$\underbrace{Math 2400, Midterm 1}_{\text{September 24, 2018}}$

PRINT YOUR NAME: ____

PRINT INSTRUCTOR'S NAME: ____

Mark your section/instructor:

J			_		
Section 001	Kevin Berg	8:00-8:50	 		Т
Section 002	Philip Kopel	8:00-8:50	-	Question	
Section 003	Daniel Martin	8:00-8:50		1	
Section 004	Albert Bronstein	9:00 - 9:50		2	
Section 005	Mark Pullins	9:00-9:50		3	
Section 006	Xingzhou Yang	9:00 - 9:50		4	
Section 007	Martin Walter	10:00-10:50		5	
Section 008	Kevin Manley	10:00-10:50		6	
Section 009	Albert Bronstein	1:00-1:50		7	
Section 010	Martin Walter	1:00-1:50		8	
Section 011	Xingzhou Yang	2:00-2:50	-	9	
Section 012	Taylor Klotz	2:00-2:50		10	I
Section 013	Xingzhou Yang	3:00-3:50		11	Ī
Section 014	Braden Balentine	4:00-4:50		Total:	İ
Section 015	Caroline Matson	4:00-4:50			

Honor Code

On my honor, as a University of Colorado at Boulder student, I have neither given nor received unauthorized assistance on this work.

- No calculators or cell phones or other electronic devices allowed at any time.
- Show all your reasoning and work for full credit, except where otherwise indicated. Use full mathematical or English sentences.
- You have 90 minutes and the exam is 100 points.
- You do not need to simplify numerical expressions. For example leave fractions like 100/7 or expressions like $\ln(3)/2$ as is.
- When done, give your exam to your instructor, who will mark your name off on a photo roster.
- We hope you show us your best work!

- 1. (10 points) Note: No partial credit for this problem. Let $\vec{a} = \langle 1, 2, 1 \rangle$, $\vec{b} = \langle -2, 1, -3 \rangle$. Compute
 - (a) $|\vec{a}| = \sqrt{6}$.

Solution:
$$|\vec{a}| = \sqrt{(1)^2 + (2)^2 + (1)^2} = \sqrt{6}$$
.

(b) $3\vec{a} - \vec{b} = \langle 5, 5, 6 \rangle$.

Solution: $3\vec{a} - \vec{b} = 3 \langle 1, 2, 1 \rangle - \langle -2, 1, -3 \rangle = \langle 3 + 2, 6 - 1, 3 + 3 \rangle$ = $\langle 5, 5, 6 \rangle$.

(c) $\vec{a} \cdot \vec{b} = -3$.

Solution: $\vec{a} \cdot \vec{b} = \langle 1, 2, 1 \rangle \cdot \langle -2, 1, -3 \rangle$ = (1)(-2) + (2)(1) + (1)(-3) = -3.

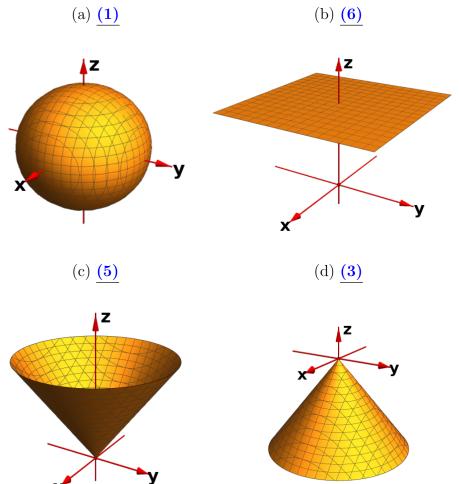
(d) $\vec{a} \times \vec{b} = \underline{\langle -7, 1, 5 \rangle}$.

Solution:
$$\vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 2 & 1 \\ -2 & 1 & -3 \end{vmatrix}$$
$$= \vec{i} \begin{vmatrix} 2 & 1 \\ 1 & -3 \end{vmatrix} - \vec{j} \begin{vmatrix} 1 & 1 \\ -2 & -3 \end{vmatrix} + \vec{k} \begin{vmatrix} 1 & 2 \\ -2 & 1 \end{vmatrix}$$
$$= (-6 - 1)\vec{i} - (-3 + 2)\vec{j} + (1 + 4)\vec{k}$$
$$= -7\vec{i} + \vec{j} + 5\vec{k} = \langle -7, 1, 5 \rangle$$

