s - t).$								
	f(x,y)	g(s,t)	$f_x(x,y)$	$f_y(x,y)$				
(-2,3)	5	1	2	3				
(1, 1)	4	5	6	7				

(a) Use the table of values to compute $g_s(1, 1)$.

(b) If $g_t(0, -1) = 3$ and $f_x(3, 1) = 2$, use the table of values to compute $f_y(3, 1)$.

8. (8 points) Consider the function

$$f(x,y) = egin{cases} rac{xy}{\sqrt{x^2+y^2}} & ext{if } (x,y)
eq (0,0) \ 2 & ext{if } (x,y) = (0,0) \end{cases}$$

(a) Determine if the limit $\lim_{(x,y)\to(0,0)} f(x,y)$ exists. Justify.

(b) Determine if f is continuous at (0, 0). Justify.

9. (8 points) Suppose the surface \boldsymbol{S} of a small island with lizards is given by

$$z = 3e^{-x^2 - y^2}$$

with $x^2 + y^2 \leq 100$ and with all distances measured in miles. The population density of the lizards at a point (x, y, z) on the island is given by

$$\rho(x,y,z)=\frac{50}{1+x^2+y^2}$$

lizards **per square mile**. Set up but **do not evaluate** an integral giving the total population of the lizards on the island.

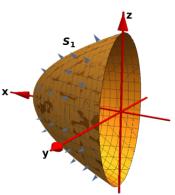


10. (8 points) Let S_1 be the part of the paraboloid $x = 1 - y^2 - z^2$, oriented outward with $x \ge 0$, and E be the solid enclosed by S_1 and the yz-plane. Let S be the boundary (closed surface) of E, and s_1

$$ec{F}=ig\langle 2+x\left(y^2+z^2
ight),\,x^3+y^3,\,\sin(x^2)+z^3ig
angle$$
 .

(a) Use the **Divergence Theorem** to evaluate the flux through the surface S, oriented outward.

$$\iint_S ec{F} \cdot dec{S}$$



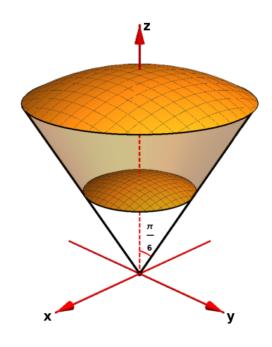
(b) Evaluate the flux $\iint_{S_1} F \cdot d\vec{S}$.

Hint: S_1 is **NOT** a closed surface, and you may use the result in (a).

11. (8 points) Find the volume of the solid bounded by

$$x^{2} + y^{2} + z^{2} = 4,$$

 $x^{2} + y^{2} + z^{2} = 1,$ and
 $z = \sqrt{3}\sqrt{x^{2} + y^{2}}.$



- 12. (8 points) Below are a series of statements concerning gradient, curl and divergence. Assume that f, P, Q, R are scalar functions, \vec{F} is a vector field in \mathbb{R}^3 . If all of the second order partial derivatives exist and are continuous, circle the answer that best describes each statement.
 - (a) $\operatorname{curl}(\operatorname{grad} f) = \vec{0}$.
 - (A) Always true
 - (B) Sometimes true
 - (C) Never true
 - (b) $\operatorname{div}(\operatorname{curl} \vec{F}) = 0.$
 - (A) Always true
 - (B) Sometimes true
 - (C) Never true
 - (c) $\boldsymbol{\nabla} \cdot (\boldsymbol{\nabla} f) = 0.$
 - (A) Always true
 - (B) Sometimes true
 - (C) Never true
 - (d) If $\vec{F}(x, y, z) = \langle P(x, y), Q(y), R(x, z) \rangle$, then curl \vec{F} is orthogonal to the *x*-axis.
 - (A) Always true
 - (B) Sometimes true
 - (C) Never true