(e) $\operatorname{proj}_{\vec{a}}\vec{b} = \frac{-\frac{1}{2}\langle 1, 2, 1 \rangle = \left\langle -\frac{1}{2}, -1, -\frac{1}{2} \right\rangle}{-\frac{1}{2}\langle 1, 2, 1 \rangle = \left\langle -\frac{1}{2}, -1, -\frac{1}{2} \right\rangle}.$

Solution:
$$\operatorname{proj}_{\vec{a}}\vec{b} = \frac{\vec{a}\cdot\vec{b}}{\vec{a}\cdot\vec{a}}\vec{a} = \frac{-3}{6}\langle 1,2,1\rangle = -\frac{1}{2}\langle 1,2,1\rangle$$
$$= \left\langle -\frac{1}{2}, -1, -\frac{1}{2}\right\rangle$$

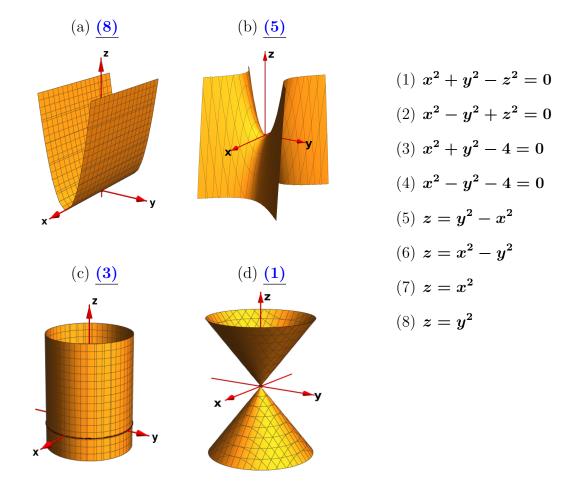
2. (12 points) Match each 3D surface with one of the equations. Not all equations will be matched.



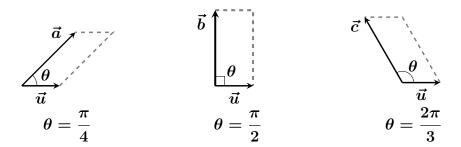
Let (ρ, θ, ϕ) be spherical coordinates.

(1) $\rho = 3$ Cartesian Eqn: $x^2 + y^2 + z^2 = 9$ (2) $\theta = \frac{\pi}{3}$ Cartesian Eqn: $x^2 + y^2 + z^2 = 9$ (3) $\phi = \frac{2\pi}{3}$ Cartesian Eqn: $x^2 + y^2 = 3z^2,$ $z \le 0$ (4) $\rho = \sec \theta$ Cartesian Eqn: $\frac{x^2 + y^2}{x^2 + y^2 + z^2} = x^2$ $x^2 + y^2 = 3z^2,$ $z \ge 0$ (5) $\phi = \frac{\pi}{3}$ Cartesian Eqn: Cartesian Eqn: $x^2 + y^2 = 3z^2,$ $z \ge 1$ $(\rho \cos \phi = 1)$

Note: In spherical coord., $x = \rho \sin \phi \cos \theta$, $y = \rho \sin \phi \sin \theta$, $z = \rho \cos \phi$. $x^2 + y^2 + z^2 = \rho^2$, $\tan \theta = \frac{y}{x}$, $\sin^2 \phi = \frac{x^2 + y^2}{x^2 + y^2 + z^2}$, $\cos^2 \phi = \frac{z^2}{x^2 + y^2 + z^2}$. (12 points) Match each 3D surface with one of the equations on the right side. Not all equations will be matched.



4. (4 points) In the pictures below assume that $|\vec{a}| = |\vec{b}| = |\vec{c}|$ and that \vec{u} is a unit vector. Use the parallelograms below to rank $|\vec{a} \times \vec{u}|, |\vec{b} \times \vec{u}|$, and $|\vec{c} \times \vec{u}|$ from smallest to largest.

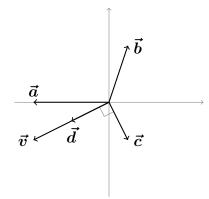


Circle one of the following.

(a) $|\vec{a} \times \vec{u}| \leq |\vec{c} \times \vec{u}| \leq |\vec{b} \times \vec{u}|$ (b) $|\vec{a} \times \vec{u}| \leq |\vec{c} \times \vec{u}| \leq |\vec{b} \times \vec{u}|$ Correct Answer: (b) (c) $|\vec{b} \times \vec{u}| \leq |\vec{a} \times \vec{u}| \leq |\vec{c} \times \vec{u}|$ (d) $|\vec{b} \times \vec{u}| \leq |\vec{c} \times \vec{u}| \leq |\vec{a} \times \vec{u}|$ (e) $|\vec{c} \times \vec{u}| \leq |\vec{a} \times \vec{u}| \leq |\vec{b} \times \vec{u}|$ (f) $|\vec{c} \times \vec{u}| \leq |\vec{b} \times \vec{u}| \leq |\vec{a} \times \vec{u}|$

Note: The area of the parallelogram spanned by vectors \vec{a} and \vec{b} is $|\vec{a} \times \vec{b}| = |\vec{a}| \cdot |\vec{b}| \sin \theta$, where θ is the angle between the two vectors.

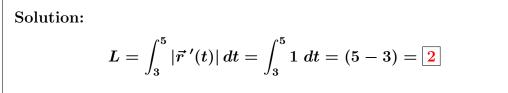
5. (8 points) Consider the following vectors \vec{v} , \vec{a} , \vec{b} , \vec{c} , and \vec{d} in the xy-plane.



Circle whether each of the following is true or false.

- (a) **TRUE** or **FALSE**: $\vec{v} \cdot \vec{a} \ge \vec{v} \cdot \vec{d}$
- (b) **TRUE** or **FALSE**: $\vec{v} \cdot \vec{c} = 0$
- (c) **TRUE** or **FALSE**: $\vec{v} \cdot \vec{a} = \vec{v} \cdot \vec{b}$
- (d) TRUE or **FALSE**: $\vec{v} \cdot \vec{d} = |\vec{v}|^2$

6. (6 points) Let C: $\vec{r}(t) = \langle x(t), y(t), z(t) \rangle$ be any space curve such that $|\vec{r}'(t)| = 1$. If $3 \le t \le 5$ then what is the length of C from $\vec{r}(3)$ to $\vec{r}(5)$?



7. (8 points) Find a parametric representation of the part of the plane z = x + 2that lies inside the cylinder $x^2 + y^2 = 1$.

Solution:

 $\begin{cases} x = x \\ y = y \\ z = x+2 \end{cases}, \quad x^{2} + y^{2} \le 1 \\ z = x+2 \\ \end{cases}$ or $\begin{cases} x = u \\ y = v \\ z = u+2 \end{cases}, \quad u^{2} + v^{2} \le 1 \end{cases}$

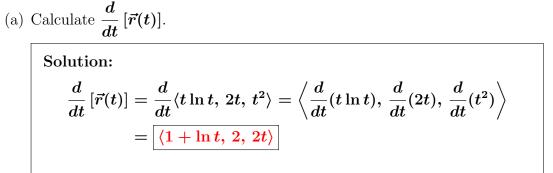
Solution 2: In cylindrical coordinates, $x = r \cos \theta$, $y = r \sin \theta$, z = z. Plug them into the plane equation, and we have

$$z = r \cos \theta + 2$$

Now we get the paramatric equations for the surface as follows,

$$\left\{egin{array}{ll} x&=&r\cos{ heta}\ y&=&r\sin{ heta}\ z&=&r\cos{ heta}+2 \end{array}
ight., \quad 0\leq r\leq 1,\; 0\leq heta\leq 2\pi$$

8. (10 points) Consider the space curve C: $\vec{r}(t) = \langle t \ln t, 2t, t^2 \rangle$, where t > 0.



(b) Find the parametric equations of the line tangent to C at the point (0, 2, 1).

Solution: To find the corresponding t to the point, we solve $\langle t \ln t, 2t, t^2 \rangle = \langle 0, 2, 1 \rangle$, or $t \ln t = 0, 2t = 2, t^2 = 1$, for t. So we get only one root t = 1. The tangential direction of the tangent line is $\vec{r}'(1) = \langle 1 + \ln 1, 2, 2(1) \rangle = \langle 1, 2, 2 \rangle$. So the parametric equations of the line tangent to C at the point (0, 2, 1) is

x = t, y = 2 + 2t, z = 1 + 2t.

9. (10 points) The positions of two particles at time t, for $t \ge 0$, are given by $\vec{r_1}(t) = \langle t, t^2 + 2t, 1 \rangle$ and $\vec{r_2}(t) = \langle 2t - 1, 4t^2 - 1, \cos(\pi t) \rangle$, respectively. Do the two particles collide? If so, then at what time(s) do they collide? If not, justify why not.

Solution: If the two particles collide, they should have the same position at time t, in other words, $\vec{r_1}(t) = \vec{r_2}(t)$. So

$$egin{aligned} & \left< t, t^2 + 2t, 1 \right> = \left< 2t - 1, 4t^2 - 1, \cos(\pi t) \right> \ & \left\{ egin{aligned} t = 2t - 1 & \textcircled{1} \ t^2 + 2t = 4t^2 - 1 & \textcircled{2} \ 1 = \cos(\pi t) & \textcircled{3} \end{aligned}
ight. \end{aligned}$$

From (1), we get t = 1, but it does not satisfy (3) since $\cos(\pi) = -1 \neq 1$. So the two particles **never collide**. 10. (10 points) Find an equation for the plane through the point P(2,3,0) and parallel to a plane determined by vectors $\vec{u} = \langle 1, 2, 3 \rangle$ and $\vec{v} = \langle 3, 4, 5 \rangle$.

Solution: The normal direction of the plane determined by \vec{u} and v is $\vec{n} = \vec{u} \times \vec{v} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 2 & 3 \\ 3 & 4 & 5 \end{vmatrix} = \vec{i} \begin{vmatrix} 2 & 3 \\ 4 & 5 \end{vmatrix} - \vec{j} \begin{vmatrix} 1 & 3 \\ 3 & 5 \end{vmatrix} + \vec{k} \begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix}$ $= \vec{i}(10 - 12) - \vec{j}(5 - 9) + \vec{k}(4 - 6)$ $= -2\vec{i} + 4\vec{j} - 2\vec{k} = \langle -2, 4, -2 \rangle$

So the equation of the plane through P(2,3,0) and parallel to the plane determined by \vec{u} and \vec{v} is

$$-2(x-2) + 4(y-3) - 2(z-0) = 0$$
, or $x - 2y + z + 4 = 0$

11. (10 points) Given P(1, 2, 3) and a line $L: \frac{x-1}{2} = \frac{y+2}{1} = \frac{z-3}{2}$, find the shortest distance between the point P and the line L.

Solution: Let \vec{u} be the direction vector of L. Then $\vec{u} = \langle 2, 1, 2 \rangle \parallel L$. Note that the point Q(1, -2, 3) is on L, and

$$\overrightarrow{PQ} = \overrightarrow{OQ} - \overrightarrow{OP} = \langle 1, -2, 3 \rangle - \langle 1, 2, 3 \rangle = \langle 0, -4, 0
angle \,.$$

The projection of \overrightarrow{PQ} onto L or \vec{u} is

$$\operatorname{Proj}_{\vec{u}} \overrightarrow{PQ} = \frac{\vec{u} \cdot \overrightarrow{PQ}}{\vec{u} \cdot \vec{u}} \vec{u} = \frac{(2)(0) + (1)(-4) + (2)(0)}{2^2 + 1^2 + 2^2} \vec{u}$$
$$= -\frac{4}{9} \vec{u} = -\frac{4}{9} \langle 2, 1, 2 \rangle$$

So the orthogonal projection of \overrightarrow{PQ} onto L is

$$\operatorname{Orth}_{\vec{u}} \overrightarrow{PQ} = \overrightarrow{PQ} - \operatorname{Proj}_{\vec{u}} \overrightarrow{PQ} = \langle 0, -4, 0 \rangle - \left(-\frac{4}{9}\right) \langle 2, 1, 2 \rangle$$
$$= \left\langle 0 + \frac{8}{9}, -4 + \frac{4}{9}, 0 + \frac{8}{9} \right\rangle = \left\langle \frac{8}{9}, -\frac{32}{9}, \frac{8}{9} \right\rangle$$
$$= \frac{8}{9} \left\langle 1, -4, 1 \right\rangle$$

The distance between the point P and the line L is the magnitude of the orthogonal vector, i.e.,

dist
$$(P,L) = \left| \operatorname{Orth}_{\vec{u}} \overrightarrow{PQ} \right| = \frac{8}{9} \sqrt{1^2 + (-4)^2 + 1^2} = \frac{8}{9} \sqrt{18} = \left| \frac{8\sqrt{2}}{3} \right|$$